博碩士論文 109322069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.223.172.252
姓名 翁宇鴻(Yu-Hung Wong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用手機信令預測捷運站間量之研究
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為解決私人運具造成的交通壅塞與廢氣排放等問題,大眾捷運系統逐漸扮演著都市運輸的重要角色,因此持續提升捷運服務水準就成為營運管理單位努力的目標。其中站間量可提供重要的績效指標,但電子票證數據無法直接推估旅客之移動軌跡,限制其對站間量的預測與分析。因此本研究先利用手機信令資料追蹤旅客於捷運路網的移動軌跡,並於分叉轉運站與相同匯入站間計算其間多條區段之運量分配比例,將此總區段流量比例應用於分岔轉運站之進出旅客數預測值,即可估算未來各區段的站間量。
本研究採用三種模型預測捷運站進出旅客數:函數資料分析(FDA)、長短期記憶(LSTM)與閥控遞迴單元(GRU)。結合總區段流量比例與捷運站進出旅客數預測值,進一步提出捷運站間量的推估方法,實證結果貼近旅客實際的移動軌跡,精度高於現行之「建議路線」軌跡,這主要原因為旅客選擇路徑會受到不同因素影響,包含:路線長度、路線車站數、乘車時間、轉乘時間、擁擠度與彎繞度等。
就臺北車站之預測誤差而言,機器學習模型LSTM(4.58%)與GRU(4.60%)較統計模型FDA(7.04%)為佳,但需較長的訓練時間。針對已觀測區間長度 與未觀測區間長度 的探討,各模型無明顯趨勢,綜合來說,最佳預測組合 仍需依不同模型與數據,根據經驗或測試後選定。最後,根據信令站間量之預測結果顯示,文湖線存在超載狀況,應彈性調派列車或增加列車容量,其餘路線的服務供過於求,則應調整列車服務計畫或採彈性編組的服務模式,以降低成本。
摘要(英) Link flow of Mass rapid systems is an important performance indicators to manager. In this research, we use sighting data for tracking the trajectory of passengers in MRT network and calculating the segment proportionality of the transfer station. Then, we can combine the result of flow prediction and the segment proportionality to predict short-term link flow. In this research, we use functional data analysis (FDA), long short-term memory (LSTM) and gate recurrent unit (GRU) model to predict passenger flow. Combined Total segment proportionality and flow prediction, we propose an estimation method for link flow. The empirical results are close to real situation. The accuracy is higher than practical method which use “suggested route” trajectory. Because the route choice of passengers is affected by many factors such as travel time, transfer time, degree of crowding and degree of circuitousness of path. The results of passenger predict in Taipei Main Station show that the performance with machine learning method (LSTM:4.58%; GRU:4.60%) are better than FDA(7.04%). The result of link flow predict shows that Wenhu Line overloading situation occurs during peak hours on weekdays and weekends. The flexible schedule of the train should be assigned by manager. Other routes supply exceed demand. Manager should adjust the train service plan or use elastic way of combination train to lower the cost.
關鍵字(中) ★ 手機信令資料
★ 捷運站間量預測
★ 函數資料分析
★ 機器學習
關鍵字(英) ★ sighting data
★ prediction of MRT link flow
★ functional data analysis
★ machine learning
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
第二章、文獻回顧 5
2-1  捷運站間量之推估 5
2-2  交通變量之預測 6
2-3  手機信令資料前處理 8
第三章、研究方法 9
3-1  函數資料分析 9
3-1-1 歷史資料的k-center函數分群 9
3-1-2 新觀測資料之函數混合預測模型 10
3-2  機器學習 12
3-2-1 長短期記憶 12
3-2-2 閥控遞迴單元 14
3-2-3 模型設定 15
第四章、手機信令資料前處理與OD區段流量比例 17
4-1  原始手機信令資料與前處理 17
4-2  站間信令量與OD區段流量比例 19
4-2-1 OD區段流量比例與建議路線之差異分析 19
第五章、模型訓練與驗證 28
5-1  電子票證數據內容與模型評估指標 28
5-2  臺北車站之FDA分群與驗證結果 29
5-2-1 k-center分群演算法之各群組型態 29
5-2-2 FDA之訓練與驗證結果 31
5-3  臺北車站之機器學習驗證結果 32
5-3-1 機器學習之訓練與驗證結果 32
5-3-2 訓練資料筆數對機器學習的影響 36
5-4  各模型之綜合比較 37
第六章、站間量預測與分析 40
6-1  站間量預測正確性 40
6-2  旅客站間量分析 42
6-2-1 旅客需求依時性分析 42
6-2-2 捷運班次服務容量分析 45
6-3  研究限制 51
第七章、結論與建議 53
參考文獻 56
附錄A:臺北車站3/23各模型之預測量 62
附錄B:各模型之MAPE 66
附錄C:各時段各路線之站間量與乘載率 74
參考文獻 [1]郭豐瑋,2017,高速公路旅行時間預測之研究-函數資料分析之應用,國立中央大學土木工程學系碩士論文,桃園縣。
[2]陳惠國,2021,研究分析方法講義,國立中央大學土木工程學系,桃園市。
[3]楊博鈞,2018,應用函數混合模型預測捷運車站運量,碩士論文,國立中央大學土木工程學系,桃園縣。
[4]劉緯紳,2022,以乘客移動信令資料推斷臺北捷運乘客搭乘路徑與車站間運量,碩士論文,國立中央大學土木工程學系,桃園市。(草稿)
[5]Aguilera, Vincent, Sylvain Allio, Vincent Benezech, Francois Combes, and Chloe Milion, 2014. Using cell phone data to measure quality of service and passenger flows of Paris transit system. Transportation Research Part C: Emerging Technologies 43, 198-211, doi: https://doi.org/10.1016/j.trc.2013.11.007.
