博碩士論文 105324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.139.82.23
姓名 周俐慧(Li-Hui Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超音波噴塗技術應用於鈣鈦礦光伏元件:放大工程、全噴塗製程及小型模組之開發
(Ultrasonic Spraying Technique for Manufacturing Perovskite Photovoltaics: Development of Upscaling, Fully Spray- Coating and Mini-Modules)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦作為下個世代最有潛力的太陽能電池材料之一,溶液製程的可行性為大規模生產 提供了可能性同時也提供高光電轉換效率。研究團隊已經在噴塗鈣鈦礦太陽能電池領域 中專研數年,透過一步驟及兩步驟沉積法,其光電轉換效率(PCEs)可達 10%。但目前的 研究其活性(基材)面積小,距離商業化仍有相大的進步空間。因此放大面積的製程為目 前進入商業化必須解決的問題。為了實現,此篇論文使用可規模化的製程技術-超音波噴 塗技術並應用於製備大面積鈣鈦礦太陽能電池。
依製程上的優化將研究分為三個階段逐步進行。第一個階段,首先證明超音波噴塗 技術用於製備大面積鈣鈦礦太陽能電池的可行性,透過優化噴塗次數與鈣鈦礦前驅物溶 液濃度,成功的製備大面積的鈣鈦礦太陽能電池( > 1 cm2)且 PCEs 可超越 12%。第二階 段,為了證明放大製程與噴塗製程連續性的潛力,此研究不止將超音波噴塗技術用於製 備鈣鈦礦層,也將其用於製備電洞傳輸層及電子傳輸層,以建立一個全噴塗的鈣鈦礦太 陽能電池系統,在優化這三層的基礎下鈣鈦礦太陽能電池的 PCEs 可達 10%。第一與第 二階段的研究都是建立在單電池的系統下,而電池串聯或並聯是個未來趨勢以得到更高 的輸出電壓或電流。因此在第三階段,將單電池晉升至數個電池串聯的模組,有了前面 的經驗,超音波噴塗技術也將用於製備鈣鈦礦活性層及電洞傳輸層。透過改變電洞傳輸 層-氧化鎳的退火時間,其光學特性及化學成分的改變影響後續電性上的表現,優化後的 鈣鈦礦電池模組在串聯後將開路電壓提升至 2.91 V 且 PCEs 可達 6%。此博士論文證明 超音波噴塗技術應用於製備鈣鈦礦光伏元件的潛力,顯著的展現超音波噴塗技術的優點 且實現放大製程的需求,為鈣鈦礦太陽能光伏元件開拓新的製程技術且往更成熟的商業 化方向發展。
摘要(英) Organometal halide perovskite as being a most potential material of photovoltaic technologies in next generation Solution processability offers the possibility for mass production while delivering high efficiencies. Our team has been specializing in the field of spray-coated perovskite solar cells for several years. Through one-step and two-step deposition methods, the power conversion efficiency (PCE) can reach over 10%. However, the current results were performed in small active (substrate) area, and there is still considerable potential for further improvement before commercialization. Therefore, upscaling is an important issue that must be focused on this situation. To achieve this, here we use scalable process technology: ultrasonic spray-coating technique and applies to the preparation of large-area perovskite solar cells.
According to the process optimization, I divided research into three phases and carried out gradually. In first phase, the feasibility of using ultrasonic spray-coating technique to prepare large-area perovskite solar cells was first proved. By manipulating the number of spray-passes and the precursor concentration, large-area perovskite solar cells were successfully prepared (> 1 cm2) and PCEs can exceed 12%. In second phase, highlighting the upscaling ability and prove the potential of spray-coating for in-line process. This study not only used the ultrasonic spray- coating to prepare the perovskite layer, but also used it to fabricate the hole transporting layer and the electron transporting layer. On the basis of the optimization of the deposition of three layers, a champion PCE of 10.1% has been demonstrated. First and second phase were based on the single-cell system, and the series or parallel connection of cells is future trend for obtaining higher output voltage/current. Therefore, in the third phase, we upgraded the single cell into solar module with several cells connected in series. With the previous experience, the ultrasonic spray-coating technique was also used to deposit the perovskite active layer and the hole transporting layer. By controlling the annealing time of the hole transporting layer-nickel oxide, the changes in its optical properties and chemical composition further improved the subsequent PCE of mini-module up to 6%. This dissertation proves the potential of ultrasonic spraying technique in the preparation of perovskite photovoltaic, which significantly demonstrates the merit of ultrasonic spraying technique and realizing the demand for up-scaling manufacturing process. The development of the ultrasonic spraying technique for perovskite solar photovoltaics gives the direction toward mature commercialization.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 超音波噴塗技術
★ 鈣鈦礦材料
★ 有機材料
★ 全噴塗技術
關鍵字(英) ★ perovskite solar cell
★ ultrasonic spray coating technique
★ perovskite material
★ organic material
★ all-spray coating
論文目次 摘要 ...................................................................................................................... i ABSTRACT ............................................................................................................. ii 誌謝 ............................................................................................................ iv
目錄 .............................................................................................................. v
圖目錄 ................................................................................................................. viii 表目錄 .............................................................................................................. xiv
第1章 緒論 ............................................................................................... 1
1-1 前言 ............................................................................................................. 1
1-2 太陽能電池技術的歷史演進 ................................................................................ 3
1-3 太陽能電池特性之基礎介紹 ................................................................................ 6
1-4 特性曲線 ............................................................................................... 7
第2章 鈣鈦礦太陽能電池 ............................................................................. 11
2-1 鈣鈦礦材料的發展歷史 ...................................................................................... 11
2-2 鈣鈦礦材料及其特性 ....................................................................................... 12
2-3 鈣鈦礦太陽能電池的結構 ............................................................................... 14
2-3-1 介觀結構...................................................................................................... 15
2-3-2 平面異質接面結構...................................................................................... 15
2-4 鈣鈦礦太陽能電池的能階.................................................................................. 17 2-5 鈣鈦礦薄膜製備方法....................................................................................... 19
2-5-1 一步驟前驅物沉積法 .................................................................................. 20
2-5-2 兩步驟前驅物沉積法 .................................................................................. 22
2-5-3 共熱蒸鍍沉積法 .......................................................................................... 24
2-6 鈣鈦礦太陽能模組...................................................................................... 25
2-7 可用於大面積製備的溶液製程.......................................................................... 28
2-7-1 噴塗法 ....................................................................................................... 30
2-7-2 噴塗沉積鈣鈦礦薄膜 .................................................................................. 32
2-7-3 噴塗沉積電洞傳輸層 .................................................................................. 41
2-7-4 噴塗沉積電子傳輸層 .................................................................................. 43
