博碩士論文 106486603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.235.251.99
姓名 盧凱(Luki Trihardani)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 為民宿業者使用再生能源尋求最佳之設備組合及現場佈局
(Making Optimal Location-Sizing Decisions for Deploying Hybrid Renewable Energy at B&Bs)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為民宿業者使用再生能源尋求最佳之設備組合及現場佈局

摘 要

使用再生能源是民宿業者具前瞻性來緩解氣候變遷並同時維持競爭優勢的商業策略。然而,當前仍缺乏最佳化觀光旅宿再生能源設備組合的研究分析,因此本研究提出了一項具實用性的方法,使所有民宿業者能夠為其營運設施建立最佳的再生能源佈局決策。本研究透過混合整數規劃建立模型並對實際案例進行測試,該模型成功為兩種情境建構了最佳的能源系統組合,基本情境以每年21,499美元的成本產出116,942度電,而非傳統常規技術的情境則以每年24,670美元的成本提供了114,474 度的電力。與電網購置全部所需電力相比,兩種情境每年皆可減少排放超過26噸之二氧化碳當量。
在可負擔之預算內,本研究為民宿業者提供了成功能源轉型的重要參考,研究中考量了各種能源配置元素包含再生能源設備組合、電池、電網、能源自給率目標及各式再生能源技術。因此民宿業者可擬定理想的能源自給率,在配合電網的電力供應下滿足一定比例之再生能源需求,而該模型亦能評估再生能源技術的投資並權衡是否購置更大容量的電池。本研究之成果將有助於全球各地之民宿業者加速再生能源的使用。
摘要(英) Making Optimal Location-Sizing Decisions for Deploying
Hybrid Renewable Energy at B&Bs

ABSTRACT

The adoption of renewable energy (RE) is a promising business strategy for bed and breakfasts (B&Bs) to mitigate climate change while maintaining a competitive edge. However, there is still a lack of analytical studies to determine an optimal RE mix for tourism accommodations. This study thus proposes a practical approach to enable all B&Bs to make optimal RE decisions for their business facility. A mixed-integer program-ming (MIP) model is developed and tested in a case study. The model successfully identi-fies an optimal hybrid energy system for two scenarios, the base case that generates 116,942 kWh of electricity annually at the cost of US $21,499, and the unconventional technology case that generates 114,474 kWh of electricity annually at the cost of US $24,670. Compared to purchasing all the required electricity from the power grid, both scenarios can save more than 26 tons of CO2e/year.
The analysis provides valuable information for B&Bs to initiate a smooth en-ergy transition with affordable costs. This study considers various energy components, in-cluding hybrid RE, batteries, the power grid, self-sufficiency targets, and various RE tech-nologies. Therefore, B&Bs can choose a preferred self-sufficiency target where RE satis-fies a specific portion of the energy demands and the power grid satisfies the rest. The model can also evaluate the tradeoff between investing in RE technologies and purchasing larger batteries. These findings will assist B&Bs in accelerating the adoption of RE glob-ally.
