博碩士論文 107384001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.22.171.136
姓名 林珈琪(Chia-Chi Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶液製備有機半導體及其混摻材料於電晶體及光電晶體元件應用
(Solution Processable Organic Semiconductors and Their Blends for Transistor and Phototransistor Application)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機半導體材料基於可溶液製程、低溫製程、成本低廉以及分子可設計等優點,這 些優點利於大面積塗佈並應用於可撓式顯示器、感應器、電晶體、太陽能電池等軟性電 子元件,因此本論文分為三個部分深入探討有機材料之分子設計以及其混摻系統應用於 電子元件。
第一部分以含硫族側鏈之聯噻吩 (XBT) 為核心設計高效能 P 型有機小分子材料應 用於場效應電晶體,探討引入不同側鏈長度 (R = C14,C10,C6)、調整末端基並環數目 (並三噻吩 (dithienothiophene; DTT),並二噻吩 (thienothiophene; TT),噻吩 (thiophene; T))以及引入側鏈基團 (–XR,X = Se,S,O) 之影響。利用側鏈長度的不同改善薄膜的 連續性及增加溶解度,增加末端基的並環數可以改善共軛長度,並探討主鏈噻吩環之硫 原子與側鏈氧、硫以及硒之分子內作用力所形成的分子內鎖 (intramolecularlock)。從單 晶結果可得,Se (側鏈)∙∙∙S (噻吩) 距離小於原本凡得瓦半徑總和,具有最強非共價鍵作 用力,聯噻吩藉由側鏈之影響形成極高的分子共平面性,當利用剪切力塗佈法製作有機 場效應電晶體元件時,DDTT-SeBT-C14 (1) 最高電洞遷移率可高達 4.01 cm^2 V^–1 s^–1,此結 果是歷年期刊發表以噻吩為核心的有機小分子材料之最高電洞遷移率,並透過晶體學、 薄膜形態以及微結構進行更深入的探討。
第二部份以含硫醚側鏈之並三噻吩 (DSDTT) 為核心,末端基的兩端各加入並三噻 吩,合成出新 DDTT-DSDTT 有機小分子半導體材料,藉由硫醚側鏈的硫原子與主鏈噻 吩環內硫原子間之分子內作用力形成的分子內鎖,因此具有較佳的共平面結構,由於導 入硫醚側鏈,使其具有良好的溶解度且易溶於常用有機溶劑。在溶液製程條件調控上, 利用對於環境較友善的苯甲醚溶劑並透過剪切力塗佈法製作有機半導體薄膜,將其應用 於有機場效應電晶體元件上,其最高電洞遷移率可達 3.19 cm^2 V^–1 s^–1。此外,利用有機小分子DDTT-DSDTT與絕緣高分子聚α-甲基苯乙烯 (PαMS) 混摻後亦可維持高電性效能,經過溶液製程後有明顯的垂直相分離且仍維持有機小分子之高結晶度。在 DDTT- DSDTT 重量百分比為 50%時,PαMS 垂直相分離於下層有利於上層 DDTT-DSDTT 形成 更好的分子排列,其最高電洞遷移率仍可維持在 2.44 cm^2 V^–1 s^–1,在電偏壓應力測試時, 保有較小的閾值電壓位移 (threshold voltage shift) 且於大氣環境下有較佳的穩定性。
第三部分利用溶液製程法將 n 型商用共軛高分子 N2200 與具有高遷移率之醌型噻 吩並異靛藍 TIIQ,運用混摻技術製作高光響應之光電晶體。利用不同混摻比例調節光電 晶體之性能,在紅光 (680nm) 照光下其 88%混摻光電晶體元件之最高光響應 (photoresponse) 可達到 4065 AW^–1 且特定光偵測性 (photodetectivity) 為 1.4 × 10^13 Jones,在混摻半導體層中,仍保有極高遷移率 1.59 cm^2 V^–1 s^–1,由於加入有機小分子於 混摻系統中有助於紅光之吸收,因此可有效的光生載子拆解以及傳遞,因此,此有機半 導體混摻之技術成功開發高光響應之有機光電晶體。
摘要(英) Organic semiconductors have the advantages of low temperature process, low cost, good ductility, and molecular design, which are favorable for large area coating and can be applied on flexible electronic application such as flexible displays, sensors, transistors, and solar cells. Therefore, this dissertation is focusing on the study of the molecular design and blending system of organic materials for electronic application and it will be divided into three parts.
First, the high-performance P-type organic small molecule semiconductors with a core of heteroalkyl-substitution dithiophene (XBT) have been designed for organic field effect transistors (OFETs). The core of SeBT has investigated the effects of introducing different side chain lengths (R = C14, C10, C6) and end-functionalization with two dithienothiophene (DTT), thienothiophene (TT), and thiophene (T) units. Moreover, the core XBT is also explored the impact of the chalcogen heteroatom (–XR, X = Se, S, O), which is developed selenotetradecyl SeBTs, thiotetradecyl SBTs, and tetradecyloxy OBT. Side chain lengths are able to improve the film continuity and tuning the solubility. Increasing the number of aromatic rings can improve the conjugation length. The impacts of the chalcogen heteroatom obtain the noncovalent conformational lock with the sulfur in the aromatic ring. From the single crystal data, the SeBT small molecule obtain a torsion angle of ~ 0° as well as coplanar backbone. When organic field effect transistors are fabricated by a solution sheared process, the highest hole mobility of DDTT-SeBT-C14 (1) can reach 4.01 cm^2 V^–1 s^–1 which is the best hole mobility value reported to date for fused-thiophene-based small molecules. In addition, these results are also investigated by crystallography, thin film morphology, and microstructure analysis.