[6]Ahmed, Mohamed S., and Allen R. Cook, 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Board 722, 1-9.
[7]Ash, Robert B., and Melvin F. Gardner, 1975. Topics in Stochastic Process. Academic Press, New York. (ISBN:978-1-483-19143-0)
[8]Bovy, Piet H.L., Rogier Uges, and Sascha Hoogendoorn-Lanser, 2005. Modeling route choice behavior in multi-modal transport networks. Transportation 32, 341-368, doi: https://doi.org/10.1007/s11116-004-7963-2.
[9]Calabrese, Francesco, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti, 2011. Estimating Origin-Destination flows using mobile phone location data. IEEE Pervasive Computing 10(4), 36-44, doi: https://doi.org/10.1109/MPRV.2011.41.
[10]Chen, Huey-Kuo, 2015. Travel time prediction for time-table-based vehicles traveling on known routes. Journal of the Eastern Asia Society for Transportation Studies 11, 1082-1096, doi: https://doi.org/10.11175/easts.11.1082.
[11]Chen, Huey-Kuo, Hsiao-Ching Ho, Luo-Yu, Ian Lee, Huey-Wen Chou, 2022. Two-stage procedure for transportation mode detection based on sighting data. Transportmetrica A: Transport Science, doi: https://doi.org/10.1080/23249935.2022.2118558.
[12]Chen, Huey-Kuo, and Che-Jung Wu, 2012. Travel time prediction using empirical mode decomposition and gray theory: example of National Central University bus in Taiwan. Transportation Research Record: Journal of the Transportation Research Board 2324(1), 11-19, doi: https://doi.org/10.3141/2324-02.
[13]Chin, Kimberley, Haosheng Huang, Christopher Horn, Ivan Kasanicky, and Robert Weibel, 2019. Inferring fine-grained transport modes from mobile phone cellular signaling data. Computers, Environment and Urban Systems 77, 101348, doi:
https://doi.org/10.1016/j.compenvurbsys.2019.101348.
[14]Chiou, Jeng-Min, 2012. Dynamical functional prediction and classification with application to traffic flow prediction. The Annals of Applied Statistics 6(4), 1588-1614, doi: https://doi.org/10.1214/12-AOAS595.
[15]Chiou, Jeng-Min, and Pai-Ling Li, 2007. Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society Series B, Statistical Methodology 69(4), 679-699, doi:
https://doi.org/10.1111/j.1467-9868.2007.00605.x.
[16]Chung, Junyoung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio, 2014. Empirical evaluation of gate recurrent neural networks on sequence modeling. ArXiv abs/1412.3555.
[17]Cho, Kyunghyun, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1724-1734, doi: https://doi.org/10.3115/v1/D14-1179.
[18]Gonzalez, Marta C., Cesar A. Hidalgo, and Albert-Laszlo Barabasi, 2008. Understanding individual human mobility patterns. Nature 453, 779-782, doi:
https://doi.org/10.1038/nature06958.
[19]Grange, Louis de, Sebastian Raveau, Felipe González, 2012. A fixed point route choice model for transit networks that addresses route correlation. Social and Behavioral Sciences 54, 1197-1204, doi: https://doi.org/10.1016/j.sbspro.2012.09.834.
[20]Graves, Alex, 2012. Supervised sequence labelling with recurrent neural networks. Springer Berlin, Heidelberg. (ISBN:978-3-642-24797-2)
[21]Ho, Hsiao-Ching, 2020. Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network. Master’s Thesis, National Central University, Taiwain.
[22]Hochmair, Hartwig, 2009. The influence of map design on route choice from public transportation maps in urban areas. The Cartographic Journal 46, 242-256, doi:
https://doi.org/10.1179/000870409X12472347560623.