2-7-5 全噴塗法製備鈣鈦礦太陽能電池 .............................................................. 45
第 3 章 實驗製程與研究方法........46
3-1 實驗藥品/材料.................................................... 46
3-2 實驗儀器.......................................... 47
3-2-1 元件製備及量測儀器.................................................................................. 47
3-2-2 超音波霧化噴塗技術.................................................................................. 49
3-3 實驗方法.........51
3-3-1 超音波噴塗技術製備大面積鈣鈦礦太陽能電池 ...................................... 51
3-3-2 全超音波噴塗技術製備大面積鈣鈦礦太陽能電池 .................................. 55
3-3-3 超音波噴塗技術製備 NiOx 及鈣鈦礦活性層之迷你太陽能電池模組 .... 60
第4章 超音波噴塗技術製備大面積鈣鈦礦太陽能電池 .............................................. 65
4-1 鈣鈦礦前驅物濃度之影響 ............................................................................... 68
4-2 噴塗次數之影響 ............................................................................................. 76
4-3 太陽能電池元件之穩定性測試 .......................................................................... 82
4-4 放大製程探討及影響 ...................................................................................... 85
4-5 概括 ........................................................................................................... 87
第5章 全超音波噴塗技術製備大面積鈣鈦礦太陽能電池 ........................................ 88
5-1 噴塗與旋轉塗佈 NiOx 之影響與差異 ................................................................ 90
5-2 添加高分子 PNDI(2OD)T2 於電子傳輸層中之影響........................................ 93
5-3 噴塗與旋轉塗佈電子傳輸層之影響與差異 ...................................................... 95
5-4 概括 ..................................................................................................... 100
第6章 超音波噴塗技術製備NiOx 及鈣鈦礦活性層之小型太陽能電池模組 .......... 101
6-1 噴塗 NiOx 薄膜的物理性質 ................................................................. 103
6-2 退火時間對 NiOx 能階的影響 ................................................................. 105
6-3 退火時間對 NiOx 薄膜的表面化學組成的影響 .............................................. 107
6-4 NiOx 退火時間對鈣鈦礦晶體及薄膜形貌的影響 ........................................... 110
6-5 太陽能電池模組之光伏特性 ............................................................................ 112
6-6 概括 .............................................................................................................. 117
第7章 結論 .......................................................................................... 118
RESUMES ....................................................................................... 119
PUBLICATIONS .......................................................................................... 121 Reference ........................................................................................................ 123
參考文獻 1. The Iea Shc Solar Update 2009, 50.
2. A. K. Chilvery, A. K. Batra, B. Yang, et al., Perovskites: Transforming Photovoltaics, a Mini-Review. J. Photonics Energy, 2015, 5, 057402.
3. A. Kojima, K. Teshima, Y. Shirai, et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 2009, 131, 6050-6051.
4. J.-H. Im, C.-R. Lee, J.-W. Lee, et al., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 2011, 3, 4088-4093.
5. H.-S. Kim, C.-R. Lee, J.-H. Im, et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012, 2, 591.
6. A. T. Barrows, A. J. Pearson, C. K. Kwak, et al., Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited Via Spray-Deposition. Energy Environ. Sci., 2014, 7, 2944-2950.
7. J. Y. Jeng, K. C. Chen, T. Y. Chiang, et al., Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater., 2014, 26, 4107-4113.
8. N. J. Jeon, J. H. Noh, Y. C. Kim, et al., Solvent Engineering for High-Performance Inorganic-
Organic Hybrid Perovskite Solar Cells. Nat. Mater., 2014, 13, 897-903.
9. J. M. Azpiroz, E. Mosconi, J. Bisquert, et al., Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy Environ. Sci., 2015, 8, 2118-2127.
10. W. W. Wang, J. Y. Yuan, G. Z. Shi, et al., Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor. ACS Appl. Mater. Interfaces, 2015, 7, 3994-3999.
11. J. You, L. Meng, T.-B. Song, et al., Improved Air Stability of Perovskite Solar Cells Via Solution-Processed Metal Oxide Transport Layers. Nat. Nanotechnol., 2016, 11, 75.
12. H. R. Tan, A. Jain, O. Voznyy, et al., Efficient and Stable Solution-Processed Planar Perovskite Solar Cells Via Contact Passivation. Science, 2017, 355, 722-726.
13. H. I. Kim, M. J. Kim, K. Choi, et al., Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI-Based Polymer as the Electron Transport Layer. Adv. Energy Mater., 2018, 8, 1702872.
14. M. A. Green, A. Ho-Baillie, H. J. Snaith. The Emergence of Perovskite Solar Cells. Nat. Photonics, 2014, 8, 506.
15. C. Kagan, D. Mitzi, C. Dimitrakopoulos. Organic-Inorganic Hybrid Materials as
Semiconducting Channels in Thin-Film Field-Effect Transistors. Science, 1999, 286, 945-947.
16. K. Chondroudis, D. B. Mitzi. Electroluminescence from an Organic−Inorganic Perovskite
Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers. Chem. Mater., 1999, 11, 3028-3030.
17. C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis. Semiconducting Tin and Lead Iodide
Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem., 2013, 52, 9019-9038.
18. S. D. Stranks, G. E. Eperon, G. Grancini, et al., Electron-Hole Diffusion Lengths Exceeding
1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013, 342, 341-344. 19. G. Xing, N. Mathews, S. Sun, et al., Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013, 342, 344-347.
20. B. Cai, Y. Xing, Z. Yang, et al., High Performance Hybrid Solar Cells Sensitized byOrganolead Halide Perovskites. Energy Environ. Sci., 2013, 6, 1480-1485.
21. G. Xing, N. Mathews, S. S. Lim, et al., Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater., 2014, 13, 476.
22. C. Manspeaker, S. Venkatesan, A. Zakhidov, et al., Role of Interface in Stability of
Perovskite Solar Cells. Curr. Opin. Chem. Eng., 2017, 15, 1-7.
23. J. Song, J. Bian, E. Zheng, et al., Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer. Chem. Lett., 2015, 44, 610-612.
24. L. Zuo, Z. Gu, T. Ye, et al., Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. J. Am. Chem. Soc., 2015, 137, 2674-2679.
25. D. Bi, S.-J. Moon, L. Häggman, et al., Using a Two-Step Deposition Technique to Prepare
Perovskite CH3NH3PbI3 for Thin Film Solar Cells Based on ZrO2 and TiO2 Mesostructures.RSC Adv., 2013, 3, 18762-18766.
26. Q. Dong, Y. Shi, K. Wang, et al., Insight into Perovskite Solar Cells Based on SnO2 Compact
Electron-Selective Layer. J. Phys. Chem. C, 2015, 119, 10212-10217.
27. M. M. Lee, J. Teuscher, T. Miyasaka, et al., Efficient Hybrid Solar Cells Based on Meso-
Superstructured Organometal Halide Perovskites. Science, 2012, 338, 643-647.
28. H. Zhou, Q. Chen, G. Li, et al., Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 2014, 345, 542-546.
29. M. Liu, M. B. Johnston, H. J. Snaith. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 2013, 501, 395.
30. J. Y. Jeng, Y. F. Chiang, M. H. Lee, et al., CH3NH3PbI3 Perovskite/Fullerene Planar‐ Heterojunction Hybrid Solar Cells. Adv. Mater., 2013, 25, 3727-3732.
