博碩士論文 86344001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:18.118.30.253
姓名 趙志剛(Chih-Kang Chao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以化學束磊晶法成長三族氮化物奈米結構
(III-nitride NanostructuresGrown by Chemical-Beam Epitaxy)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此篇論文的內容包括設計及製作化學束磊晶系統、以自製的化學束磊晶系統成長氮化鎵及氮化銦奈米柱,以及氮化銦奈米柱的光學特性分析。
自製化學束磊晶系統的重點在於以低成本完成在超高真空環境中,能夠以高溫成長高品質的三族氮化物半導體。三軸式的基板傳動升降裝置,能夠提供穩定的旋轉,並可依需求微調垂直角度,具有相當好的擴充性。氮氣電漿源提供了極有效率的五族來源,對於需要於低溫成長的特定材料,例如氮化銦,可以提供適合的成長環境。三族有機金屬氣體,經由特製的氣環導入成長腔體,可以使反應物有效的達到基板表面,能夠提升成長速率,並節省原料。熱源模組經由適當的材料選擇及加工,可以將能量聚集到成長區,以達到高溫的成長需求。整體的熱阻絕設計,可以保護熱區周圍的配件,以使系統穩定工作。
利用自製的化學束磊晶系統,可以於c方向的藍寶石基板上,成長幾乎無缺陷的氮化鎵奈米柱。和大部分奈米結構成長條件不同的是,成長高品質垂直於表面並獨立的氮化鎵奈米柱,不需要金屬作為觸媒,顯示該化學束磊晶系統非常適於成長奈米結構。
除了氮化鎵奈米柱之外,該系統也可以在沒有觸媒的條件下,於藍寶石基板上成長氮化銦奈米柱。這些奈米柱幾乎都垂直基板表面,沿著同一方向成長,隨著三甲基銦對氮氣的流量比由0.4到0.7,奈米柱的直徑由20奈米到40奈米。X射線繞射儀以及穿透式電子顯微鏡的檢測結果可以判斷,這些奈米柱都是偏好沿著c軸成長的單晶相六方最密堆積晶體。拉曼光譜可以看到僅有二個和氮化銦相關的訊號 (high) 以及 (LO) 顯現,表示奈米柱的結晶品質相當優良。
氮化銦奈米柱的光學性質,利用光激螢光光譜(PL)以及拉曼光譜進行量測。光激光譜的峰值,隨著奈米柱的直徑由40奈米降到5奈米,而由0.69電子伏特藍移至0.79電子伏特。而拉曼光譜分別於491 cm-1 及 593 cm-1至觀察到 (high) 以及 (LO)活性聲子模態,但是這兩個模態的位置並不隨著奈米柱直徑尺寸的變化而變,顯示奈米柱中的殘餘應力以及載子濃度,並不跟隨奈米柱的尺寸而變。也就是說,應力效應和Moss-Burstein效應,在這個實驗中,對於PL光譜的峰值變化,並沒有產生影響力。將光激光譜的變化與藉由依據有限位能井模型進行的理論計算進行比對,可以發現,光譜的峰值變化,極有可能是因於奈米柱尺寸變化產生的量子侷限效應。
摘要(英) This dissertation includes the self-designed home-made chemical-beam epitaxy system, the methods of synthesizing gallium nitride nanorods and indium nitride nanorods without catalyst, and the discussion of detailed optical properties of indium nitride nanorods.
The chemical-beam epitaxy can be work in high vacuum circumstances at high temperature with low fabrication cost. Three-axle z-axis manipulator provides stable rotation capability and flexible expansibility. The design of heat module is able to work at high temperature up to 1100oC without harming the surrounding components. Group-V source is supplied by nitrogen plasma, which is beneficial for indium nitride growth. Group-III metalorganic sources are introduced into the growth chamber by a special designed gas source ring, which makes the reactants hinge on the substrate surface efficiently and uniformly.
The growth of dislocation free GaN nanorods on c-sapphire substrates by a CBE technique is demonstrated. By compared the CBE method with other common growth methods, the CBE is a more feasible technique to fabricate high-quality, high-density, and vertical-alignment GaN nanorods. Without extra metal catalyst required, the thickness and length distributions of each GaN nanorods were formed identically. Furthermore, the nanorods were grown epitaxially and were elongated in the direction parallel to the surface normal.
In addition, the InN nanorods were prepared using the same chemical-beam epitaxy without a catalyst. The nanorods are grown nearly unidirectionally with diameters ranging from 20 nm to 40 nm, depending on the In/N flow ratio between 0.4 and 0.7. XRD and TEM results show that these InN nanorods are single phase wurtzite crystals with preferred orientation along the c-axis. Raman spectrum reveals two clear peaks, which correspond to the (high) and (LO) modes, respectively.