In second research, the core of dithiooctyl dithienothiophene with end functionalized fused dithienothiophene (DTT) units, named DDTT-DSDTT, was synthesized and characterized for OFETs. The intramolecular lock with S (alkyl)∙∙∙S (thiophene) interaction bring out a better coplanar structure, resulting in better solubility in the anisole as a green solvent. Therefore, utilizing a solution-sheared processing method to fabricate the active layer for OFETs. The DDTT-DSDTT compound exhibits highest mobility of 3.19 cm^2 V^–1 s^–1. Moreover, the small molecule DDTT-DSDTT and insulting polymer poly(α-methylstyrene) (PαMS) blend films could maintain high performance causing by vertical phase separation with PαMS layer between DDTT-DSDTT layer and dielectric layer. The 50 wt% DDTT-DSDTT blend thin film show high mobility of 2.44 cm^2 V^–1 s^–1 which exhibit high crystallinity and better molecular packing. The blend devices show good air stability and also a smaller threshold voltage shift under gate bias stress.
In third research, solution processable organic phototransistors are reported by the heterojunction composition with different weight ratio of N2200 polymer/ quinoidal thienoisoindigo (TII)-containing small molecule as the semiconductor layer under the various incident red light intensities (680 nm). The blend system of phototransistor shows high photoresponse of 4064 AW–1, detectivity of 1.4 × 10^13 Jones, and high mobility of 1.59 cm^2 V^–1 s^–1. The reason that introduction of TIIQ small molecule is able to improve the absorption of red light, photogenerated carriers, and fast charge carriers. These results show the blending strategy of semiconductor offer successfully developing for organic phototransistor.
關鍵字(中) ★ 溶液製程
★ 電晶體
★ 光電晶體
★ 剪切力塗佈
關鍵字(英) ★ Solution processable
★ transistor
★ phototransistor
★ solution shearing
論文目次 目錄
摘要 ......................................................................................................................... i Abstract .................................................................................................................iii 誌謝 ........................................................................................................................ v 目錄 ....................................................................................................................... vi 圖目錄 .................................................................................................................... ix 表目錄 ................................................................................................................ xiv 第一章 緒論 ............................................................................................................ 1
1-1 前言 .................................................................................................................. 1
1-2 有機場效應電晶體介紹 ....................................................................................... 2
1-3 有機場效應光電晶體介紹 ................................................................................... 6
第二章 有機小分子及其混摻半導體材料 .................................................................... 8
2-1 有機半導體材料於電晶體之簡述 ......................................................................... 8
2-2 常用有機小分子材料應用於電晶體 ..................................................................... 9
2-3 有機半導體載子移動影響之因素 ....................................................................... 13
2-4 有機半導體混摻系統 ....................................................................................... 22
第三章 有機半導體薄膜製程 ................................................................................... 28
3-1 薄膜塗佈製程 .................................................................................................. 28
3-2 溶液製程法之溶劑選擇 .................................................................................... 33
第四章 研究動機 .................................................................................................... 35 第五章 實驗方法 .................................................................................................... 37
5-1 實驗藥品 ......................................................................................................... 37
5-2 實驗設備與裝置 ............................................................................................... 41
5-3 實驗步驟 ........................................................................................................ 42 第六章 以溶液製程製備核心為聯噻吩 (XBT) P 型有機小分子半導體材料於有機場 效應電晶體 ...................................................................................................................... 47
6-1 有機半導體材料光學與電化學之性質分析 .......................................................... 47
6-2 電化學性質與電子軌域分析 .............................................................................. 51
6-3 單晶結構分析 ................................................................................................. 53
6-4 有機半導體層之薄膜形貌分析 .......................................................................... 55
6-5 有機場效應電晶體電性分析 ............................................................................. 57
6-6 薄膜之微結構分析 ........................................................................................... 60
6-7 結論 ............................................................................................................... 66
第七章 剪切力塗佈法製備含有硫醚側鏈之並三噻吩 (DSDTT) 小分子與絕緣高分子 混摻之高性能有機場效應電晶體 .................................................................................... 67
7-1 有機半導體材料之性質分析 .............................................................................. 68
7-2 DDTT-DSDTT 之單晶結構分析......................................................................... 72
7-3 混摻薄膜形貌分析 ........................................................................................... 73
7-4 薄膜之垂直相分離分析 .................................................................................... 74
7-5 薄膜之微結構分析 ........................................................................................... 76
7-6 有機場效應電晶體電性分析 ............................................................................. 78
7-7 元件穩定性 ..................................................................................................... 82
7-8 結論 ............................................................................................................... 84
第八章 混摻 N 型共軛高分子與醌型小分子半導體材料應用於紅光光電晶體 .............. 85
8-1 有機半導體材料性質分析 ................................................................................ 85
8-2 薄膜形貌 ....................................................................................................... 88
8-3 有機半導體材料微結構分析 ............................................................................ 90
8-4 有機場效應電晶體電性分析 ............................................................................. 91
8-5 結論 ............................................................................................................... 97
第九章 參考文獻 .................................................................................................... 98 第十章 個人自傳簡歷 ............................................................................................ 119
參考文獻 [1] W. Shockley, M. Sparks, G. K. Teal, “p−n Junction Transistors” Phys. Rev., 1951, 83, 151.
[2] P. Le Comber, W. Spear, A. Ghaith, “Amorphous-silicon field-effect device and possible
application” Electron. Lett., 1979, 15, 179.
[3] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field‐effect
transistor with a polythiophene thin film.” Appl. Phys. Lett., 1986, 49, 1210.