31. Z. Xiao, Q. Dong, C. Bi, et al., Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement. Adv. Mater., 2014, 26, 6503-6509.
32. S. Ye, W. Sun, Y. Li, et al., CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett., 2015, 15, 3723-3728.
33. C.-H. Chiang, C.-G. Wu. Bulk Heterojunction Perovskite–PCBM Solar Cells with High Fill Factor. Nat. Photonics, 2016, 10, 196-200.
34. E. J. Juarez-Perez, M. R. Leyden, S. Wang, et al., Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chem. Mater., 2016, 28, 5702-5709.
35. J. Cameron, P. J. Skabara. The Damaging Effects of the Acidity in PEDOT:PSS on Semiconductor Device Performance and Solutions Based on Non-Acidic Alternatives. Materials Horizons, 2020, 7, 1759-1772.
36. S. Wang, T. Sakurai, W. Wen, et al., Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Adv. Mater. Interfaces, 2018, 5, 1800260.
37. J. Cui, H. Yuan, J. Li, et al., Recent Progress in Efficient Hybrid Lead Halide Perovskite Solar Cells. Sci. Technol. Adv. Mater., 2015, 16, 036004.
38. S. Colella, E. Mosconi, P. Fedeli, et al., MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater., 2013, 25, 4613-4618.
39. E. Mosconi, A. Amat, M. K. Nazeeruddin, et al., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C, 2013, 117, 13902-13913.
40. M. Xiao, F. Huang, W. Huang, et al., A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells. Angew. Chem. Int. Ed., 2014, 53, 9898-9903.
41. K. Liang, D. B. Mitzi, M. T. Prikas. Synthesis and Characterization of Organic− Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chem. Mater., 1998, 10, 403-411.
42. J. Burschka, N. Pellet, S.-J. Moon, et al., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 2013, 499, 316.
43. J.-H. Im, I.-H. Jang, N. Pellet, et al., Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nat. Nanotechnol., 2014, 9, 927.
44. Z. Li, T. R. Klein, D. H. Kim, et al., Scalable Fabrication of Perovskite Solar Cells. Nat. Rev. Mater., 2018, 3, 1-20.
45. F. Matteocci, S. Razza, F. Di Giacomo, et al., Solid-State Solar Modules Based on Mesoscopic Organometal Halide Perovskite: A Route Towards the up-Scaling Process. Phys. Chem. Chem. Phys., 2014, 16, 3918-3923.
46. P. S. Shen, J. S. Chen, Y. H. Chiang, et al., Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module. Adv. Mater. Interfaces, 2016, 3, 1500849.
47. W. Qiu, T. Merckx, M. Jaysankar, et al., Pinhole-Free Perovskite Films for Efficient SolarModules. Energy Environ. Sci., 2016, 9, 484-489.
48. M. R. Leyden, Y. Jiang, Y. Qi. Chemical Vapor Deposition Grown Formamidinium
Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater.
Chem. A, 2016, 4, 13125-13132.
49. C.-H. Chiang, J.-W. Lin, C.-G. Wu. One-Step Fabrication of a Mixed-Halide Perovskite
Film for a High-Efficiency Inverted Solar Cell and Module. J. Mater. Chem. A, 2016, 4,
13525-13533.
50. A. Agresti, S. Pescetelli, A. L. Palma, et al., Graphene Interface Engineering for Perovskite
Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy
Lett., 2017, 2, 279-287.
51. H. C. Liao, P. Guo, C. P. Hsu, et al., Enhanced Efficiency of Hot‐Cast Large‐Area Planar
Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Adv. Energy
Mater., 2017, 7, 1601660.
52. H. Chen, F. Ye, W. Tang, et al., A Solvent-and Vacuum-Free Route to Large-Area Perovskite
Films for Efficient Solar Modules. Nature, 2017, 550, 92.
53. L. Cai, L. Liang, J. Wu, et al., Large Area Perovskite Solar Cell Module. J. Semicond., 2017,
38, 014006.
54. Y. Hu, S. Si, A. Mei, et al., Stable Large‐Area (10×10 cm2) Printable Mesoscopic Perovskite
Module Exceeding 10% Efficiency. Sol. RRL, 2017, 1, 1600019.
55. M. Yang, D. H. Kim, T. R. Klein, et al., Highly Efficient Perovskite Solar Modules by
Scalable Fabrication and Interconnection Optimization. ACS Energy Lett., 2018, 3, 322-328. 56. K. Li, J. Xiao, X. Yu, et al., An Efficient, Flexible Perovskite Solar Module Exceeding 8%
Prepared with an Ultrafast PbI2 Deposition Rate. Sci. Rep., 2018, 8, 442.
57. Y. Deng, X. Zheng, Y. Bai, et al., Surfactant-Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient Photovoltaic Modules. Nat. Energy, 2018, 3,
560.
58. N. Y. Nia, M. Zendehdel, L. Cinà, et al., A Crystal Engineering Approach for Scalable Perovskite Solar Cells and Module Fabrication: A Full out of Glove Box Procedure. J. Mater. Chem. A, 2018, 6, 659-671.
59. L. Gao, L. Chen, S. Huang, et al., Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Appl. Energy Mater., 2019, 2, 3851-3859.
60. G. S. Han, J. Kim, S. Bae, et al., Spin Coating Process for 10cm×10cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids. ACS Energy Lett., 2019, 4, 1845−1851.
61. A. Agresti, S. Pescetelli, A. L. Palma, et al., Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Lett., 2019, 4, 1862- 1871.
62. Z. Xu, R. Chen, Y. Wu, et al., Br-Containing Alkyl Ammonium Salt-Enabled Scalable Fabrication of High-Quality Perovskite Films for Efficient and Stable Perovskite Modules. J. Mater. Chem. A, 2019, 7, 26849-26857.
63. Y. Jiang, M. Remeika, Z. Hu, et al., Negligible‐Pb‐Waste and Upscalable Perovskite Deposition Technology for High‐Operational‐Stability Perovskite Solar Modules. Adv. Energy Mater., 2019, 9, 1803047.
64. F. Matteocci, L. Vesce, F. U. Kosasih, et al., Fabrication and Morphological Characterization of High Efficiency Blade-Coated Perovskite Solar Modules. ACS Appl. Mater. Interfaces, 2019, 11, 25195-25204.
65. J. Guan, J. Ni, X. Zhou, et al., High-Performance Electron Transport Layer Via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells. ACS Appl. Energy Mater., 2020, 3, 11570-11580.
66. D. S. Lee, M. J. Ki, H. J. Lee, et al., Fully Scalable and Stable CsPbi2Br Solar Cells Realized by an All-Spray-Coating Process. ACS Appl. Mater. Interfaces, 2022, 14, 7926–7935.