[23]Hochreiter, Sepp, and Jurgen Schmidhuber, 1997. Long short-term memory. Neural Computation 9(8), 1735-1780, doi: https://doi.org/10.1162/neco.1997.9.8.1735.
[24]Holleczek, Thomas, Dang The Anh, Shanyang Yin, Yunye Jin, Spiros Antonatos, Han Leong Goh, Samantha Low, and Amy Shi-Nash, 2015. Traffic measurement and route recommendation system for mass rapid transit (MRT). Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 10-13 August, 1859-1868, doi: https://doi.org/10.1145/2640087.2644196.
[25]Hou, Yi, and Praveen Edara, 2018. Network scale travel time prediction using deep learning. Transportation Research Record: Journal of the Transportation Research Board 2672(45), 115-123, doi: https://doi.org/10.1177/0361198118776139.
[26]Huang, Haosheng, Yi Cheng, and Robert Weibel, 2019. Transport mode detection based on mobile phone network data: A systematic review. Transportation Research Part C: Emerging Technologies 101, 297-312, doi: https://doi.org/10.1016/j.trc.2019.02.008.
[27]Jagadeesh, George R., and Thambipillai Srikanthan, 2017. Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Transactions on Intelligent Transportation Systems 18(9), 2423-2434, doi:
https://doi.org/10.1109/TITS.2017.2647967.
[28]Jeong, Young-Seon, Young-Ji Byon, Manoel Mendonca Castro-Neto, and Said M. Easa, 2013. Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 14(4), 1700-1707, doi: https://doi.org/10.1109/TITS.2013.2267735.
[29]Jia, Yuhan, Jianping Wu, and Ming Xu, 2017. Traffic flow prediction with rainfall impact using a deep learning method. Journal of Advanced Transportation 2017(722), 1-10, doi: https://doi.org/10.1155/2017/6575947.
[30]Kuang, Ai-Wu, and Huang Zhong-Xiang, 2004. Short-term traffic flow prediction based on RBF neural network. Systems Engineering 22 (2), 63-65.
[31]Leurent, Fabien, 2009. On seat congestion, passenger comfort and route choice in urban transit: A network equilibrium assignment model with application to Paris. Transportation Research Board 88th Annual Meeting Jan 11-15, Washington.
[32]Li, Guanyao, Chun -Jie Chen, Sheng-Yun Huang, Ai-Jou Chou, Xiaochuan Gou, Wen-Chih Peng, and Chih-Wei Yi, 2017. Public transportation mode detection from cellular data. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6-10 November, 2499-2502. doi:
https://doi.org/10.1145/3132847.3133173.
[33]Ma, Xiaolei, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang, 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies 54, 187-197, doi: https://doi.org/10.1016/j.trc.2015.03.014.
[34]Nagasaki, Y., M. Asuka, and K. Komaya, 2006. A fast method for estimating railway passenger flow. Computers in Railways X, 179-187.
[35]Newson, Paul, and John Krumm, 2009. Hidden markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,Seattle, 4-6 November, 336-343, doi:
https://doi.org/10.1145/1653771.1653818.
[36]Raveau, Sebastian, Zhan Guo, Juan Carlos Munoz, Nigel H.M. Wilson, 2012. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics, Transportation Research Part A: Policy and Practice 66(1), 185-195, doi: https://doi.org/10.1016/j.tra.2014.05.010.
[37]Sun, Yanshuo, and Ruihua Xu, 2012. Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data. Transportation Research Record 2275(1), 58-67, doi: https://doi.org/10.3141/2275-07.
[38]Vanajakshi, Lelitha, and Laurence R. Rilett, 2007. Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium, 600-605, doi: https://doi.org/10.1109/IVS.2007.4290181.
[39]Wang, Feilong, and Cynthia Chen, 2018. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging Technologies 87, 58-74, doi: https://doi.org/10.1016/j.trc.2017.12.003.
[40]Williams, Billy M., and Lester A. Hoel, 2003. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664, doi:
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664).
[41]Wu, Luo-Yu, 2020. Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique. Master’s Thesis, National Central University, Taiwain.
[42]Xu, Chengcheng, Junyi Ji, and Pan Liu, 2018. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets. Transportation Research Part C: Emerging Technologies 95, 47-60, doi:
https://doi.org/10.1016/j.trc.2018.07.013.
[43]Zhao, Zheng, Weihai Chen, Xingming Wu, Peter C. Y. Chen, and Jingmeng Liu, 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems 11(2), 68-75, doi: https://doi.org/10.1049/iet-its.2016.0208.
[44]Zhou, Feng, and Rui-hua Xu, 2012. Model of passenger flow assignment m for urban rail transit based on entry and exit time constraints. Transportation Research Record: Journal of the Transportation Research Board 2284(1), 57-61, doi:
https://doi.org/10.3141/2284-07.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明