The optical properties of InN nanorods was followed investigated by using PL measurement and Raman spectroscopy. The emission peaks of PL spectra range from 0.69 to 0.79 eV, showing a blue shift as the rod size decreases from 40 to 5 nm. The Raman spectra of the nanorods exhibit only two active phonon modes, i.e. (high) and (LO), at 491 cm-1 and 593 cm-1, respectively. These two peaks do not shift with rod size, indicating the residual strain as well as the carrier concentration in the nanorods of different sizes is about the same. That obviates the influences of strain and the Moss-Burstein effects on spectral shifts. On the other hand, theoretical calculation based on a finite depth square well model reveals the possibility of quantum size effect on the observed size-dependent PL shifts.
關鍵字(中) ★ 化學束磊晶系統
★ 奈米結構
★ 氮化鎵
★ 氮化銦
關鍵字(英) ★ nanostructures
★ indium nitride
★ gallium nitride
★ chemical beam epitaxy
論文目次 Dissertation Abstract i
Contents vi
Figure Captions viii
Table Captions xi
Chapter 1 Introduction 1
Chapter 2 Design and Fabrication of Chemical-Beam Epitaxy 3
2.1 Motive 3
2.2 Features 5
2.3 Design of chemical-beam epitaxy 9
2.3.1 Gas source cabinet 12
2.3.2 Valve manifold box 12
2.3.3 Gas source ring 15
2.3.4 Growth chamber 24
2.3.5 Z-axis manipulator 24
2.4 Summary 31
Chapter 3 Growth and Characterization of Gallium Nitride Nanorods 33
3.1 Introduction 33
3.2 Experiments 35
3.3 Advantages of rf nitrogen plasma source 37
3.4 Crystallinity 39
3.5 Growth mode 44
3.6 Structural properties 46
3.7 Conclusion 49
Chapter 4 Growth of Indium Nitride Nanorods 50
4.1 Introduction 50
4.2 Experiments 51
4.3 The formation of nanorods 52
4.4 Structural Characteristics 57
4.5 Growth mode 65
4.6 Raman spectroscopy analysis 66
4.7 Conclusion 68
Chapter 5 Optical Properties of Indium Nitride Nanorods 69
5.1 Introduction 69
5.2 Morphology and structure 70
5.3 Optical properties 70
5.3.1 Quantum size effect 73
5.3.2 Strain effect 78
5.3.3 Moss-Burstein effect 79
5.3.4 Oxygen contamination and stoichiometry 83
5.4 Conclusion 85
Chapter 6 Summaries and Future Aspects 86
References 89
Publication List 96
參考文獻 [1] S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 64, 1687 (1994).
[2] H. Morkoc and S. N. Mohammad, Science 267, 51 (1995).
[3] S. Nakamura, Science 281, 956 (1998).
[4] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank and S. Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997).
[5] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, Electron Lett. 36, 1971 (2000).
[6] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, IEEE Trans. Electron Devices 47, 692 (2000).
[7] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, IEEE Trans Electron Devices 48, 490 (2001).
[8] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, Electronchem. Solid-State Lett. 4, G39 (2001).
[9] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Stat. Sol. (b) 229, r1 (2002).
[10] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[11] B. Monemar, P. P. Paskov and A. Kasic, Superlatt. Microstruct. 38, 38 (2005).
[12] B. R. Nag, J. Cryst. Growth 269, 35 (2004).
[13] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
[14] W. T. Tsang, IEEE Circuits and Devices Magazine September, 18 (1988).
[15] M. R. Leys, J. Cryst. Growth 209, 225 (2000).
[16] J. Ch. Garcia, J. Cryst. Growth 188, 343 (1998).
[17] E. Veuhoff, J. Cryst. Growth 188, 231 (1998).
[18] H. Ando, J. Cryst. Growth 170, 16 (1997).
[19] Jen-Inn Chyi, “Method for the growth of nitride based semiconductors and its apparatus”, U. S. Patent No. 5637146 (Date of Patent: June 10, 1997).
[20] 郭守義、柯志忠、趙志剛、蕭健男、陳峰志, “一種應用於磊晶鍍膜機台進行高溫成長的非同軸式傳動基板旋轉升降裝置”, 中華民國新型專利 第M282314號 (專利權期間: Dec. 01, 2005 – Oct. 28, 2014).
[21] C. N. R. Rao and A. K. Cheethem, J. Mater. Chem. 11, 2887 (2001).
[22] C. C. Chen et al., J. Am. Chem. Soc. 123, 2791 (2001).
[23] Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
[24] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao, Appl. Phys. Lett. 75, 2455 (1999).
[25] J. T. Hu, T. W. Odom, and C. Lieber, Acc. Chem. Res. 32, 435 (1999).
[26] Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).
[27] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
[28] X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[29] M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).
[30] J. Y. Li, X. L. Chen, H. Li, M. He, and Z. Y. Qiao, J. Cryst. Growth 233, 5 (2001).
[31] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature _London_ 421, 241 (2003).