67. D. S. Bhachu, D. O. Scanlon, E. J. Saban, et al., Scalable Route to CH3NH3PbI3 Perovskite Thin Films by Aerosol Assisted Chemical Vapour Deposition. J. Mater. Chem. A, 2015, 3, 9071-9073.
68. J. H. Heo, M. H. Lee, M. H. Jang, et al., Highly Efficient CH3NH3PbI3−xClx Mixed Halide Perovskite Solar Cells Prepared by Re-Dissolution and Crystal Grain Growth Via Spray Coating. J. Mater. Chem. A, 2016, 4, 17636-17642.
69. D. K. Mohamad, J. Griffin, C. Bracher, et al., Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air. Adv. Energy Mater., 2016, 6, 1600994.
70. B. Su, H. A. Caller-Guzman, V. Körstgens, et al., Macroscale and Nanoscale Morphology Evolution During in Situ Spray Coating of Titania Films for Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 2017, 9, 43724-43732.
71. S. Uličná, B. Dou, D. H. Kim, et al., Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Appl. Energy Mater., 2018, 1, 1853-1857.
72. W. C. Chang, D. H. Lan, K. M. Lee, et al., Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray‐Coating of Photoactive Layers. ChemSusChem, 2017, 10, 1405-1412.
73. L.-H. Chou, X.-F. Wang, I. Osaka, et al., Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH3NH3PbI3 Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 2018, 10, 38042-38050.
74. D.-H. Lan, S.-H. Hong, L.-H. Chou, et al., High Throughput Two-Step Ultrasonic Spray Deposited CH3NH3PbI3 Thin Film Layer for Solar Cell Application. J. Power Sources, 2018, 390, 270-277.
75. Y.-S. Chou, L.-H. Chou, A.-Z. Guo, et al., Ultrasonic Spray-Coated Mixed Cation
Perovskite Films and Solar Cells. ACS Sustainable Chem. Eng., 2019, 7, 14217-14224.
76. M. Park, W. Cho, G. Lee, et al., Highly Reproducible Large‐Area Perovskite Solar Cell Fabrication Via Continuous Megasonic Spray Coating of CH3NH3PbI3. Small, 2019, 15,
1804005.
77. Y. Deng, E. Peng, Y. Shao, et al., Scalable Fabrication of Efficient Organolead Trihalide
Perovskite Solar Cells with Doctor-Bladed Active Layers. Energy Environ. Sci., 2015, 8,
1544-1550.
78. Y. Deng, Q. Dong, C. Bi, et al., Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells
with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater., 2016, 6,
1600372.
79. A. T. Mallajosyula, K. Fernando, S. Bhatt, et al., Large-Area Hysteresis-Free Perovskite
Solar Cells Via Temperature Controlled Doctor Blading under Ambient Environment. Appl.
Mater. Today, 2016, 3, 96-102.
80. S. Tang, Y. Deng, X. Zheng, et al., Composition Engineering in Doctor‐Blading of Perovskite Solar Cells. Adv. Energy Mater., 2017, 7, 1700302.
81. D. Vak, K. Hwang, A. Faulks, et al., 3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells. Adv. Energy Mater., 2015, 5, 1401539. 82. J. Ciro, M. A. Mejía-Escobar, F. Jaramillo. Slot-Die Processing of Flexible Perovskite Solar Cells in Ambient Conditions. Sol. Energy, 2017, 150, 570-576.
83. G. Cotella, J. Baker, D. Worsley, et al., One-Step Deposition by Slot-Die Coating of Mixed
Lead Halide Perovskite for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells, 2017, 159, 362-369.
84. J. B. Whitaker, D. H. Kim, B. W. Larson, et al., Scalable Slot-Die Coating of High
Performance Perovskite Solar Cells. Sustainable Energy Fuels, 2018, 2, 2442-2449.
85. C. Zuo, D. Vak, D. Angmo, et al., One-Step Roll-to-Roll Air Processed High Efficiency
Perovskite Solar Cells. Nano Energy, 2018, 46, 185-192.
86. Z. Wei, H. Chen, K. Yan, et al., Inkjet Printing and Instant Chemical Transformation of a
CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells. Angew.
Chem. Int. Ed., 2014, 53, 13239-13243.
87. S.-G. Li, K.-J. Jiang, M.-J. Su, et al., Inkjet Printing of CH3NH3PbI3 on a Mesoscopic Tio2
Film for Highly Efficient Perovskite Solar Cells. J. Mater. Chem. A, 2015, 3, 9092-9097. 88. F. Mathies, T. Abzieher, A. Hochstuhl, et al., Multipass Inkjet Printed Planar Methylammonium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A, 2016, 4, 19207-
19213.
89. K. Cao, Z. Zuo, J. Cui, et al., Efficient Screen Printed Perovskite Solar Cells Based on
Mesoscopic TiO2/Al2O3/NiO/Carbon Architecture. Nano Energy, 2015, 17, 171-179.
90. Y. Rong, Y. Ming, W. Ji, et al., Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. J. Phys. Chem. Lett., 2018, 9,
2707-2713.
91. R. M. Pasquarelli, D. S. Ginley, R. O′hayre. Solution Processing of Transparent Conductors:
From Flask to Film. Chem. Soc. Rev., 2011, 40, 5406-5441.
92. J. E. Bishop, T. J. Routledge, D. G. Lidzey. Advances in Spray-Cast Perovskite Solar Cells.
J. Phys. Chem. Lett., 2018, 9, 1977-1984.
93. C. F. J. Lau, X. Deng, Q. Ma, et al., CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition. ACS Energy Lett., 2016, 1, 573-577.
94. Y. Wu, X. Yang, H. Chen, et al., Highly Compact TiO2 Layer for Efficient Hole-Blocking
in Perovskite Solar Cells. Appl. Phys. Express, 2014, 7, 052301.
95. G. Zhu, Y. Shen, K. Xu, et al., Preparation of ZnO Electron Transport Layers by Spray
Technology for Perovskite Solar Cells. J. Alloys Compd., 2016, 689, 192-198.
96. B.-R. Koo, D.-H. Oh, D.-H. Riu, et al., Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition. ACS Appl. Mater. Interfaces, 2017, 9,
44584-44592.
97. M. Lee, Y. Ko, Y. Jun. Efficient Fiber-Shaped Perovskite Photovoltaics Using Silver
Nanowires as Top Electrode. J. Mater. Chem. A, 2015, 3, 19310-19313.
98. K. Han, M. Xie, L. Zhang, et al., Fully Solution Processed Semi-Transparent Perovskite Solar Cells with Spray-Coated Silver Nanowires/ZnO Composite Top Electrode. Sol. Energy
Mater. Sol. Cells, 2018, 185, 399-405.
99. M.-C. Kim, B. J. Kim, J. Yoon, et al., Electro-Spray Deposition of a Mesoporous TiO2
Charge Collection Layer: Toward Large Scale and Continuous Production of High Efficiency
Perovskite Solar Cells. Nanoscale, 2015, 7, 20725-20733.
