博碩士論文 110322087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.219.132.200
姓名 林俊成(Chun-Cheng Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 小型陣列式角反射器於合成孔徑雷達邊坡監測之研發測試
(Development and Testing of Small Corner Reflector for Synthetic Aperture Radar for Slope Monitoring)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ Modification of TDR Penetrometer for Water Content Profile Monitoring★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例
★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試
★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例★ 深度學習與資料擴增於山崩監測預測之可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-29以後開放)
摘要(中) 台灣位於環太平洋地震帶上,地震頻繁且地勢陡峭,所以地質較不穩定,每當豪雨發生時山區時常發生土石鬆動與崩滑之現象,為保護民眾的生命財產安全,必須對山坡地建立一套更詳盡的監測系統。本研究主要探討使用合成孔徑雷達(Synthetic Aperture Radar, SAR)配合小型角反射器(Corner Reflector, CR)於邊坡穩定之應用。本研究設計一小型CR,使其體積小、重量輕及裝設容易,以提供更可靠之SAR反射點。本研究透過基礎雷達截面積(Radar Cross-Section)原理,設計小型CR之外型及大小,可改變CR之最大RCS及最大反射角度;因小型CR的訊號較小,本研究以陣列式裝設來增加反射強度。為驗證其可行性,先於多重物理有限元素模型軟體中進行模擬可行性,後續再透過地基合成孔徑雷達(Grand-Base Synthetic Aperture Radar, GB-SAR)進行現地試驗。其成果顯示,NCU現地測試時所量測到的RCS數值為24.29 dBsm,與預期的陣列式CR的25.18 dBsm相近,皆比單一CR的10 dBsm高,可顯示出在增加CR的數量來增強反射量是可行的。小型CR較為容易攜帶及安裝,但仍有反射量增加幅度小與雷達干涉問題,因此本研究透過專業RCS模擬方式進行驗證,雖然在陣列式CR中會產生不規則的散射現象,但大致上與本研究自行提出之理論預測成果是相符的,且本研究提出不同CR排列下之影響干擾。目前將於秀巒崩塌地進行陣列式CR裝設與監測,對該地區進行雷達反射量分析可確認在裝設區中大部分之區域皆為黑色區域,現已將CR部署在該地區中,以對後續試驗做測試規劃。
摘要(英) Taiwan is located in the Pacific Rim seismic zone, where earthquakes are frequent, and the terrain is steep, so the geology is relatively unstable. This study focuses on using Synthetic Aperture Radar (SAR) with a small Corner Reflector (CR) for slope stabilization. In this study, a small CR with lightweight and easy installation is designed to provide more reliable SAR reflected scatters. The CR′s maximum RCS and maximum reflection angle can be changed by designing the compact CR′s external shape and size based on the Radar Cross-Section principle. In order to verify the feasibility, we first simulated the feasibility in the multiphysics finite element software. We then conducted the field test by the Grand-Base Synthetic Aperture Radar (GB-SAR). Based on the present results, the measured RCS value of 24.29 dBsm in the field test at NCU is similar to the expected 25.18 dBsm for the array CR. The RCS value is 10 dBsm higher than a single CR, indicating that it is feasible to increase the number of CRs to enhance the reflection amount. Although irregular scattering phenomena will occur in the array CR, it is generally consistent with the theoretical prediction results proposed by this study, and this study has examined the influence of interference under different CR arrangements with RCS radar simulation software. Currently, an array CR will be installed and monitored at the Xiulan collapse site, and radar reflectance analysis of the area confirms that most of the area in the installation zone is black. The CR has been deployed in the area for test planning for subsequent tests.
關鍵字(中) ★ 合成孔徑雷達
★ 小型角反射器
★ 角反射器
★ 雷達截面積
關鍵字(英) ★ InSAR
★ Small Corner Reflector
★ CR
★ Radar Cross Section
★ RCS
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章. 前言 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究架構 2
第二章. 文獻回顧 4
2.1 SAR相關原理 4
2.1.1 InSAR基本原理 5
2.1.2 D-InSAR基本原理 7
2.1.3 PS-InSAR基本原理 8
2.1.4 SBAS-InSAR基本原理 10
2.1.5 TCP-InSAR基本原理 11
2.2 CR基本原理 12
2.2.1 雷達截面積(Radar cross-section, RCS)計算 14
2.2.2 小型CR理論與測試 17
2.3 INSAR於山崩監測應用案例 20
第三章. 研究方法 31
3.1 小型反射器設計 31
3.1.1 反射角參數計算理論 32
3.1.2 COMSOL線性光學模擬 36
3.1.3 小型CR實體設計 40
3.2 SAR影像處理流程 41
3.2.1 影像擷取 41
3.2.2 影像處理 43
3.3 NCU校園測試規劃 46
3.4 GB-INSAR測試 47
3.5 RCS散射數值於陣列式CR分布分析 49
3.6 秀巒現地CR測試規劃 56
第四章. 實驗結果與討論 59
4.1 小型CORNER REFLECTOR(CR)設計成果 59
4.2 COMSOL模擬成果 60
4.3 現地測試成果 63
4.3.1 NCU測試成果 64
4.3.2 GB-InSAR測試成果 71
4.3.3 初步成果討論 73
4.4 RCS干涉數值分析成果 74
4.5 秀巒現地測試評估 85
第五章. 結論與建議 94
5.1 結論 94
5.2 建議 95
參考文獻 97
口試意見回覆表 101
參考文獻 王國隆、林俊廷(2015),運用ALOS PALSAR 雷達影像之差分干涉成果於潛在崩塌地調查–以眉溪流域為例,航測及遙測學刊。
王彥平,白澤朝,林贇 & 李洋. (2021). InSAR 雙向矩形角反射器陣列形變監測精度評估與驗證. 武漢大學學報 信息科學版, 46(10), 1471-1477.
