博碩士論文 109324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.141.202.54
姓名 王依仁(Yi-Jen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Synthesis of Caprolactone by Hydrogenation of Adipic Acid and Hydrogenolysis of Dimethyl Adipate on Ru-Pt-Sn and Cu Catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聚己內酯是生物可降解聚合物中重要的一員。由於其良好的生物相容性和易於熱塑性加工,它被廣泛用於醫療、食品和包裝材料。聚己內酯是極具未來潛力的化工商品,但現今市場上缺乏己內酯單體。本研究擬開發兩種製造己內酯的製程。第一種製程是由己二酸到己內酯的一步反應,所用的觸媒是釕-鉑-錫觸媒;第二種方法是以己二酸二甲酯為原料,先脫甲醇形成6-羥基己酸甲酯,再脫甲醇合環成己內酯,所用的觸媒是銅-錳-鋁和銅-鋅-鋁觸媒。使用釕-錫-鉑觸媒對己二酸進行加氫反應,會導致未知物的高選擇率。產生高選擇率的未知物可能是由於釕和錫的濃度以及反應溫度不夠高、使用低酸性擔體、高磁石攪拌速度,或是使用批次反應器使反應接觸時間過長導致寡聚物的產生。己二酸二甲酯在220℃和90 kg/cm2G下的氫解反應可以產生己內酯及6-羥基己酸甲酯,其脫甲醇後可通過閉環反應生產己內酯。在550℃下鍛燒的Cu:Mn:Al=42:15:2觸媒可用於生產高選擇率的6-羥基己酸甲酯。在400℃和300℃下鍛燒的Cu:Mn:Al=42:7:14觸媒可使己內酯的選擇率遠高於其他文獻。
摘要(英) Polycaprolactone (PCL) is an important member of biodegradable polymers. It is widely used in medical, food, and packaging materials due to its good biocompatibility and easy thermoplastic processing. Polycaprolactone is a chemical with great future potential, but it has a lack of caprolactone (CL) monomer in the market. This study intends to develop two processes for the formation of caprolactone. The first is a one-step reaction from adipic acid (ADA) to caprolactone, and the catalyst used is Ru-Pt-Sn. The second method is to use dimethyl adipate (DMA) as the raw material, first remove methanol to form methyl 6-hydroxyhexanoate (6-HHAME), and then remove methanol to form caprolactone by the cyclization reaction, and the catalysts used are Cu-Mn-Al and Cu-Zn-Al catalysts. The hydrogenation of adipic acid using Ru-Pt-Sn catalysts resulted in the high selectivity of unknown. The high selectivity of the unknown might be due to the concentration of ruthenium and tin and the reaction temperature not being high enough, the use of low acidic support, the high magnetic stirring speed, or the use of a batch reactor made the reaction contact time too long resulting in the formation of oligomers. The hydrogenolysis reaction of dimethyl adipate at 220℃ and 90 kg/cm2G can produce caprolactone and its precursor, methyl 6-hydroxyhexanoate. The catalyst of Cu:Mn:Al=42:15:2 calcined at 550℃ can be used to produce high selectivity of methyl 6-hydroxyhexanoate, which can be used to produce caprolactone by cyclization reaction after removing methanol. The catalysts of Cu:Mn:Al=42:7:14 calcined at 400℃ and 300℃ allow for a much higher selectivity of caprolactone than in other literature.
關鍵字(中) ★ 觸媒
★ 己二酸
★ 己二酸二甲酯
★ 己內酯
關鍵字(英) ★ Catalyst
★ Adipic acid
★ Dimethyl adipate
★ Caprolactone
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 Hydrogenation of Adipic Acid and Hydrogenolysis of Dimethyl Adipate to 1,6-Hexanediol 3
2.2 Ru-Sn Catalysts 8
2.3 Copper Catalysts 8
2.4 Catalyst Preparation 9
2.4.1 Co-precipitation method 10
2.4.2 Impregnation method 11
2.5 Catalyst Deactivation 14
2.5.1 Sintering 14
2.5.2 Coking 16
CHAPTER 3 EXPERIMENTAL 17
3.1 Materials 17
3.2 Catalysts Preparation 17
3.2.1 Modification of 2% Ru-2.3% Sn/C catalysts 17
3.2.2 Synthesis of Ru-Pt-Sn/C catalysts 18
3.2.3 Synthesis of Cu-Mn-Al and Cu-Zn-Al catalysts 19
3.3 Experimental Setup 20
3.3.1 Hydrogenation of adipic acid 20
3.3.2 Hydrogenolysis of dimethyl adipate 21
3.4 Catalysts Characterization 22
3.4.1 X-Ray diffraction (XRD) 22
3.4.2 Accelerated surface area and porosimetry system (ASAP) 22
3.4.3 Scanning electron microscopy (SEM) 23
3.4.4 High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrometer (EDS) 24
3.4.5 Thermogravimetric analysis (TGA) 24
CHAPTER 4 RESULTS AND DISCUSSION 25
4.1 Hydrogenation of Adipic Acid on Ru-Pt-Sn/C Catalysts 25
4.1.1 Catalyst characterization 25
4.1.2 Catalysts performance 30
4.1.3 The high selectivity of unknown 39
4.1.4 Summary 40
4.2 Hydrogenolysis of Dimethyl Adipate on Cu Catalysts 42
4.2.1 Catalyst characterization 42
4.2.2 Catalysts performance 51
4.2.3 Catalyst deactivation 55
4.2.4 Summary 61
CHAPTER 5 CONCLUSION 64
REFERENCE 66
參考文獻 Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 55(2), 141-150.