100. R. Naphade, S. Nagane, G. S. Shanker, et al., Hybrid Perovskite Quantum Nanostructures
Synthesized by Electrospray Antisolvent–Solvent Extraction and Intercalation. ACS Appl.
Mater. Interfaces, 2015, 8, 854-861.
101. S. Kavadiya, D. M. Niedzwiedzki, S. Huang, et al., Electrospray-Assisted Fabrication of
Moisture-Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions. Adv. Energy Mater., 2017, 7, 1700210.
102. A. Reale, L. La Notte, L. Salamandra, et al., Spray Coating for Polymer Solar Cells: An up‐to‐Date Overview. Energy Technol., 2015, 3, 385-406.
103. A. T. Barrows, A. J. Pearson, C. K. Kwak, et al., Efficient Planar Heterojunction Mixed- Halide Perovskite Solar Cells Deposited Via Spray-Deposition. Energy Environ. Sci., 2014, 7, 2944-2950.
104. S. Das, B. Yang, G. Gu, et al., High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing. ACS Photonics, 2015, 2, 680-686.
105. J. E. Bishop, J. A. Smith, C. Greenland, et al., High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing. ACS Appl. Mater. Interfaces, 2018, 10, 39428-39434.
106. Y.-T. Yu, S.-H. Yang, L.-H. Chou, et al., One-Step Spray-Coated All-Inorganic CsPbI2Br Perovskite Solar Cells. ACS Appl. Energy Mater., 2021, 4, 5466–5474.
107. F. Hilt, M. Q. Hovish, N. Rolston, et al., Rapid Route to Efficient, Scalable, and Robust Perovskite Photovoltaics in Air. Energy Environ. Sci., 2018, 11, 2102-2113.
108. J. H. Heo, F. Zhang, C. Xiao, et al., Efficient and Stable Graded CsPbI3−xBrx Perovskite Solar Cells and Submodules by Orthogonal Processable Spray Coating. Joule, 2021, 5, 481- 494.
109. M. Ramesh, K. M. Boopathi, T. Y. Huang, et al., Using an Airbrush Pen for Layer-by- Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells. ACS Appl. Mater. Interfaces, 2015, 7, 2359-66.
110. S. Gamliel, A. Dymshits, S. Aharon, et al., Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells. J. Phys. Chem. C, 2015, 119, 19722-19728.
111. Z. Liang, S. Zhang, X. Xu, et al., A Large Grain Size Perovskite Thin Film with a Dense Structure for Planar Heterojunction Solar Cells Via Spray Deposition under Ambient Conditions. RSC Adv., 2015, 5, 60562-60569.
112. B. Abdollahi Nejand, S. Gharibzadeh, V. Ahmadi, et al., New Scalable Cold-Roll Pressing for Post-Treatment of Perovskite Microstructure in Perovskite Solar Cells. J. Phys. Chem. C, 2016, 120, 2520-2528.
113. J. G. Tait, S. Manghooli, W. Qiu, et al., Rapid Composition Screening for Perovskite Photovoltaics Via Concurrently Pumped Ultrasonic Spray Coating. J. Mater. Chem. A, 2016, 4, 3792-3797.
114. H. Ishihara, S. Sarang, Y.-C. Chen, et al., Nature Inspiring Processing Route toward High Throughput Production of Perovskite Photovoltaics. J. Mater. Chem. A, 2016, 4, 6989-6997. 115. H. Ishihara, W. Chen, Y.-C. Chen, et al., Electrohydrodynamically Assisted Deposition of
Efficient Perovskite Photovoltaics. Adv. Mater. Interfaces, 2016, 3, 1500762.
116. X. Xia, W. Wu, H. Li, et al., Spray Reaction Prepared FA1− xCsxPbI3 Solid Solution as a
Light Harvester for Perovskite Solar Cells with Improved Humidity Stability. RSC Adv., 2016,
6, 14792-14798.
117. J. Wang, J. Li, X. Xu, et al., Promising Photovoltaic Application of Multi-Walled Carbon
Nanotubes in Perovskites Solar Cells for Retarding Recombination. RSC Adv., 2016, 6,
42413-42420.
118. S. C. Hong, G. Lee, K. Ha, et al., Precise Morphology Control and Continuous Fabrication
of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System. ACS
Appl. Mater. Interfaces, 2017, 9, 7879-7884.
119. Z. Bi, Z. Liang, X. Xu, et al., Fast Preparation of Uniform Large Grain Size Perovskite Thin Film in Air Condition Via Spray Deposition Method for High Efficient Planar Solar
Cells. Sol. Energy Mater. Sol. Cells, 2017, 162, 13-20.
120. P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, et al., Electrospray Technique in Fabricating Perovskite-
Based Hybrid Solar Cells under Ambient Conditions. RSC Adv., 2017, 7, 10985-10991. 121. J. E. Bishop, D. K. Mohamad, M. Wong-Stringer, et al., Spray-Cast Multilayer Perovskite
Solar Cells with an Active-Area of 1.5 cm2. Sci. Rep., 2017, 7, 7962.
122. S. Ulicna, B. Dou, D. H. Kim, et al., Scalable Deposition of High-Efficiency Perovskite
Solar Cells by Spray-Coating. ACS Appl. Energy Mater., 2018, 1, 1853-1857.
123. S. Han, H. Kim, S. Lee, et al., Efficient Planar-Heterojunction Perovskite Solar Cells Fabricated by High-Throughput Sheath-Gas-Assisted Electrospray. ACS Appl. Mater.
Interfaces, 2018, 10, 7281-7288.
124. J. Yao, L. Yang, F. Cai, et al., The Impacts of PbI2 Purity on the Morphology and Device
Performance of One-Step Spray-Coated Planar Heterojunction Perovskite Solar Cells.
Sustainable Energy Fuels, 2018, 2, 436-443.
125. Y. Jiang, C. Wu, L. Li, et al., All Electrospray Printed Perovskite Solar Cells. Nano Energy,
2018, 53, 440-448.
126. J. Su, H. Cai, X. Ye, et al., Efficient Perovskite Solar Cells Prepared by Hot Air Blowing
to Ultrasonic Spraying in Ambient Air. ACS Appl. Mater. Interfaces, 2019, 11, 10689-10696. 127. Z. Liang, Z. Bi, K. Gao, et al., Interface Modification Via Al2O3 with Retarded Charge Recombinations for Mesoscopic Perovskite Solar Cells Fabricated with Spray Deposition
Process in the Air. Appl. Surf. Sci., 2019, 463, 939-946.
128. T. Mohammad, V. Kumar, V. Dutta. Electric Field Assisted Spray Coated Lead Free
Bismuth Iodide Perovskite Thin Film for Solar Cell Application. Sol. Energy, 2019, 182, 72-79.