關鍵字(中) ★ 民宿
★ 溫室氣體排放
★ 再生能源
★ 數學最佳化
關鍵字(英) ★ bed and breakfast
★ greenhouse gas emissions
★ renewable energy
★ mathematical optimization
論文目次 Table of Contents

摘 要 i
Abstract ii
Acknowledgments iv
List of Figures viii
List of Tables ix
List of Abbreviations x
Chapter 1 Introduction 1
1-1 Research Background 1
1-2 Research Motivation 3
1-3 Research Problem 6
1-4 Research Outline 8
Chapter 2 Literature Review 9
2-1 Optimization in Tourism Accommodation 9
2-2 Design Optimization Using Simulation-Based Tools 10
2-3 Design Optimization Using Heuristic Algorithms 12
2-4 Research Contributions 13
Chapter 3 Optimization Model 17
3-1 Assumptions 17
3-2 Notation 18
3-2 Objective Function 19
3-3 Constraints 20
Chapter 4 Methodology 23
4-1 Flowchart of the Methodology 23
4-2 The Base Case 24
4-3 The Unconventional Technology Case 25
4-4 Case Study of the B&B 26
4-4-1 Solar and Wind Energy Data 27
4-4-2 Layout at the Subject B&B 28
4-4-3 Demand at the Subject B&B 31
Chapter 5 Results And Discussion 34
5-1 Analysis of the Base Case 34
5-1-1 100% Self-Sufficiency in the Base Case 34
5-1-2 Different Self-Sufficiency Ratios in the Base Case 41
5-2 Analysis of the Unconventional Technology Case 48
5-3 Comparison of Base Case and Unconventional Technology Case 50
Chapter 6 Conclusions and Future Research 52
6-1 Conclusions 52
6-2 Future Research 53
References 55
Appendix 67
Appendix A Establish Solar and Wind Energy Data 67
Appendix B Determine Optimal Location-Sizing Decisions at the B&B 69
Appendix C Calculate the Costs of Purchasing Electricity from the Power Grid 69
參考文獻 References

1. World Meteorological Organization. State of Global Climate 2020; WMO: Geneva, Swit-zerland, 2020.
2. International Energy Agency (IEA). CO2 Emissions from Fuel Combustion; IEA: Paris, France, 2019.
3. UNWTO. International Tourism Highlights, 2020 ed.; UNWTO: Madrid, Spain, 2020.
4. Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. “The Carbon Foot-print of Global Tourism.” Nat. Clim. Chang. 2018, 8, pp. 522–528.
5. Scott, D. “Sustainable Tourism and the Grand Challenge of Climate Change.” Sustainabil-ity 2021, 13, pp. 1966.
6. Roxas, F.M.Y.; Rivera, J.P.R.; Gutierrez, E.L.M. “Mapping Stakeholders’ Roles in Govern-ing Sustainable Tourism Destinations.” J. Hosp. Tour. Manag. 2020, 45, pp. 387–398.
7. United Nations Environment Programme & World Tourism Organization. Making Tourism More Sustainable: A Guide for Policy Makers; United Nations Environment Programme & World Tourism Organization: Madrid, Spain, 2005.
8. Scott, D.; Gössling, S. Tourism and Climate Change Mitigation Embracing the Paris Agreement; European Travel Commission, Ed.; European Travel Commission: Brussel, Belgium, 2018.
9. Sustainable Development. Available online: https://www.unwto.org/sustainable-development (accessed on 5 October 2021).
10. Tsai, K.; Lin, T.; Hwang, R.; Huang, Y. “Carbon Dioxide Emissions Generated by Energy Consumption of Hotels and Homestay Facilities in Taiwan.” Tour. Manag. 2014, 42, pp. 13–21.
11. Hu, A.H.; Huang, C.Y.; Chen, C.F.; Kuo, C.H.; Hsu, C.W. “Assessing Carbon Footprint in the Life Cycle of Accommodation: The Case of an International Tourist Hotel.” Int. J. Sustain. Dev. World Ecol. 2015, 22, pp. 313–323.
12. Wang, J.C. “A Study on the Energy Performance of Hotel Buildings in Taiwan.” Energy Build. 2012, 49, pp. 268–275.
13. Chan, E.S.W.; Okumus, F.; Chan, W. “What Hinders Hotels’ Adoption of Environmental Technologies: A Quantitative Study.” Int. J. Hosp. Manag. 2020, 84, pp. 102324.
14. UNWTO & UNEP. Climate Change and Tourism: Responding to Global Challenges; UN-WTO & UNEP: Madrid, Spain, 2008.
15. Ye, S.; Xiao, H.; Zhou, L.”Small Accommodation Business Growth in Rural Areas: Effects on Guest Experience and Financial Performance.” Int. J. Hosp. Manag. 2019, 76 (March 2018), pp. 29–38.