Allgeier, A. M., Corbin, D. R., De Silva, W. I. N., Korovessi, E., Menning, C. A., Ritter, J. C., & Sengupta, S. K. (2014). Process for preparing 1, 6-hexanediol. In: Google Patents.
Aubrecht, J., Pospelova, V., Kikhtyanin, O., Dubnová, L., & Kubička, D. (2020). Do metal-oxide promoters of Cu hydrogenolysis catalysts affect the Cu intrinsic activity? Applied Catalysis A: General, 608. https://doi.org/10.1016/j.apcata.2020.117889
Aubrecht, J., Pospelova, V., Kikhtyanin, O., Lhotka, M., & Kubička, D. (2021). Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis. Catalysis Today. https://doi.org/10.1016/j.cattod.2021.09.039
Aubrecht, J., Pospelova, V., Kikhtyanin, O., Veselý, M., & Kubička, D. (2022). Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis. Catalysis Today, 387, 61-71. https://doi.org/10.1016/j.cattod.2021.09.017
Baur, K. G., Fischer, R., Pinkos, R., Stein, F., Rust, H., & Breitscheidel, B. (1999). U.S. Patent No. 6,008,418. Washington, DC: U.S. Patent and Trademark Office.
Eastland, P. H., Scarlett, J., Tuck, M. W., & Wood, M. A. (1995). U.S. Patent No. 5,406,004. Washington, DC: U.S. Patent and Trademark Office.
Figueiredo, F., Jordão, E., & Carvalho, W. (2008). Adipic ester hydrogenation catalyzed by platinum supported in alumina, titania and pillared clays. Applied Catalysis A: General, 351(2), 259-266.
Figueiredo, F. C. A., Jordão, E., & Carvalho, W. A. (2005a). Dimethyl adipate hydrogenation at presence of Pt based catalysts. Catalysis Today, 107, 223-229.
Figueiredo, F. C. A., Jordão, E., & Carvalho, W. A. (2005b). Dimethyl adipate hydrogenation at presence of Pt based catalysts. Catalysis Today, 107-108, 223-229. https://doi.org/10.1016/j.cattod.2005.07.113
Fontana, J., Vignado, C., Jordao, E., Figueiredo, F. C. A., & Carvalho, W. A. (2011). Evaluation of some supports to RuSn catalysts applied to dimethyl adipate hydrogenation. Catalysis Today, 172(1), 27-33. https://doi.org/10.1016/j.cattod.2011.02.030
Furusaki, S., Matsuda, M., Miyamoto, Y., & Shiomi, Y. (1998). U.S. Patent No. 5,710,349. Washington, DC: U.S. Patent and Trademark Office.
Hara, Y., & Endou, K. (2003). The drastic effect of platinum on carbon-supported ruthenium-tin catalysts used for hydrogenation reactions of carboxylic acids. Applied Catalysis A: General, 239(1-2), 181-195.
Huang, H., Cao, G., & Wang, S. (2013). An evaluation of trimethyl phosphate on deactivation of Cu/Zn catalyst in hydrogenation of dodecyl methyl ester. Korean Journal of Chemical Engineering, 30(9), 1710-1715. https://doi.org/10.1007/s11814-013-0119-3
Ikada, Y., & Tsuji, H. (2000). Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications, 21(3), 117-132.
Jiang, J. W., Tu, C. C., Chen, C. H., & Lin, Y. C. (2018). Highly Selective Silica‐supported Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Adipic Acid to 1,6‐hexanediol. ChemCatChem, 10(23), 5449-5458. https://doi.org/10.1002/cctc.201801580
Kikhtyanin, O., Pospelova, V., Aubrecht, J., Lhotka, M., & Kubička, D. (2018). Effect of Calcination Atmosphere and Temperature on the Hydrogenolysis Activity and Selectivity of Copper-Zinc Catalysts. Catalysts, 8(10). https://doi.org/10.3390/catal8100446
Kojima, Y. U., Kotani, S., Sano, M., Suzuki, T., & Miyake, T. (2013). Hydrogenation of dimethyl adipate to 1, 6-hexanediol on supported Rh–Sn catalysts. Journal of the Japan Petroleum Institute, 56(3), 133-141.