李璟芳,林士淵,蔡亞倫 & 黃韋凱. (2018). 星載合成孔徑雷達影像於公路邊坡及電塔安全評估之應用. 中興工程, (140), 21-31.
林慶偉(2016) ,大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(II)-大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(II),國科會研究報告。
廖志中 潘以文 李國維 王慧蓉 康耿豪 簡翊文 鄭又珍 李膺讚 林貴崑,(2017),大規模崩塌潛勢區的調查與監測,臺灣林業雙月刊,43卷,第5期。
Abolmasov, B., Milenković, S., Jelisavac, B., Pejić, M., Radić, Z., (2014), The Analysis of Landslide Dynamics Based on Automated GNSS Monitoring—A Case Study _ Engineering Geology for Society and Territory - Volume 2 _ p 143 – 146.
Barla, G., Antolini, F., Barla, M., Mensi, E., Piovano, G., (2010), Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques, Eng. Geol., 116(3–4):218–235.
Brückl, E., Brunner, FK., Kraus, K., (2006), Kinematics of a deep-seated landslide derived from photogrammetric GPS and geophysical data, Eng. Geol., 88, 149 - 159.
Couture, R., Charbonneau, F., Singhroy, V., Murnaghan, K., Drouin, H. (2011). PTA-InSAR rock slope monitoring at the Gascons site, Gaspe Peninsula, Quebec: Preliminary results, 5th, Canadian conference on geotechnique and natural hazards; 2011; Kelowna, Canada.
Dheenathayalan, P., Cuenca, M. C., Hoogeboom, P., & Hanssen, R. F. (2017). Small reflectors for ground motion monitoring with InSAR. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 6703-6712.
European Space Agency (ESA), (2015), S1-Radiometric-Calibration-V1.0
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
Garthwaite, M. C., Nancarrow, S., Hislop, A., Thankappan, A., Dawson, J. H., & Lawrie, S. The Design of Radar Corner Reflectors for the Australian Geophysical Observing System; Geoscience Australia: Canberra, Australia, 2015.
Gili, JA, Corominas, J, Rius, J, (2000), Using global positioning system techniques in landslide monitoring, Engineering geology 2000, p167 - 192.
Hayati, N., Niemeier, W., & Sadarviana, V. (2020). Ground deformation in the Ciloto landslides area revealed by multi-temporal InSAR. Geosciences, 10(5), 156.
Hooper, A., Segall, P., Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to volcán alcedo, galápagos. Journal of Geophysical Research, 112(B7). doi:10.1029/2006jb004763
Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. (2018) Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys. Res. Lett. 45, 1453–1462.
Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., Pepe, A. (2007). An overview of the small baseline subset algorithm: A dinsar technique for surface deformation analysis. Pure and Applied Geophysics, 164(4), 637-661. doi:10.1007/s00024-007-0192-9.
Liu S.H., C.W. Lin, R.F. Chen, L. Zhang, and B. Fruneau., (2014), Application of TCP-InSAR technique for the Deep-Seated landslides detection and monitoring at Cingjing village, Taiwan. In submission.
Jian, L. X. and Tseng, K. H. (2019a) Time Series Deformation Revealed by the Combination with SAR Techniques and a Network of GPS Continuous Stations, The 38th Conference on Surveying and Geomatics, Taoyuan, Taiwan, 29-30 August 2019.
Jian, L. X., and Tseng, K. H. (2019b) Spatiotemporal Pattern of Surface Deformation in Southwestern Taiwan Revealed by Densified SAR Timeseries, Asia Oceania Geosciences Society, Singapore, 29 July - 2 August 2019.
Peter Bobrowsky, Wendy Sladen, DavidHuntley, ZhangQing, Chris Bunce, Tom Edwards, Michael, Hendry, Derek Martin, Eddie Choi (2014), Multi-parameter Monitoring of a Slow Moving Landslide: Ripley Slide, British Columbia, Canada _ Engineering Geology for Society and Territory - Volume 2 _ p 155 - 158.
Prabu Dheenathayalan, Member, IEEE, Miguel Caro Cuenca, Peter Hoogeboom, and Ramon F. Hanssen, Senior Member, IEEE, (2017), Small Reflectors for Ground Motion Monitoring With InSAR.
Zhang, L, Ding, XL, Lu, Z, (2011), Deformation Rate Estimation on Changing Landscapes using Temporarily Coherent Point InSAR, Proc. Fringe.
Zhu, W., Zhang, Q., Ding, X.-L., Zhao, C., Yang, C., Qu, F., Qu, W. (2014) Landslide monitoring by combining of CR-InSAR and GPS techniques. Advances in Space Research, 53, 430–439.
指導教授 鐘志忠 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明