16. Kuo, C.M.; Tseng, C.Y.; Chen, L.C. “Choosing Between Exiting or Innovative Solutions for B&Bs.” Int. J. Hosp. Manag. 2018, 73, pp. 12–19.
17. Monthly Report of Home Stay Facilities Operations in Taiwan. Available online: https://admin.taiwan.net.tw/ (accessed on 24 June 2021).
18. Northern Ireland Guesthouse, Bed & Breakfast, and Guest Accommodation Occupancy Rates. Available online: https://www.nisra.gov.uk/statistics/tourism/hotel-occupancy-surveys (accessed on 4 April 2022).
19. World Bank Group. Tourism and the Sharing Economy: Policy & Potential of Sustainable Peer-to-Peer Accommodations; World Bank Group: Washington, DC, USA, 2018.
20. Long, F.; Liu, J.; Zhang, S.; Yu, H.; Jiang, H. “Development Characteristics and Evolution Mechanism of Homestay Agglomeration in Mogan Mountain, China.” Sustainability 2018, 10, pp. 2964.
21. Pereira, V.; Silva, G.M. “Sustainability Practices in Hospitality: Case Study of a Luxury Hotel in Arrabida Natural Park.” Sustainability 2021, 13, pp. 3164.
22. Abdou, A.H.; Hassan, T.H.; Dief, E.; Moustafa, M. “A Description of Green Hotel Practices and Their Role in Achieving Sustainable Development.” Sustainability 2020, 12, pp. 9624.
23. IRENA. A Path to Prosperity: Renewable Energy for Islands; IRENA: Abu Dhabi, United Arab Emirates, 2016.
24. Okkonen, L.; Lehtonen, O. “Socio-Economic Impacts of Community Wind Power Projects in Northern Scotland.” Renew. Energy 2016, 85, pp. 826–833.
25. Moise, M.S.; Gil-Saura, I.; Ruiz Molina, M.E. “The Importance of Green Practices for Ho-tel Guests: Does Gender Matter?” Econ. Res. Istraz. 2021, 34, pp. 3508-3529.
26. Guttentag, D.; Smith, S.; Potwarka, L.; Havitz, M. “Why Tourists Choose Airbnb: A Moti-vation-Based Segmentation Study.” J. Travel Res. 2018, 57, pp. 342–359.
27. So, K.K.F.; Kim, H.; Oh, H. “What Makes Airbnb Experiences Enjoyable? The Effects of Environmental Stimuli on Perceived Enjoyment and Repurchase Intention.” J. Travel Res. 2021, 60, pp. 1018–1038.
28. Zhu, Y.; Cheng, M.; Wang, J.; Ma, L.; Jiang, R. “The Construction of Home Feeling by Airbnb Guests in the Sharing Economy: A Semantics Perspective.” Ann. Tour. Res. 2019, 75, pp. 308–321.
29. Tang, T. “Competing Through Customer Social Capital: The Proactive Personality of Bed and Breakfast Operators. Asia Pac. J. Tour. Res. 2015, 20, pp. 133–151.
30. Ramadani, V.; Rexhepi, G.; Gërguri-Rashiti, S.; Ibraimi, S.; Dana, L. P. “Ethnic Entrepre-neurship in Macedonia: The Case of Albanian Entrepreneurs.” Int. J. Entrep. Small Bus. 2014, 23 (3), pp. 313–335.
31. International Energy Agency. Global EV Outlook 2020; International Energy Agency: Par-is, France, 2020.
32. Marriot International Electric Vehicle Charging Stations. Available online: https://www.marriott.com/corporate-social-responsibility/electric-vehicle-hotels.mi (ac-cessed on 5 October 2021).
33. Hotels Race to Fill Growing Demand for Electric Car Chargers. Available online: https://www.hotelmanagement.net/tech/hotels-drive-revenue-by-charging-electric-cars (accessed on 5 October 2021).
34. Zhao, J.; Carney, M.; Zhang, S.; Zhu, L. “How Does an Intra-Family Succession Effect Strategic Change and Performance in China’s Family Firms?” Asia Pac. J. Manag. 2020, 37, pp. 363–389.