Kubička, D., Aubrecht, J., Pospelova, V., Tomášek, J., Šimáček, P., & Kikhtyanin, O. (2018). On the importance of transesterification by-products during hydrogenolysis of dimethyl adipate to hexanediol. Catalysis Communications, 111, 16-20. https://doi.org/10.1016/j.catcom.2018.03.006
Li, X., Luo, J., & Liang, C. (2020). Hydrogenation of adipic acid to 1,6-hexanediol by supported bimetallic Ir-Re catalyst. Molecular Catalysis, 490. https://doi.org/10.1016/j.mcat.2020.110976
Liu, G. L., Niu, T., Cao, A., Geng, Y. X., Zhang, Y., & Liu, Y. (2016). The deactivation of Cu–Co alloy nanoparticles supported on ZrO 2 for higher alcohols synthesis from syngas. Fuel, 176, 1-10. https://doi.org/10.1016/j.fuel.2016.02.057
Lo, A. Y., Chung, Y. C., Hung, W. H., Hsu, Y. C., Tseng, C. M., Zhang, W. L., Wang, F. K., & Lin, C. Y. (2017). Pt20RuxSny nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent. Electrochimica Acta, 225, 207-214. https://doi.org/10.1016/j.electacta.2016.12.098
Luggren, P. J., & Di Cosimo, J. I. (2020). Deactivation of Cu–Mg–Al mixed oxide catalysts for liquid transportation fuel synthesis from biomass-derived resources. Molecular Catalysis, 481. https://doi.org/10.1016/j.mcat.2018.08.008
Murphy, V. J., Dias, E. L., & Shoemaker, J. A. (2018). U.S. Patent No. 10,150,719. Washington, DC: U.S. Patent and Trademark Office.
Perego, C., & Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34(3-4), 281-305.
Rane, A. V., Kanny, K., Abitha, V., & Thomas, S. (2018). Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of inorganic nanomaterials (pp. 121-139). Elsevier.
Santos, S., Silva, A., Jordao, E., & Fraga, M. (2004). Hydrogenation of dimethyl adipate over bimetallic catalysts. Catalysis Communications, 5(7), 377-381.
Schneider, M., Kochloefl, K., & Maletz, G. (1995). U.S. Patent No. 5,403,962. Washington, DC: U.S. Patent and Trademark Office.
Silva, A. M., Morales, M. A., Baggio-Saitovitch, E. M., Jordão, E., & Fraga, M. A. (2009). Selective hydrogenation of dimethyl adipate on titania-supported RuSn catalysts. Applied Catalysis A: General, 353(1), 101-106. https://doi.org/10.1016/j.apcata.2008.10.025
Silva, A. M., Santos, O. A., Morales, M. A., Baggio-Saitovitch, E. M., Jordão, E., & Fraga, M. A. (2006). Role of catalyst preparation on determining selective sites for hydrogenation of dimethyl adipate over RuSn/Al2O3. Journal of Molecular Catalysis A: Chemical, 253(1-2), 62-69.
Taniguchi, S. I., Makino, T., Watanuki, H., Kojima, Y. U., Sano, M., & Miyake, T. (2011). Effect of Pt addition to Ru–Sn/Al2O3 catalyst on hydrogenation of methyl laurate. Applied Catalysis A: General, 397(1-2), 171-173. https://doi.org/10.1016/j.apcata.2011.02.024
Toba, M., Tanaka, S. I., Niwa, S. I., Mizukami, F., Koppány, Z., Guczi, L., Cheah, K. Y., & Tang, T. S. (1999). Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Applied Catalysis A: General, 189(2), 243-250.
Tu, C. C., Jiang, J. W., & Lin, Y. C. Selective hydrogenation of adipic acid to 1, 6-hexanediol by atomically dispersed Ni on silica.
Tu, C. C., Tsou, Y. J., To, T. D., Chen, C. H., Lee, J. F., Huber, G. W., & Lin, Y. C. (2019). Phyllosilicate-Derived CuNi/SiO2 Catalysts in the Selective Hydrogenation of Adipic Acid to 1,6-Hexanediol. ACS Sustainable Chemistry & Engineering, 7(21), 17872-17881. https://doi.org/10.1021/acssuschemeng.9b04418
Turek, T., Trimm, D., & Cant, N. (1994). The catalytic hydrogenolysis of esters to alcohols. Catalysis Reviews—Science and Engineering, 36(4), 645-683.
Wynblatt, P., & Gjostein, N. (1975). Supported metal crystallites. Progress in solid state chemistry, 9, 21-58.
Yuan, P., Liu, Z., Hu, T., Sun, H., & Liu, S. (2010). Highly efficient Cu–Zn–Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature. Reaction Kinetics, Mechanisms and Catalysis. https://doi.org/10.1007/s11144-010-0190-2
Zhai, X., Shamoto, J., Xie, H., Tan, Y., Han, Y., & Tsubaki, N. (2008). Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase. Fuel, 87(4-5), 430-434. https://doi.org/10.1016/j.fuel.2007.07.008
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2022-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明