129. J. H. Heo, K. Im, J. Kim, et al., Efficient Metal Halide Perovskite Solar Cells Prepared by
Reproducible Electrospray Coating on Vertically Aligned TiO2 Nanorod Electrodes. ACS
Appl. Mater. Interfaces, 2019, 12, 886-892.
130. J. Su, H. Cai, J. Yang, et al., Perovskite Ink with an Ultrawide Processing Window for
Efficient and Scalable Perovskite Solar Cells in Ambient Air. ACS Appl. Mater. Interfaces,
2019, 12, 3531-3538.
131. J. E. Bishop, C. D. Read, J. A. Smith, et al., Fully Spray-Coated Triple-Cation Perovskite
Solar Cells. Sci. Rep., 2020, 10, 1-8.
132. L.-H. Chou, Y.-T. Yu, X.-F. Wang, et al., Sequential Ultrasonic Spray‐Coating Planar Three
Layers for 1 cm2 Active Area Inverted Perovskite Solar Cells. Energy Technol., 2020, 8,
2000216.
133. S. S. Kim, J. H. Heo, S. H. Im. Wetting-Induced Formation of Void-Free Metal Halide
Perovskite Films by Green Ultrasonic Spray Coating for Large-Area Mesoscopic Perovskite
Solar Cells. RSC Adv., 2020, 10, 33651-33661.
134. H. Cai, X. Liang, X. Ye, et al., High Efficiency over 20% of Perovskite Solar Cells by
Spray Coating Via a Simple Process. ACS Appl. Energy Mater., 2020, 3, 9696-9702.
135. N. Rolston, W. J. Scheideler, A. C. Flick, et al., Rapid Open-Air Fabrication of Perovskite Solar Modules. Joule, 2020, 4, 2675-2692.
136. A. Z. Guo, L. H. Chou, S. H. Yang, et al., Multi‐Channel Pumped Ultrasonic Spray‐Coating
for High‐Throughput and Scalable Mixed Halide Perovskite Solar Cells. Adv. Mater.
Interfaces, 2021, 8, 2001509.
137. L.-H. Chou, Y.-T. Yu, I. Osaka, et al., Spray Deposition of NiOx Hole Transport Layer and Perovskite Photoabsorber in Fabrication of Photovoltaic Mini-Module. J. Power Sources, 2021, 491, 229586.
138. C. Wu, K. Wang, Y. Jiang, et al., All Electrospray Printing of Carbon‐Based Cost‐Effective Perovskite Solar Cells. Adv. Funct. Mater., 2021, 31, 2006803.
139. T.-W. Chen, S. N. Afraj, S.-H. Hong, et al., Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Appl. Energy Mater., 2022, 5, 4149-4158. 140. Z. Liu, G. Liu, C. Xu, et al., Scalable Fabrication for Efficient Quasi Two-Dimensional Perovskite Solar Cells Via Ultrasonic Spray-Coating Method. Org. Electron., 2022, 106440. 141. X. Yu, J. Li, Y. Mo, et al., “Coffee Ring” Controlment in Spray Prepared>19% Efficiency
Cs0.19FA0.81PbI2.5Br0.5 Perovskite Solar Cells. J. Energy Chem., 2022, 67, 201-208.
142. N. Mohammadian, A. H. Alizadeh, A. Moshaii, et al., A Two-Step Spin-Spray Deposition Processing Route for Production of Halide Perovskite Solar Cell. Thin Solid Films, 2016, 616, 754-759.
143. F. Shao, L. Xu, Z. Tian, et al., A Modified Two-Step Sequential Deposition Method for Preparing Perovskite Ch3nh3pbi3 Solar Cells. RSC Adv., 2016, 6, 42377-42381.
144. K. M. Boopathi, M. Ramesh, P. Perumal, et al., Preparation of Metal Halide Perovskite Solar Cells through a Liquid Droplet Assisted Method. J. Mater. Chem. A, 2015, 3, 9257- 9263.
145. X. Xia, H. Li, W. Wu, et al., Efficient Light Harvester Layer Prepared by Solid/Mist Interface Reaction for Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 2015, 7, 16907-12.
146. C. F. J. Lau, X. Deng, Q. Ma, et al., CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition. ACS Energy Lett., 2016, 1, 573-577.
147. X. Yu, X. Yan, J. Xiao, et al., Interface Modification Effect on the Performance of CsxFA1−xPbIyBr3−y Perovskite Solar Cells Fabricated by Evaporation/Spray-Coating Method. J. Chem. Phys., 2020, 153, 014706.
148. F. Li, C. Bao, H. Gao, et al., A Facile Spray-Assisted Fabrication of Homogenous Flat
CH3NH3PbI3 Films for High Performance Mesostructure Perovskite Solar Cells. Mater. Lett., 2015, 157, 38-41.
149. H. Huang, J. Shi, L. Zhu, et al., Two-Step Ultrasonic Spray Deposition of CH3NH3PbI3 for Efficient and Large-Area Perovskite Solar Cell. Nano Energy, 2016, 27, 352-358.
150. F. Li, C. Bao, W. Zhu, et al., Microstructure Modulation of the CH3NH3PbI3 Layer in Perovskite Solar Cells by 2-Propanol Pre-Wetting and Annealing in a Spray-Assisted
Solution Process. J. Mater. Chem. A, 2016, 4, 11372-11380.
151. F. Zabihi, M.-R. Ahmadian-Yazdi, M. Eslamian. Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC). Nanoscale Res. Lett., 2016, 11, 71.
152. X. Xia, W. Wu, H. Li, et al., Spray Reaction Prepared FA1−xCsxPbI3 Solid Solution as a
Light Harvester for Perovskite Solar Cells with Improved Humidity Stability. RSC Adv., 2016, 6, 14792-14798.
153. G. Chai, S. Wang, Z. Xia, et al., PbI2 Platelets for Inverted Planar Organolead Halide Perovskite Solar Cells Via Ultrasonic Spray Deposition. Semicond. Sci. Technol., 2017, 32,074003.
154. M. Remeika, S. R. Raga, S. Zhang, et al., Transferrable Optimization of Spray-Coated PbI2
Films for Perovskite Solar Cell Fabrication. J. Mater. Chem. A, 2017, 5, 5709-5718.
155. M. Habibi, M.-R. Ahmadian-Yazdi, M. Eslamian. Optimization of Spray Coating for the Fabrication of Sequentially Deposited Planar Perovskite Solar Cells. J. Photonics Energy, 2017, 7, 022003.
156. G. Chai, S. Luo, H. Zhou, et al., CH3NH3PbI3−xBrx Perovskite Solar Cells Via Spray Assisted Two-Step Deposition: Impact of Bromide on Stability and Cell Performance. Mater. Des., 2017, 125, 222-229.
157. S. Bag, J. R. Deneault, M. F. Durstock. Aerosol-Jet-Assisted Thin-Film Growth of CH3NH3PbI3 Perovskites-a Means to Achieve High Quality, Defect-Free Films for Efficient Solar Cells. Adv. Energy Mater., 2017, 7, 1701151.