[4] J. Zhang, B. Geng, S. Duan, C. Huang, Y. Xi, Q. Mu, H. Chen, X. Ren, W. Hu, “High- resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes” J. Mater. Chem. C, 2020, 8, 15219.
[5] G. Dijk, A. L. Rutz, G. G. Malliaras, “Stability of PEDOT:PSS‐Coated Gold Electrodes in Cell Culture Conditions” Adv. Mater. Technol., 2019, 5, 1900662.
[6] X. Guo, A. Facchetti, T. J. Marks, “Imide- and amide-functionalized polymer semiconductors” Chem. Rev., 2014, 114, 8943.
[7] J. Zaumseil, H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors” Chem. Rev., 2007, 107, 1296.
[8] Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, O. D. Jurchescu, “Tutorial: Organic field-effect transistors: Materials, structure and operation” J. Appl. Phys., 2018, 124, 071101.
[9] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, “Donor–acceptor‐ conjugated polymer for high‐performance organic field‐effect transistors: a progress report” Adv. Funct. Mater., 2020, 30, 1904545.
[10] C. Wang, X. Zhang, W. Hu, “Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications” Chem. Soc. Rev., 2020, 49, 653.
[11] Y.-Y. Lin, D. Gundlach, S. Nelson, T. Jackson, “Stacked pentacene layer organic thin-film
transistors with improved characteristics” IEEE Electron Device Lett., 1997, 18, 606.
[12] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. Gershenson, “Intrinsic charge transport on the surface of organic semiconductors” Phys. Rev. Lett., 2004, 93, 086602.
[13] D. De Leeuw, M. Simenon, A. Brown, R. Einerhand, “Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices” Synth. Met., 1997, 87, 53.
[14] H. Yoshida, N. Sato, “Crystallographic and electronic structures of three different polymorphs of pentacene” Phys. Rev. B, 2008, 77, 235205.
[15] M. Watanabe, K. Y. Chen, Y. J. Chang, T. J. Chow, “Acenes Generated from Precursors and Their Semiconducting Properties” Acc. Chem. Res., 2013, 46, 1606.
[16] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, “High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors” Appl. Phys. Lett., 2007, 91, 063514.
[17] S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, J. E. Anthony, “Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors” J. Am. Chem. Soc., 2008, 130, 2706.
[18] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, “Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors” J. Am. Chem. Soc., 2007, 129, 15732.
[19] Y. Kimura, T. Nagase, T. Kobayashi, A. Hamaguchi, Y. Ikeda, T. Shiro, K. Takimiya, H. Naito, “Soluble Organic Semiconductor Precursor with Specific Phase Separation for High‐ Performance Printed Organic Transistors” Adv. Mater., 2015, 27, 727.
[20] I. Osaka, K. Takimiya, R. D. McCullough, “Benzobisthiazole-based semiconducting copolymers showing excellent environmental stability in high-humidity air” Adv Mater, 2010, 22, 4993.
[21] H. Jia, T. Lei, “Emerging research directions for n-type conjugated polymers” J. Mater. Chem. C, 2019, 7, 12809.
[22] Q. Meng, W. Hu, “Recent progress of n-type organic semiconducting small molecules for organic field-effect transistors” Phys. Chem. Chem. Phys., 2012, 14, 14152.
[23] X. Gao, C.-a. Di, Y. Hu, X. Yang, H. Fan, F. Zhang, Y. Liu, H. Li, D. Zhu, “Core-expanded naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malonitrile groups for high- performance, ambient-stable, solution-processed n-channel organic thin film transistors” J. Am. Chem. Soc., 2010, 132, 3697.
[24] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, “Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors” J. Am. Chem. Soc., 2012, 134, 4084.
[25] Y.-I. Park, J. S. Lee, B. J. Kim, B. Kim, J. Lee, D. H. Kim, S.-Y. Oh, J. H. Cho, J.-W. Park, “High-performance stable n-type indenofluorenedione field-effect transistors” Chem. Mater., 2011, 23, 4038.
[26] S. Inoue, H. Minemawari, J. y. Tsutsumi, M. Chikamatsu, T. Yamada, S. Horiuchi, M. Tanaka, R. Kumai, M. Yoneya, T. Hasegawa, “Effects of substituted alkyl chain length on solution-processable layered organic semiconductor crystals” Chem. Mater., 2015, 27, 3809.
[27] K. P. Goetz, K. Sekine, F. Paulus, Y. Zhong, D. Roth, D. Becker-Koch, Y. J. Hofstetter, E. Michel, L. Reichert, F. Rominger, “The effect of side-chain length on the microstructure and processing window of zone-cast naphthalene-based bispentalenes” J. Mater. Chem. C, 2019, 7, 13493.
[28] T. Lei, J. H. Dou, J. Pei, “Influence of alkyl chain branching positions on the hole mobilities of polymer thin‐film transistors” Adv. Mater., 2012, 24, 6457.
[29] C. Li, H. I. Un, J. Peng, M. Cai, X. Wang, J. Wang, Z. Lan, J. Pei, X. Wan, “Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers” Chem. Eur. J., 2018, 24, 9807.
[30] H. Huang, L. Yang, A. Facchetti, T. J. Marks, “Organic and polymeric semiconductors enhanced by noncovalent conformational locks” Chem. Rev., 2017, 117, 10291.
[31] H. B. Akkerman, S. C. Mannsfeld, A. P. Kaushik, E. Verploegen, L. Burnier, A. P. Zoombelt, J. D. Saathoff, S. Hong, S. Atahan-Evrenk, X. Liu, “Effects of odd–even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure” J. Am. Chem. Soc., 2013, 135, 11006.