35. SolarPower Europe. Global Market Outlook for Solar Power 2018–2022; SolarPower Eu-rope: Brussels, Belgium, 2018.
36. Greenview. Green Lodging Trends Report 2018; Greenview: Singapore, 2019. Available online: https://greenview.sg/services/green-lodging-trends-report/ (accessed on 27 Sep-tember 2021).
37. Sardianou, E.; Kostakis, I. “Perceived Barriers to Invest in Renewable Energy Sources in the Cretan Hotel Industry.” Int. J. Sustain. Energy 2020, 39, pp. 240–249.
38. Casteleiro-Roca, J.L.; Gómez-González, J.F.; Calvo-Rolle, J.L.; Jove, E.; Quintián, H.; Di-az, B.G.; Perez, J.A.M. “Short-Term Energy Demand Forecast in Hotels Using Hybrid In-telligent Modeling.” Sensors 2019, 19, pp. 2485.
39. Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A. Ben. “Sizing Methods and Optimization Techniques for PV-Wind Based Hybrid Renewable Energy System: A Review.” Renew. Sustain. Energy Rev. 2018, 93, pp. 652–673.
40. Gross, S. Renewables, Land Use, and Local Opposition in the United States Executive Summary. Available online: https://www.brookings.edu/wpcontent/uploads/2020/01/FP_20200113_renewables_land_use_local_opposition_gross.pdf (accessed on 26 October 2021).
41. Sadollah, A.; Nasir, M.; Geem, Z.W. “Sustainability and Optimization: From Conceptual Fundamentals to Applications.” Sustainability 2020, 12, pp. 2027.
42. Ganguly, P.; Kalam, A.; Zayegh, A. Hybrid-Renewable Energy Systems in Microgrids: In-tegration, Developments and Control; Woodhead Publishing Series in Energy: Cambridge, UK, 2018; Volume 12, pp. 219–248.
43. Warren, C.; Becken, S. “Saving Energy and Water in Tourist Accommodation: A System-atic Literature Review (1987–2015).” Int. J. Tour. Res. 2017, 19, pp. 289–303.
44. Lei, S. S. I.; Nicolau, J. L.; Wang, D. The Impact of Distribution Channels on Budget Hotel Performance. Int. J. Hosp. Manag. 2019, 81, pp. 141–149.
45. Ammari, C.; Belatrache, D.; Touhami, B.; Makhloufi, S. “Sizing, Optimization, Control and Energy Management of Hybrid Renewable Energy System—A Review.” Energy Built Environ. 2021, in press.
46. HOMER Pro. Available online: https://www.homerenergy.com/products/pro/features.html (accessed on 2 February 2022).
47. Uwineza, L.; Kim, H.G.; Kim, C.K. “Feasibility Study of Integrating the Renewable Ener-gy System on Popova Island Using the Monte Carlo Model and HOMER.” Energy Strateg. Rev. 2021, 33, pp. 100607.
48. Shin, Y.; Yong, W.; Hyung, T.; Jung, S.; Kim, H. “Capacity Design and Operation Plan-ning of a Hybrid PV-Wind-Battery-Diesel Power Generation System in the Case of Deok-jeok Island.” Appl. Therm. Eng. 2015, 89, pp. 514–525.
49. Lauinger, D.; Caliandro, P.; Van Herle, J.; Kuhn, D. “A Linear Programming Approach to the Optimization of Residential Energy Systems.” J. Energy Storage 2016, 7, pp. 24–37.
50. Dalton, G.J.; Lockington, D.A.; Baldock, T.E. “Feasibility Analysis of Stand-Alone Re-newable Energy Supply Options for a Large Hotel.” Renew. Energy 2008, 33, pp. 1475–1490.
51. Dalton, G.J.; Lockington, D.A.; Baldock, T.E. “Case Study Feasibility Analysis of Renew-able Energy Supply Options for Small to Medium-Sized Tourist Accommodations.” Re-new. Energy 2009, 34, pp. 1134–1144.