[32] Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, J. Cryst. Growth 213, 408 (2000).
[33] S. Sharma and M. K. Sumkara, Mater. Res. Soc. Symp. Proc. 703 (2002).
[34] J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, J. Chem. Phys. 115, 5714 (2001).
[35] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, and L. D. Zhang, Mater. Sci. Eng., A 208, 165 (2000).
[36] C. C. Tang, S. S. Fan, H. Y. Dang, P. Li, and Y. M. Lin, Appl. Phys. Lett. 77, 1961 (2000).
[37] W. Q. Han and A. Zettl, Appl. Phys. Lett. 80, 303 (2002).
[38] M. He, P. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and L. S. Riba, J. Cryst. Growth 231, 357 (2001).
[39] J. Zhag, L. Zhang, X. Peng, and X. Wang, J. Mater. Chem. 12, 802 (2002).
[40] A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
[41] M. A. L. Johnson et al., Mater. Res. Soc. Symp. Proc. 449, 271 (1997).
[42] J. M. Van Hove, G. Carpenter, E. Nelson, A. Wowchak, and P. P. Chow, J. Cryst. Growth 164, 154 (1996).
[43] M. A. L. Johnson, N. A. El-Masry, Jr., J. W. Cook, Jr., and J. F. Schetzina, Proceedings Silicon Carbide, III-Nitrides, and Related Materials Ozleleoziuo 1998, Vol. 264, p. 1161.
[44] D. A. Neumayer and J. G. Ekerdt, Chem. Mater. 8, 9 (1996).
[45] L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, and L. D. Zhang, Appl. Phys. A: Mater. Sci. Process. 74, 587 (2002).
[46] H. M. Kim, T. W. Kang and K. S. Chung, J. Ceram. Proc. Res. 5, 241 (2004).
[47] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
[48] J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A. V. Nurmikko, C. Broadbridge and A. Lehman, Appl. Phys. Lett. 86, 013105 (2005).
[49] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen and L. C. Chen, J. Cryst. Growth 269, 87 (2004).
[50] L.-W. Yin, Y. Bando, D. Golberg and M.-S. Li, Adv. Mater. 16, 1833 (2004).
[51] G. Cheng, E. Cimpoiasu, E. Stern, R. Munden, N. Pradhan, A. Sanders and M. A. Reed, IEEE. Nano. Conf. WE-P1-4 (2005).
[52] J. Aderhold, V. Y. Davydov, F. Fedler, D. Mistele, H. Klausing, T. Rotter, O. Semchinova, J. Stemmer and J. Graul, Proc. SPIE Int. Soc. Opt. Eng. 4086, 82 (2000).
[53] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, K. Kishino, J. Cryst. Growth 189, 138 (1998).
[54] C. C. Chen and C. C. Yeh, Adv. Mater. 12, 738 (2000).
[55] V. Y. Davydov, A. A. klochikhin, M. B. Smirnov, V. V. Emtsev, V. D. Peterikov, I. A. Abroyan, A. I. Titov, I. N. Goncharuk, A. N. Smirnov, V. V. Mamutin, S. V. Ivanov and T. Inushima, Phys. Stat. Sol. (b) 216, 779 (1999).
[56] J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 87, 041907 (2005).
[57] A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35,53 (1994)
[58] Y. M. Meziani, B. Maleyre, M. L. Sadowski, S. Ruffenach, O. Briot and W. Knap, Phys. Stat. Sol. (a) 202, 590 (2005).
[59] H. Lu, W. J. Schaff and L. F. Eastman, J. Appl. Phys. 96, 3577 (2004).
[60] S. K. O’Leary, B. E. Foutz, M. S. Shur and L. F. Eastman, Appl. Phys. Lett. 88, 152113 (2006).
[61] C. K. Chao, J.-I. Chyi, C. N. Hsiao, C. C. Kei, S. Y. Kuo, H.-S. Chang and T. M. Hsu, Appl. Phys. Lett., (to be published).
[62] G. Pellegrini, G. Mattei and P. Mazzoldi, J. Appl. Phys. 97, 073706 (2005).
[63] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva and B. Monemar, Phys. Rev. B 69, 115216 (2004).
[64] Y-N. Xu and W. Y. Ching, Phys. Rev. B 48, 4335 (1993).
[65] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, Hai Lu and William J. Schaff, Phys. Rev. B 71, 161201(R) (2005).
[66] A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, Hai Lu and William J. Schaff, Phys. Rev. B 71, 195207 (2005).
[67] JCPDS 02-1450.
[68] T. S. Moss, Proc. Phys. Soc. B 67, 775 (1954).
[69] E. Burstein, Phys. Rev. 93, 632 (1954).
[70] J. S. Thakur, D. Haddad, V. M. Naik, G. W. Auner, H. Lu and W. J. Schaff, Phys. Rev. B 71, 115203 (2005).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明