[32] C. R. Bridges, M. J. Ford, E. M. Thomas, C. Gomez, G. C. Bazan, R. A. Segalman, “Effects of side chain branch point on self assembly, structure, and electronic properties of high mobility semiconducting polymers” Macromolecules, 2018, 51, 8597.
[33] X. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J. W. Hennek, R. P. Ortiz, T. J. Marks, A. Facchetti, “Dialkoxybithiazole: a new building block for head-to-head polymer semiconductors” J. Am. Chem. Soc., 2013, 135, 1986.
[34] X. Guo, Q. Liao, E. F. Manley, Z. Wu, Y. Wang, W. Wang, T. Yang, Y.-E. Shin, X. Cheng, Y. Liang, “Materials Design via Optimized Intramolecular Noncovalent Interactions for High- Performance Organic Semiconductors” Chem. Mater., 2016, 28, 2449.
[35] J. Huang, H. Guo, M. A. Uddin, J. Yu, H. Y. Woo, X. Guo, “Fluorinated Head‐to‐Head Dialkoxybithiophene: A New Electron‐Donating Building Block for High‐Performance Polymer Semiconductors” Adv. Electron. Mater., 2018, 4, 1700519.
[36] H. Wang, J. Huang, M. A. Uddin, B. Liu, P. Chen, S. Shi, Y. Tang, G. Xing, S. Zhang, H. Y. Woo, “Cyano-substituted head-to-head polythiophenes: Enabling high-performance n-type organic thin-film transistors” ACS Appl. Mater. Interfaces, 2019, 11, 10089.
[37] Z. Xue, S. Chen, N. Gao, Y. Xue, B. Lu, O. A. Watson, L. Zang, J. Xu, “Structural design and applications of stereoregular fused thiophenes and their oligomers and polymers” Polym. Rev., 2020, 60, 318.
[38] Z.-F. Yao, J.-Y. Wang, J. Pei, “Control of π–π stacking via crystal engineering in organic conjugated small molecule crystals” Cryst. Growth Des., 2018, 18, 7.
[39] M. Pandey, N. Kumari, S. Nagamatsu, S. S. Pandey, “Recent advances in the orientation of conjugated polymers for organic field-effect transistors” J. Mater. Chem. C, 2019, 7, 13323.
[40] R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, “A general relationship between disorder, aggregation and charge transport in conjugated polymers” Nat. Mater., 2013, 12, 1038.
[41] M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J.-P. Simonato, “Progress in understanding structure and transport properties of PEDOT-based materials: A critical review” Prog. Mater. Sci., 2020, 108, 100616.
[42] F. Wang, K. Nakano, H. Yoshida, K. Hashimoto, H. Segawa, C.-S. Hsu, K. Tajima, “Effects of end-on oriented polymer chains at the donor/acceptor interface in organic solar cells” J. Mater. Chem. A, 2018, 6, 22889.
[43] J. E. Anthony, “The larger acenes: versatile organic semiconductors” Angew. Chem., Int. Ed., 2008, 47, 452.
[44] R. Li, H. Dong, X. Zhan, Y. He, H. Li, W. Hu, “Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene” J. Mater. Chem., 2010, 20, 6014.
[45] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, “Functionalized pentacene: Improved electronic properties from control of solid-state order” J. Am. Chem. Soc., 2001, 123, 9482.
[46] J.-H. Dou, Y.-Q. Zheng, Z.-F. Yao, Z.-A. Yu, T. Lei, X. Shen, X.-Y. Luo, J. Sun, S.-D. Zhang, Y.-F. Ding, “Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution” J. Am. Chem. Soc., 2015, 137, 15947.
[47] N. Kumari, M. Pandey, S. Nagamatsu, M. Nakamura, S. S. Pandey, “Investigation and control of charge transport anisotropy in highly oriented friction-transferred polythiophene thin films” ACS Appl. Mater. Interfaces, 2020, 12, 11876.
[48] S. B. Lee, B. Kang, D. Kim, C. Park, S. Kim, M. Lee, W. B. Lee, K. Cho, “Motion- programmed bar-coating method with controlled gap for high-speed scalable preparation of highly crystalline organic semiconductor thin films” ACS Appl. Mater. Interfaces, 2019, 11, 47153.
[49] I. Osaka, K. Takimiya, “Backbone orientation in semiconducting polymers” Polymer, 2015, 59, A1.
[50] H. Sirringhaus, P. Brown, R. Friend, M. M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R. A. Janssen, E. Meijer, P. Herwig, “Two-dimensional charge transport in self- organized, high-mobility conjugated polymers” Nature, 1999, 401, 685.
[51] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, “High mobility solution processed 6, 13-bis (triisopropyl-silylethynyl) pentacene organic thin film transistors” Appl. Phys. Lett., 2007, 91, 063514.
[52] C. Teixeira da Rocha, K. Haase, Y. Zheng, M. Löffler, M. Hambsch, S. C. Mannsfeld, “Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High‐ Mobility Organic Transistors” Adv. Electron. Mater., 2018, 4, 1800141.
[53] I. Temiño, F. G. Del Pozo, M. Ajayakumar, S. Galindo, J. Puigdollers, M. Mas‐Torrent, “A rapid, low‐cost, and scalable technique for printing state‐of‐the‐art organic field‐effect transistors” Adv. Mater. Technol., 2016, 1, 1600090.
[54] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, “Highly soluble [1] benzothieno [3, 2-b] benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors” J. Am. Chem. Soc., 2007, 129, 15732.
[55] K. Haase, C. Teixeira da Rocha, C. Hauenstein, Y. Zheng, M. Hambsch, S. C. Mannsfeld, “High‐mobility, solution‐processed organic field‐effect transistors from C8‐BTBT: polystyrene blends” Adv. Electron. Mater., 2018, 4, 1800076.