52. Güler, Ö.; Akda, S.A.; Dinc, M.E. “Feasibility Analysis of Medium-Sized Hotel’s Electri-cal Energy Consumption with Hybrid Systems.” Sustain. Cities Soc. 2013, 9, pp. 15–22.
53. Fazelpour, F.; Soltani, N.; Rosen, M.A. “Feasibility of Satisfying Electrical Energy Needs with Hybrid Systems for a Medium-Size Hotel on Kish Island, Iran.” Energy 2014, 73, pp. 856–865.
54. Shezan, S.K.A.; Saidur, R.; Ullah, K.R.; Hossain, A.; Chong, W.T.; Julai, S. “Feasibility Analysis of a Hybrid Off-Grid Wind–DG-Battery Energy System for The Eco-Tourism Remote Areas.” Clean Technol. Environ. Policy 2015, 7, pp. 2417–2430.
55. Khan, M.R.; Jidin, R.; Pasupuleti, J.; Shaaya, S. “Optimal Combination of Solar, Wind, Micro-Hydro and Diesel Systems Based on Actual Seasonal Load Profiles for a Resort Is-land in the South China Sea.” Energy 2015, 82, pp. 80–97.
56. Hossain, M.; Mekhilef, S.; Olatomiwa, L. “Performance Evaluation of a Stand-Alone PV-Wind-Diesel-Battery Hybrid System Feasible for a Large Resort Center in South China Sea, Malaysia.” Sustain. Cities Soc. 2017, 28, pp. 358–366.
57. Borowski, M.; Mazur, P.; Kleszcz, S.; Zwolińska, K. “Energy Monitoring in a Heating and Cooling System in a Building Based on the Example of the Turówka Hotel.” Energies 2020, 13, pp. 1968.
58. TRNSYS 18. Available online: https://sel.me.wisc.edu/trnsys/ (accessed on 26 October 2021).
59. Al Ka’bi, A.H. “Comparison of Energy Simulation Applications Used in Green Building.” Ann. Telecommun. 2020, 75, pp. 271–290.
60. Shrivastava, R.L.; Kumar, V.; Untawale, S.P. “Modeling and Simulation of Solar Water Heater: A TRNSYS Perspective.” Renew. Sustain. Energy Rev. 2017, 67, pp. 126–143.
61. Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. “Energy and Economic Analysis of Geothermal–Solar Trigeneration Systems: A Case Study for a Hotel Building in Ischia.” Appl. Energy 2015, 138, pp. 224–241.
62. Beccali, M.; Finocchiaro, P.; Ippolito, M.G.; Leone, G.; Panno, D.; Zizzo, G. “Analysis of Some Renewable Energy Uses and Demand Side Measures for Hotels on Small Mediterra-nean Islands: A Case Study.” Energy 2018, 157, pp. 106–114.
63. Soheyli, S.; Shafiei Mayam, M.H.; Mehrjoo, M. “Modeling a Novel CCHP System Includ-ing Solar and Wind Renewable Energy Resources and Sizing by a CC-MOPSO Algo-rithm.” Appl. Energy 2016, 184, pp. 375–395.
64. Meschede, H.; Dunkelberg, H.; Stöhr, F.; Peesel, R.; Hesselbach, J. “Assessment of Proba-bilistic Distributed Factors Influencing Renewable Energy Supply for Hotels Using Mon-te-Carlo Methods. Energy 2017, 128, pp. 86–100.
65. Garces, A.; Gil-González, W.; Montoya, O. D.; Chamorro, H. R.; Alvarado-Barrios, L. “A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Mi-crogrids.” Appl. Sci. 2021, 11, pp. 1972.
66. Xie, R.; Wei, W.; Khodayar, M. E.; Wang, J.; Mei, S. “Planning Fully Renewable Powered Charging Stations on Highways: A Data-Driven Robust Optimization Approach.” IEEE Trans. Transp. Electrif. 2018, 4, pp. 817–830.