158. K.-C. Hsu, C.-H. Lee, T.-F. Guo, et al., Improvement Efficiency of Perovskite Solar Cells by Hybrid Electrospray and Vapor-Assisted Solution Technology. Org. Electron., 2018, 57, 221-225.
159. L. Cojocaru, K. Wienands, U. Erdil, et al., Hybrid Evaporation/Spray-Coating Process for a Simplified and Controllable Production of Perovskite Solar Cells. IEEE J. Photovolt., 2019, 10, 276-286.
160. T.-T. Duong, P. H. Hoang, L. T. Nhan, et al., Multistep Spin–Spray Deposition of Large- Grain-Size CH3NH3PbI3 with Bilayer Structure for Conductive-Carbon-Based Perovskite Solar Cells. Curr. Appl. Phys., 2019, 19, 1266-1270.
161. J. Cui, F. Meng, H. Zhang, et al., CH3NH3PbI3-Based Planar Solar Cells with Magnetron- Sputtered Nickel Oxide. ACS Appl. Mater. Interfaces, 2014, 6, 22862-22870.
162. W. J. Scheideler, N. Rolston, O. Zhao, et al., Rapid Aqueous Spray Fabrication of Robust Niox: A Simple and Scalable Platform for Efficient Perovskite Solar Cells. Adv. Energy Mater., 2019, 9, 1803600.
163. J.-B. Du, L. Yang, X. Jin, et al., Spray Deposition of Vinyl Tris (2-Methoxyethoxy) Silane- Doped Ti3C2Tx Mxene Hole Transporting Layer for Planar Perovskite Solar Cells. J. Alloys Compd., 2022, 900, 163372.
164. H. Wang, X. Zeng, Z. Huang, et al., Boosting the Photocurrent Density of P-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous Nio Photocathodes. ACS Appl. Mater. Interfaces, 2014, 6, 12609-17.
165. I. S. Yang, M. R. Sohn, S. D. Sung, et al., Formation of Pristine Cuscn Layer by Spray Deposition Method for Efficient Perovskite Solar Cell with Extended Stability. Nano Energy, 2017, 32, 414-421.
166. X. Li, J. Yang, Q. Jiang, et al., Synergistic Effect to High-Performance Perovskite Solar Cells with Reduced Hysteresis and Improved Stability by the Introduction of Na-Treated TiO2 and Spraying-Deposited Cui as Transport Layers. ACS Appl. Mater. Interfaces, 2017, 9, 41354-41362.
167. Y. Qin, J. Song, Q. Qiu, et al., High-Quality NiO Thin Film by Low-Temperature Spray Combustion Method for Perovskite Solar Cells. J. Alloys Compd., 2019, 810, 151970.
168. Y. Liu, J. Song, Y. Qin, et al., Cu-Doped Nickel Oxide Hole Transporting Layer Via Efficient Low-Temperature Spraying Combustion Method for Perovskite Solar Cells. J. Mater. Sci.: Mater. Electron., 2019, 30, 15627-15635.
169. Q. Liu, P. Lv, Y. Wang, et al., Impact of Nickel Oxide/Perovskite Interfacial Contact on the Crystallization and Photovoltaic Performance of Perovskite Solar Cells. Sol. RRL, 2022, 202200232.
170. Y. Zheng, J. Kong, D. Huang, et al., Spray Coating of the PCBM Electron Transport Layer Significantly Improves the Efficiency of p-i-n Planar Perovskite Solar Cells. Nanoscale,2018, 10, 11342-11348.
171. S. S. Mali, J. V. Patil, J. A. Steele, et al., Ambient Processed and Stable All-Inorganic Lead
Halide Perovskite Solar Cells with Efficiencies Nearing 20% Using a Spray Coated
Zn1−xCsxO Electron Transport Layer. Nano Energy, 2021, 90, 106597.
172. K. Mahmood, B. S. Swain, H. S. Jung. Controlling the Surface Nanostructure of ZnO and Al-Doped ZnO Thin Films Using Electrostatic Spraying for Their Application in 12%
Efficient Perovskite Solar Cells. Nanoscale, 2014, 6, 9127-9138
173. J. H. Heo, M. S. You, M. H. Chang, et al., Hysteresis-Less Mesoscopic CH3NH3PbI3 Perovskite Hybrid Solar Cells by Introduction of Li-Treated TiO2 Electrode. Nano Energy, 2015, 15, 530-539.
174. H. Huang, J. Shi, S. Lv, et al., Sprayed P25 Scaffolds for High-Efficiency Mesoscopic Perovskite Solar Cells. Chem. Commun., 2015, 51, 10306-9.
175. T. Supasai, N. Henjongchom, I. M. Tang, et al., Compact Nanostructured TiO2 Deposited by Aerosol Spray Pyrolysis for the Hole-Blocking Layer in a CH3NH3PbI3 Perovskite Solar Cell. Sol. Energy, 2016, 136, 515-524.
176. P. Zhou, W. Li, T. Li, et al., Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells. Micromachines, 2017, 8, 55.
177. N. Kumari, J. V. Gohel, S. R. Patel. Optimization of TiO2/ZnO Bilayer Electron Transport Layer to Enhance Efficiency of Perovskite Solar Cell. Mater. Sci. Semicond. Process., 2018, 75, 149-156.
178. B. Taheri, N. Yaghoobi Nia, A. Agresti, et al., Graphene-Engineered Automated Sprayed Mesoscopic Structure for Perovskite Device Scaling-Up. 2D Materials, 2018, 5, 045034. 179. M. J. Paik, Y. Lee, H. S. Yun, et al., TiO2 Colloid‐Spray Coated Electron‐Transporting Layers for Efficient Perovskite Solar Cells. Adv. Energy Mater., 2020, 10, 2001799.
180. X. Fan, Y. Rui, X. Han, et al., Spray-Coated Monodispersed SnO2 Microsphere Films as Scaffold Layers for Efficient Mesoscopic Perovskite Solar Cells. J. Power Sources, 2020, 448, 227405.
181. M. Hashemi, M. Minbashi, S. M. B. Ghorashi, et al., Electrical and Optical
Characterization of Sprayed In2S3 Thin Films as an Electron Transporting Layer in High Efficient Perovskite Solar Cells. Sol. Energy, 2021, 215, 356-366.
182. N. Kumar, H. B. Lee, R. Sahani, et al., Room‐Temperature Spray Deposition of Large‐Area SnO2 Electron Transport Layer for High Performance, Stable FAPbI3‐Based Perovskite Solar Cells. Small Methods, 2021, 2101127.
183. N. Kumar, H. B. Lee, R. Sahani, et al., Room‐Temperature Spray Deposition of Large‐Area SnO2 Electron Transport Layer for High Performance, Stable FAPbI3‐Based Perovskite Solar Cells. Small Methods, 2022, 6, 2101127.