[56] W. Tang, L. Feng, P. Yu, J. Zhao, X. Guo, “Highly efficient all‐solution‐processed low‐ voltage organic transistor with a micrometer‐thick low‐k polymer gate dielectric layer” Adv. Electron. Mater., 2016, 2, 1500454.
[57] H. J. Jung, Y. J. Shin, Y. J. Park, S. C. Yoon, D. H. Choi, C. Park, “Ultrathin, Organic, Semiconductor/Polymer Blends by Scanning Corona‐Discharge Coating for High‐Performance Organic Thin‐Film Transistors” Adv. Funct. Mater., 2010, 20, 2903.
[58] S. Obata, Y. Miyazawa, J. Yamanaka, N. Onojima, “Environmentally-friendly fabrication of organic field-effect transistors based on small molecule/polymer blend prepared by electrostatic spray deposition” Jpn. J. Appl. Phys., 2019, 58, SBBG02.
[59] Y. Hayashi, H. Kanamori, I. Yamada, A. Takasu, S. Takagi, K. Kaneko, “ Facile fabrication method for p∕n-type and ambipolar transport polyphenylenevinylene-based thin- film field-effect transistors by blending C60 fullerene” Appl. Phys. Lett., 2005, 86, 052104.
[60] R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. McCulloch, J. Veres, D. D. Bradley, T. D. Anthopoulos, “High‐performance polymer‐small molecule blend organic transistors” Adv. Mater., 2009, 21, 1166.
[61] J. Panidi, A. F. Paterson, D. Khim, Z. Fei, Y. Han, L. Tsetseris, G. Vourlias, P. A. Patsalas, M. Heeney, T. D. Anthopoulos, “Remarkable enhancement of the hole mobility in several organic small‐molecules, polymers, and small‐molecule: polymer blend transistors by simple admixing of the Lewis acid P‐dopant B(C6F5)3” Adv. Sci., 2018, 5, 1700290.
[62] A. F. Paterson, Y. H. Lin, A. D. Mottram, Z. Fei, M. R. Niazi, A. R. Kirmani, A. Amassian, O. Solomeshch, N. Tessler, M. Heeney, “The Impact of Molecular p‐Doping on Charge Transport in High‐Mobility Small‐Molecule/Polymer Blend Organic Transistors” Adv. Electron. Mater., 2018, 4, 1700464.
[63] A. F. Paterson, L. Tsetseris, R. P. Li, A. Basu, H. Faber, A. H. Emwas, J. Panidi, Z. P. Fei, M. R. Niazi, D. H. Anjum, M. Heeney, T. D. Anthopoulos, “Addition of the Lewis Acid Zn(C6F5)(2) Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm(2) V(-1) s(-1)” Adv. Mater., 2019, 31, 1900871.
[64] S. Nam, H. Kim, D. D. C. Bradley, Y. Kim, “All-polymer phototransistors with bulk heterojunction sensing layers of thiophene-based electron-donating and thienopyrroledione- based electron-accepting polymers” Org. Electron., 2016, 39, 199.
[65] H. Han, S. Nam, J. Seo, C. Lee, H. Kim, D. D. Bradley, C.-S. Ha, Y. Kim, “Broadband all- polymer phototransistors with nanostructured bulk heterojunction layers of NIR-sensing n-type and visible light-sensing p-type polymers” Sci. Rep., 2015, 5, 16457.
[66] S. Nam, J. Seo, H. Han, H. Kim, D. D. Bradley, Y. Kim, “Efficient deep red light-sensing all-polymer phototransistors with p-type/n-type conjugated polymer bulk heterojunction layers” ACS Appl. Mater. Interfaces, 2017, 9, 14983.
[67] Y. Ni, J. Wu, “Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging” Org. Biomol. Chem., 2014, 12, 3774.
[68] N. Marjanović, T. B. Singh, G. Dennler, S. Günes, H. Neugebauer, N. S. Sariciftci, R. Schwödiauer, S. Bauer, “Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends” Org. Electron., 2006, 7, 188.
[69] S. Nam, H. Hwang, H. Kim, Y. Kim, “Effect of Gate Voltage in Organic Phototransistors Based on Polythiophene/Fullerene Bulk Heterojunction Nanolayers” Mol. Cryst. Liq. Cryst., 2010, 519, 260.
[70] H. Hwang, H. Kim, S. Nam, D. D. Bradley, C. S. Ha, Y. Kim, “Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers” Nanoscale, 2011, 3, 2275.
[71] H. Xu, J. Li, B. H. K. Leung, C. C. Y. Poon, B. S. Ong, Y. Zhanga, N. Zhao, “A high- sensitivity near-infrared phototransistor based on an organic bulk heterojunction” Nanoscale, 2013, 5, 11850.
[72] H. Han, S. Nam, J. Seo, C. Lee, H. Kim, D. D. Bradley, C. S. Ha, Y. Kim, “Broadband All- Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n- Type and Visible Light-Sensing p-Type Polymers” Sci. Rep., 2015, 5, 16457.
[73] S. Nam, H. Han, J. Seo, M. Song, H. Kim, T. D. Anthopoulos, I. McCulloch, D. D. C. Bradley, Y. Kim, “Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers” Adv. Electron. Mater., 2016, 2, 1600264.
[74] H. Hyemi, N. Sungho, S. Jooyeok, J. Jaehoon, K. Hwajeong, D. D. C. Bradley, K. Youngkyoo, “Organic Phototransistors With All-Polymer Bulk Heterojunction Layers of p- Type and n-Type Sulfur-Containing Conjugated Polymers” IEEE J. Sel. Top. Quantum Electron., 2016, 22, 147.