67. Lamedica, R.; Santini, E.; Ruvio, A.; Palagi, L.; Rossetta, I. “A MILP Methodology to Op-timize Sizing of PV - Wind Renewable Energy Systems.” Energy 2018, 165, pp. 385-398.
68. Attia, A. M.; Al Hanbali, A.; Saleh, H. H.; Alsawafy, O. G.; Ghaithan, A. M.; Mohammed, A. “A Multi-Objective Optimization Model for Sizing Decisions of a Grid-Connected Photovoltaic System.” Energy 2021, 229, 120730.
69. Tesla Solar Roof. Available online: https://www.tesla.com/solarroof (accessed on 27 Oc-tober 2021).
70. Tesla Powerwall 2 AC Datasheet—United Kingdom. Available online: https://www.tesla.com/sites/dfault/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_GB.pdf (accessed on 26 October 2021).
71. Ciel & Terre. Available online: https://www.ciel-et-terre.net/ (accessed on 27 October 2021).
72. New World Wind. Available online: https://newworldwind.com/en/wind-tree/ (accessed on 27 September 2021).
73. Liu, C. W.; Cheng, J. S. “Exploring Driving Forces of Innovation in the MSEs: The Case of the Sustainable B & B Tourism Industry.” Sustain. 2018, 10 (11), pp. 1–19.
74. Regulations for the Management of Home Stay Facilities in Taiwan. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=K0110012 (accessed on 26 October 2021).
75. Chen, H.H.; Lee, A.H.I. “Comprehensive Overview of Renewable Energy Development in Taiwan.” Renew. Sustain. Energy Rev. 2014, 37, pp. 215–228.
76. Kung, C.; Mccarl, B.A. “The Potential Role of Renewable Electricity Generation in Tai-wan.” Energy Policy 2020, 138, pp. 111227.
77. Data Bank for Atmospheric & Hydrologic Research—Taiwan Meteorological Data. Available online: https://dbar.pccu.edu.tw/ (accessed on 24 June 2021).
78. Mazidi, M.; Zakariazadeh, A.; Jadid, S.; Siano, P. “Integrated Scheduling of Renewable Generation and Demand Response Programs in a Microgrid.” Energy Convers. Manag. 2014, 86, pp. 1118–1127.
79. Mostafaeipour, A.; Sedaghat, A.; Dehghan-Niri, A.A.; Kalantar, V. “Wind Energy Feasi-bility Study for City of Shahrbabak in Iran.” Renew. Sustain. Energy Rev. 2011, 15, pp. 2545–2556.
80. Ouyang, X.; Lin, B. “Levelized Cost of Electricity (LCOE) of Renewable Energies and Required Subsidies in China.” Energy Policy 2014, 70, 64–73.
81. Feed-In Tariffs of Renewable Energy in Taiwan 2020—Bureau of Energy. Available online: https://www.moeaboe.gov.tw (accessed on 26 February 2021).
82. Simple Levelized Cost of Energy (LCOE) Calculator Documentation—National Renewa-ble Energy Laboratory (NREL). Available online: https://www.nrel.gov/analysis/tech-lcoe-documentation.html (accessed on 26 February 2021).
83. Oliveira-Pinto, S.; Stokkermans, J. “Assessment of the Potential of Different Floating Solar Technologies-Overview and Analysis of Different Case Studies.” Energy Convers. Manag. 2020, 211, pp. 112747.
84. Mostafaeipour, A.; Rezaei, M.; Jahangiri, M.; Qolipour, M. “Feasibility Analysis of a New Tree-Shaped Wind Turbine for Urban Application: A Case Study.” Energy Environ. 2019, 31, pp. 1230–1256.
85. Tao, J.Y.; Finenko, A. “Moving Beyond LCOE: Impact of Various Financing Methods on PV Profitability for SIDS.” Energy Policy 2016, 98, pp. 749–758.