184. W. Long, A. He, S. Xie, et al., Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying. Energies, 2022, 15, 3211.
185. S. Slegers, M. Linzas, J. Drijkoningen, et al., Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating. Coatings, 2017, 7, 208.
186. T. Baikie, Y. Fang, J. M. Kadro, et al., Synthesis and Crystal Chemistry of the Hybrid Perovskite CH3NH3PbI3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A, 2013, 1, 5628-5641.
187. Y. Shao, Z. Xiao, C. Bi, et al., Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun., 2014, 5, 1-7.
188. D. W. De Quilettes, S. M. Vorpahl, S. D. Stranks, et al., Impact of Microstructure on Local Carrier Lifetime in Perovskite Solar Cells. Science, 2015, 348, 683-686.
189. D. B. Khadka, Y. Shirai, M. Yanagida, et al., Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. ACS Appl. Mater. Interfaces, 2018, 10, 22074-22082.
190. G. Niu, H. Yu, J. Li, et al., Controlled Orientation of Perovskite Films through Mixed Cations toward High Performance Perovskite Solar Cells. Nano Energy, 2016, 27, 87-94. 191. M. Yang, Y. Zhou, Y. Zeng, et al., Square-Centimeter Solution-Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15%. Adv. Mater., 2015, 6363-70.
192. W. Nie, H. Tsai, R. Asadpour, et al., High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science, 2015, 347, 522-525.
193. M. He, B. Li, X. Cui, et al., Meniscus-Assisted Solution Printing of Large-Grained Perovskite Films for High-Efficiency Solar Cells. Nat. Commun., 2017, 8, 16045.
194. M. Yang, T. Zhang, P. Schulz, et al., Facile Fabrication of Large-Grain CH3NH3PbI3−xBrx Films for High-Efficiency Solar Cells Via CH3NH3Br-Selective Ostwald Ripening. Nat. Commun., 2016, 7, 12305.
195. G. E. Eperon, V. M. Burlakov, P. Docampo, et al., Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct.Mater., 2014, 24, 151-157.
196. Z. Zhu, Y. Bai, T. Zhang, et al., High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chem. Int. Ed., 2014, 126, 12779-12783.
197. Y. H. Seo, J. S. Yeo, N. Myoung, et al., Blending of N-Type Semiconducting Polymer and PC61BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell. ACS Appl. Mater. Interfaces, 2016, 8, 12822-12829.
198. D. Yang, X. Zhang, K. Wang, et al., Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Lett., 2019, 19, 3313-3320.
199. S. Wheeler, D. Bryant, J. Troughton, et al., Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. J. Phys. Chem. C, 2017, 121, 13496-13506.
200. A. K. K. Kyaw, D. H. Wang, V. Gupta, et al., Intensity Dependence of Current–Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells. ACS nano, 2013, 7, 4569-4577.
201. N. Marinova, W. Tress, R. Humphry-Baker, et al., Light Harvesting and Charge
Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS nano, 2015, 9, 4200-4209.
202. W. Tress, N. Marinova, O. Inganäs, et al., Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: The Role of Radiative and Non‐Radiative Recombination. Adv. Energy Mater., 2015, 5, 1400812.
203. S. R. Cowan, A. Roy, A. J. Heeger. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells. Phys. Rev. B, 2010, 82, 245207.
204. N. Kumar, H. B. Lee, S. Hwang, et al., Large-Area, Green Solvent Spray Deposited Nickel Oxide Films for Scalable Fabrication of Triple-Cation Perovskite Solar Cells. J. Mater. Chem. A, 2020, 8, 3357-3368.
205. W. Xiang, J. Pan, Q. Chen. In Situ Formation of Nio X Interlayer for Efficient n–i–p Inorganic Perovskite Solar Cells. ACS Appl. Energy Mater., 2020, 3, 5977-5983.
206. R. Li, P. Wang, B. Chen, et al., NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Lett., 2019, 5, 79-86.
207. K. Kim, N. Winograd. X-Ray Photoelectron Spectroscopic Studies of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-Bombardment. Surf. Sci., 1974, 43, 625-643.
208. P. Norton, R. Tapping, J. Goodale. A Photoemission Study of the Interaction of Ni (100),(110) and (111) Surfaces with Oxygen. Surf. Sci., 1977, 65, 13-36.
209. E. L. Ratcliff, J. Meyer, K. X. Steirer, et al., Evidence for Near-Surface Niooh Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chem. Mater., 2011, 23, 4988-5000.
210. F. Jiang, W. C. Choy, X. Li, et al., Post‐Treatment‐Free Solution‐Processed Non‐Stoichiometric NiOx Nanoparticles for Efficient Hole‐Transport Layers of Organic Optoelectronic Devices. Adv. Mater., 2015, 27, 2930-2937.
211. X. Yin, P. Chen, M. Que, et al., Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. ACS nano, 2016, 10, 3630-3636.
212. A. Motori, F. Sandrolini, G. Davolio. Electrical Properties of Nickel Hydroxide for Alkaline Cell Systems. J. Power Sources, 1994, 48, 361-370.
213. D. S. Hall, D. J. Lockwood, C. Bock, et al., Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140792.
214. J. C. De Jesus, I. González, A. Quevedo, et al., Thermal Decomposition of Nickel Acetate Tetrahydrate: An Integrated Study by TGA, QMS and XPS Techniques. J. Mol. Catal. A: Chem., 2005, 228, 283-291.
215. R. Islam, G. Chen, P. Ramesh, et al., Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to Uv/Ozone Treatment. ACS Appl. Mater. Interfaces, 2017, 9, 17201-17207.
216. F. Ullrich, S. Hillebrandt, S. Hietzschold, et al., Correlation between Chemical and Electronic Properties of Solution-Processed Nickel Oxide. ACS Appl. Energy Mater., 2018, 1, 3113-3122.
217. K. X. Steirer, J. P. Chesin, N. E. Widjonarko, et al., Solution Deposited NiO Thin-Films as Hole Transport Layers in Organic Photovoltaics. Org. Electron., 2010, 11, 1414-1418. 218. M. B. Islam, M. Yanagida, Y. Shirai, et al., NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2017, 2, 2291-2299.
219. P.-H. Lee, B.-T. Li, C.-F. Lee, et al., High-Efficiency Perovskite Solar Cell Using Cobalt Doped Nickel Oxide Hole Transport Layer Fabricated by NIR Process. Sol. Energy Mater. Sol. Cells, 2020, 208, 110352.
220. J. Duan, Y. Zhao, X. Yang, et al., Lanthanide Ions Doped CsPbBr3 Halides for Htm‐Free 10.14%‐Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open‐Circuit Voltage of 1.59 V. Adv. Energy Mater., 2018, 8, 1802346.
221. X. Zhang, Y. Zhou, Y. Li, et al., Efficient and Carbon-Based Hole Transport Layer-Free CsPbI2Br Planar Perovskite Solar Cells Using PMMA Modification. J. Mater. Chem. C, 2019, 7, 3852-3861.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明