[75] S. Nam, J. Seo, H. Han, H. Kim, D. D. C. Bradley, Y. Kim, “Efficient Deep Red Light- Sensing All-Polymer Phototransistors with p-type/n-type Conjugated Polymer Bulk Heterojunction Layers” ACS Appl. Mater. Interfaces, 2017, 9, 14983.
[76] H. Han, C. Lee, H. Kim, J. Seo, M. Song, S. Nam, Y. Kim, “Strong Composition Effects in All-Polymer Phototransistors with Bulk Heterojunction Layers of p-type and n-type Conjugated Polymers” ACS Appl. Mater. Interfaces, 2017, 9, 628.
[77] H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo, N. Zhao, “Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring” Adv. Mater., 2017, 29, 1700975.
[78] C. Lee, J. Kim, Y. Moon, D. Kim, D.-I. Song, H. Kim, Y. Kim, “A Soluble Diketopyrrolopyrrole Derivative and Its Applications for Organic Phototransistors” Asian J. Org. Chem., 2018, 7, 2330.
[79] C. Lee, J. Kim, Y. Moon, D. Kim, H. Han, H. Kim, Y. Kim, “Organic phototransistors with bulk heterojunction sensing-channel layers containing soluble difluorinated diketopyrrolopyrrole acceptor” Dyes Pigm., 2018, 156, 219.
[80] L. Ma, B. Chen, Y. Guo, Y. Liang, D. Zeng, X. Zhan, Y. Liu, X. Chen, “NIR polymers and phototransistors” J. Mater. Chem. C, 2018, 6, 13049.
[81] R. Shidachi, N. Matsuhisa, P. Zalar, P. C. Y. Chow, H. Jinno, T. Yokota, T. Someya, “Photocurrent Amplification in Bulk Heterojunction Organic Phototransistors with Different Donor-Acceptor Ratio” Phys. Status Solidi RRL, 2018, 12, 1700400.
[82] T. Han, M. Shou, L. Liu, Z. Xie, L. Ying, C. Jiang, H. Wang, M. Yao, H. Deng, G. Jin, J. Chen, Y. Ma, “Ultrahigh photosensitive organic phototransistors by photoelectric dual control” J. Mater. Chem. C, 2019, 7, 4725.
[83] T. Han, L. Sun, Q. Feng, K. Cao, S. Ding, G. Jin, C. Jiang, X. Huang, “The mechanism of photogenerated minority carrier movement in organic phototransistors” J. Mater. Chem. C, 2020, 8, 12284.
[84] C. Trujillo Herrera, M. J. Hong, J. G. Labram, “Role of the Blend Ratio in Polymer:Fullerene Phototransistors” ACS Appl. Electron. Mater., 2020, 2, 2257.
[85] M. Shou, Q. Zhang, H. Li, S. Xiong, B. Hu, J. Zhou, N. Zheng, Z. Xie, L. Ying, L. Liu, “Ultrahigh Detectivity in Spatially Separated Hole/Electron Dual Traps Based Near‐Infrared Organic Phototransistor” Adv. Opt. Mater., 2021, 9, 2002031.
[86] X. Jiang, J. Lu, D. Xue, Y. Wei, Y. Zhang, J. Zhang, Z. Wang, L. Huang, L. Chi, “High performance near-infrared phototransistors via enhanced electron trapping effect” Chem. Commun., 2021, 57, 12123.
[87] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, “Morphology control strategies for solution-
processed organic semiconductor thin films” Energy Environ. Sci., 2014, 7, 2145.
[88] H. Eral, D. t Mannetje, J. M. Oh, “Contact angle hysteresis: a review of fundamentals and
applications” Colloid Polym. Sci., 2013, 291, 247.
[89] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Capillary
flow as the cause of ring stains from dried liquid drops” Nature, 1997, 389, 827.
[90] H. Abdolmaleki, P. Kidmose, S. Agarwala, “Droplet‐based techniques for printing of
functional inks for flexible physical sensors” Adv. Mater., 2021, 33, 2006792.
[91] C. Jiang, H. Ma, D. G. Hasko, X. Guo, A. Nathan, “A Lewis‐Acid Monopolar Gate Dielectric for All‐Inkjet‐Printed Highly Bias‐Stress Stable Organic Transistors” Adv. Electron. Mater., 2017, 3, 1700029.
[92] T.-Y. Chu, Z. Zhang, A. Dadvand, C. Py, S. Lang, Y. Tao, “Direct writing of inkjet-printed short channel organic thin film transistors” Org. Electron., 2017, 51, 485.
[93] W. Tang, Y. Huang, L. Han, R. Liu, Y. Su, X. Guo, F. Yan, “Recent progress in printable organic field effect transistors” J. Mater. Chem. C, 2019, 7, 790.
[94] D. Jang, D. Kim, J. Moon, “Influence of fluid physical properties on ink-jet printability” Langmuir, 2009, 25, 2629.
[95] A. Glushkova, P. Andričević, R. Smajda, B. Náfrádi, M. Kollár, V. Djokić, A. Arakcheeva, L. Forró, R. Pugin, E. Horváth, “Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector” ACS Nano, 2021, 15, 4077.
[96] E. B. Secor, “Principles of aerosol jet printing” Flexible Printed Electron., 2018, 3, 035002.
[97] Z. Li, Y. J. Jeong, J. Hong, H.-j. Kwon, H. Ye, R. Wang, H. H. Choi, H. Kong, H. Hwang, S. H. Kim, “Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates” ACS Appl. Mater. Interfaces, 2022, 14, 7073.