86. Nguyen, S.; Peng, W.; Sokolowski, P.; Alahakoon, D.; Yu, X. “Optimizing Rooftop Photo-voltaic Distributed Generation with Battery Storage for Peer-To-Peer Energy Trading.” Appl. Energy 2020, 228, pp. 2567–2580.
87. Inns Regulatory Framework-Town of Banff, Canada. Available online: https://banff.ca/DocumentCenter/View/6974/ (accessed 5 June 2021).
88. Ferrari, S.; Zagarella, F.; Caputo, P.; D’Amico, A. “Results of a Literature Review on Methods for Estimating Buildings Energy Demand at District Level.” Energy 2019, 175, pp. 1130–1137.
89. Lamagna, M.; Nastasi, B.; Groppi, D.; Nezhad, M.M.; Garcia, D.A. “Hourly Energy Profile Determination Technique from Monthly Energy Bills.” Build. Simul. 2020, 13, pp. 1235–1248.
90. Chung, M.; Park, H.C. “Comparison of Building Energy Demand for Hotels, Hospitals, and Offices in Korea.” Energy 2015, 92, pp. 383–393.
91. Chen, L.; Lin, S.; Kuo, C. “Marketing Strategies for the Bed and Breakfast Industry in Taiwan.” Int. J. Hosp. Manag. 2013, 32, pp. 278–286.
92. Huang, K.T.; Wang, J.C. “Greenhouse Gas Emissions of Tourism-Based Leisure Farms in Taiwan.” Sustainability 2015, 7, pp. 11032–11049.
93. Tsai, W.T. “Trend Analysis of Taiwan’s Greenhouse Gas Emissions from the Energy Sec-tor and Its Mitigation Strategies and Promotion Actions.” Atmosphere 2021, 12, pp. 859.
94. Chiu, C.N. “How Can Managerial Efficiency Be Improved? Evidence from The Bed and Breakfast Industry.” Tour. Manag. Perspect. 2018, 27, pp. 111–124.
95. Carbon Pricing Dashboard—The World Bank. Available online: https://www.carbonpricingdashboard.worldbank.org/map_data (accessed on 12 April 2021).
96. The Price of Electricity Per KWh in 230 Countries. Available online: https://www.cable.co.uk/energy/worldwide-pricing/ (accessed on 16 December 2021).
97. Taiwan State Utility Taipower Sees Losses Escalate. Available online: https://www.taiwannews.com.tw/en/news/3746307 (accessed on 16 December 2021).
98. Sanyo Hit Power 200 Data Sheet. Available online: https://www.solaronline.com.au/media/attachment/file/p/a/panasonic-hit-240-v2.pdf (ac-cessed on 5 May 2020).
99. Tesla SolarCity SC 320 Data Sheet. Available online: https://sunwatts.com/content/specs/Tesla-SolarCity-SC320-330-96-Cell-Datasheet.pdf (accessed on 23 September 2020).
100. Hydrelio Optimized Floating Structure for Solar Plant. Available online: http://www.agse-geologues.fr/documents/2018/Brochure%20Floating%20Solutions%202018.pdf (accessed on 15 October 2020).
101. Catalogue of European Urban Wind Turbine Manufacturers. Available online: http://www.urbanwind.net/pdf/CATALOGUE_V2.pdf (accessed on 23 September 2020).
102. Data Sheet the Wind Tree. Available online: https://reiwind.ie/wp-content/uploads/2021/11/Technical-Data-Sheet-MODULAR-TREE-182430A-Regular-hybrid-models-2021-copie.pdf (accessed on 23 September 2020).
103. Reddy, P.; Surendra Gupta, M.V.N.; Nundy, S.; Karthick, A.; Ghosh, A. “Status of BIPV and BAPV System for Less Energy-Hungry Building in India - A Review.” Appl. Sci. 2020, 10, pp. 2337.
104. Taiwan Power Company Rate Schedules. Available online: https://www.taipower.com.pdf (accessed on 24 June 2021). 
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明