[98] N. Mkhize, H. Bhaskaran, “Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations” Small Sci., 2021, 2, 2100073.
[99] L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang, K. Cho, “Versatile Use of Vertical- Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors” Adv. Mater., 2008, 20, 1141.
[100] F. Zhang, C.-a. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, D. Zhu, “Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin-Coating” Adv. Mater., 2013, 25, 1401.
[101] C. Fan, A. P. Zoombelt, H. Jiang, W. Fu, J. Wu, W. Yuan, Y. Wang, H. Li, H. Chen, Z. Bao, “Solution-Grown Organic Single-Crystalline p-n Junctions with Ambipolar Charge Transport” Adv. Mater., 2013, 25, 5762.
[102] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, “Solution- Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient-Stable n-Channel Organic Field Effect Transistors” Adv. Funct. Mater., 2017, 27, 1606761.
[103] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, “Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method” Nat. Commun., 2014, 5, 3005.
[104] Z. Lu, C. Wang, W. Deng, M. T. Achille, J. Jie, X. Zhang, “Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors” J. Mater. Chem. C, 2020, 8, 9133.
[105] Z. Zhang, B. Peng, X. Ji, K. Pei, P. K. L. Chan, “Marangoni‐effect‐assisted bar‐coating method for high‐quality organic crystals with compressive and tensile strains” Adv. Funct. Mater., 2017, 27, 1703443.
[106] M. Chen, B. Peng, S. Huang, P. K. L. Chan, “Understanding the Meniscus‐Guided Coating Parameters in Organic Field‐Effect‐Transistor Fabrications” Adv. Funct. Mater., 2020, 30, 1905963.
[107] J. Lee, S. A. Park, S. U. Ryu, D. Chung, T. Park, S. Y. Son, “Green-solvent-processable organic semiconductors and future directions for advanced organic electronics” J. Mater. Chem. A, 2020, 8, 21455.
[108] M. Shao, Y. He, K. Hong, C. M. Rouleau, D. B. Geohegan, K. Xiao, “A water-soluble polythiophene for organic field-effect transistors” Polym. Chem., 2013, 4, 5270.
[109] T. L. Nguyen, C. Lee, H. Kim, Y. Kim, W. Lee, J. H. Oh, B. J. Kim, H. Y. Woo, “Ethanol- processable, highly crystalline conjugated polymers for eco-friendly fabrication of organic transistors and solar cells” Macromolecules, 2017, 50, 4415.
[110] S. Sun, T. Salim, L. H. Wong, Y. L. Foo, F. Boey, Y. M. Lam, “A new insight into controlling poly (3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications” J. Mater. Chem., 2011, 21, 377.
[111] J. Lee, J. W. Kim, S. A. Park, S. Y. Son, K. Choi, W. Lee, M. Kim, J. Y. Kim, T. Park, “Study of Burn‐In Loss in Green Solvent‐Processed Ternary Blended Organic Photovoltaics Derived from UV‐Crosslinkable Semiconducting Polymers and Nonfullerene Acceptors” Adv. Energy Mater., 2019, 9, 1901829.
[112] J. Lee, T. H. Lee, M. M. Byranvand, K. Choi, H. I. Kim, S. A. Park, J. Y. Kim, T. Park, “Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: molecular weights, photovoltaic performance, and thermal stability” J. Mater. Chem. A, 2018, 6, 5538.
[113] B. Fan, L. Ying, Z. Wang, B. He, X.-F. Jiang, F. Huang, Y. Cao, “Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all- polymer solar cells with a power conversion efficiency over 9%” Energy Environ. Sci., 2017, 10, 1243.
[114] C.-D. Park, T. A. Fleetham, J. Li, B. D. Vogt, “High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing” Org. Electron., 2011, 12, 1465.
[115] S. M. Lee, H. R. Lee, A.-R. Han, J. Lee, J. H. Oh, C. Yang, “High-performance furan- containing conjugated polymer for environmentally benign solution processing” ACS Appl. Mater. Interfaces, 2017, 9, 15652.
[116] B. Lim, H. Sun, J. Lee, Y.-Y. Noh, “High performance solution processed organic field effect transistors with novel diketopyrrolopyrrole-containing small molecules” Sci. Rep., 2017, 7, 164.
[117] Y. Wang, H. Tatsumi, R. Otsuka, T. Mori, T. Michinobu, “Highly-stable, green-solvent- processable organic thin-film transistors: Angular-vs. linear-shaped carbazoledioxazine derivatives” J. Mater. Chem. C, 2018, 6, 5865.
[118] A. V. Novikov, L. I. Kuznetsova, N. N. Dremova, A. A. Parfenov, P. A. Troshin, “Environment-friendly aqueous processing of [60] fullerene semiconducting films for truly green organic electronics” J. Mater. Chem. C, 2020, 8, 495.
[119] H. Opoku, B. Nketia-Yawson, E.-S. Shin, Y.-Y. Noh, “Organic field-effect transistors processed by an environmentally friendly non-halogenated solvent blend” J. Mater. Chem. C, 2018, 6, 661.
[120] Y. Wu, S. Schneider, C. Walter, A. H. Chowdhury, B. Bahrami, H.-C. Wu, Q. Qiao, M. F. Toney, Z. Bao, “Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells” J. Am. Chem. Soc., 2019, 142, 392.
[121] C. Wang, M. Abbas, G. Wantz, K. Kawabata, K. Takimiya, ““Heavy-atom effects” in the parent [1] benzochalcogenopheno [3, 2-b][1] benzochalcogenophene system” J. Mater. Chem. C, 2020, 8, 15119.
[122] H. Takenaka, T. Ogaki, C. Wang, K. Kawabata, K. Takimiya, “Selenium-Substituted β-Methylthiobenzo [1, 2-b: 4, 5-b′] dithiophenes: Synthesis, Packing Structure, and Transport Properties” Chem. Mater., 2019, 31, 6696.
[123] S. N. Afraj, C. C. Lin, A. Velusamy, C. H. Cho, H. Y. Liu, J. Chen, G. H. Lee, J. C. Fu, J. S. Ni, S. H. Tung, “Heteroalkyl‐Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport” Adv. Funct. Mater., 2022, 32, 2200880.
[124] Z. Zhang, T. Lei, Q. Yan, J. Pei, D. Zhao, “Electron-transporting PAHs with dual perylenediimides: syntheses and semiconductive characterizations” Chem. Commun., 2013, 49, 2882.
[125] D. Lee, E. Hubijar, G. J. D. Kalaw, J. P. Ferraris, “Enhanced and tunable open-circuit voltage using dialkylthio benzo [1, 2-b: 4, 5-b′] dithiophene in polymer solar cells” Chem. Mater., 2012, 24, 2534.
[126] C. Cui, W.-Y. Wong, Y. Li, “Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution” Energy Environ. Sci., 2014, 7, 2276.
[127] S. Vegiraju, B. C. Chang, P. Priyanka, D. Y. Huang, K. Y. Wu, L. H. Li, W. C. Chang, Y. Y. Lai, S. H. Hong, B. C. Yu, “Intramolecular Locked Dithioalkylbithiophene‐Based Semiconductors for High‐Performance Organic Field‐Effect Transistors” Adv. Mater., 2017, 29, 1702414.
[128] S. Vegiraju, G. Y. He, C. Kim, P. Priyanka, Y. J. Chiu, C. W. Liu, C. Y. Huang, J. S. Ni, Y. W. Wu, Z. Chen, “Solution‐Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient‐Stable n‐Channel Organic Field Effect Transistors” Adv. Funct. Mater., 2017, 27, 1606761.
[129] C.-C. Lin, S. N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, “A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors” ACS Nano, 2020, 15, 727.
[130] S. Vegiraju, X.-L. Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, “Solution processable pseudo n-thienoacenes via intramolecular S···S lock for high performance organic field effect transistors” Chem. Mater., 2020, 32, 1422.
[131] P. Bałczewski, E. Kowalska, E. Różycka‐Sokołowska, J. Skalik, K. Owsianik, M. Koprowski, B. Marciniak, D. Guziejewski, W. Ciesielski, “Mono‐Aryl/Alkylthio‐Substituted (Hetero) acenes of Exceptional Thermal and Photochemical Stability by the Thio‐Friedel– Crafts/Bradsher Cyclization Reaction” Chem. Eur. J., 2019, 25, 14148.
[132] K. J. Fallon, A. Santala, N. Wijeyasinghe, E. F. Manley, N. Goodeal, A. Leventis, D. M. Freeman, M. Al‐Hashimi, L. X. Chen, T. J. Marks, “Effect of Alkyl Chain Branching Point on 3D Crystallinity in High N‐Type Mobility Indolonaphthyridine Polymers” Adv. Funct. Mater., 2017, 27, 1704069.
[133] B. C. Schroeder, T. Kurosawa, T. Fu, Y. C. Chiu, J. Mun, G. J. N. Wang, X. Gu, L. Shaw, J. W. Kneller, T. Kreouzis, “Taming charge transport in semiconducting polymers with branched alkyl side chains” Adv. Funct. Mater., 2017, 27, 1701973.
[134] F. C. Spano, C. Silva, “H-and J-aggregate behavior in polymeric semiconductors” Annu. Rev. Phys. Chem., 2014, 65, 477.
[135] A. Scaccabarozzi, N. Stingelin, “Semiconducting: insulating polymer blends for optoelectronic applications—a review of recent advances” J. Mater. Chem. A, 2014, 2, 10818.
[136] W. H. Lee, Y. D. Park, “Organic semiconductor/insulator polymer blends for high- performance organic transistors” Polymers, 2014, 6, 1057.
[137] L.-H. Chou, Y. Na, C.-H. Park, M. S. Park, I. Osaka, F. S. Kim, C.-L. Liu, “Semiconducting small molecule/polymer blends for organic transistors” Polymer, 2020, 191, 122208.
[138] C. Liu, Y. Li, M. V. Lee, A. Kumatani, K. Tsukagoshi, “Self-assembly of semiconductor/insulator interfaces in one-step spin-coating: a versatile approach for organic field-effect transistors” Phys. Chem. Chem. Phys., 2013, 15, 7917.
[139] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric” Nature, 2004, 431, 963.
[140] D. Ho, J. Lee, S. Park, Y. Park, K. Cho, F. Campana, D. Lanari, A. Facchetti, S. Seo, C. Kim, “Green solvents for organic thin-film transistor processing” J. Mater. Chem. C, 2020, 8, 5786.
[141] M. Nurul Islam, “Impact of film thickness of organic semiconductor on off-state current of organic thin film transistors” J. Appl. Phys., 2011, 110, 114906.
[142] B. Kim, E. Chong, D. Hyung Kim, Y. Woo Jeon, D. Hwan Kim, S. Yeol Lee, “Origin of threshold voltage shift by interfacial trap density in amorphous InGaZnO thin film transistor under temperature induced stress” Appl. Phys. Lett., 2011, 99, 062108.
[143] W. Xu, S.-W. Rhee, “Compromise of electrical leakage and capacitance density effects: a facile route for high mobility and sharp subthreshold slope in low-voltage operable organic field-effect transistors” J. Mater. Chem., 2011, 21, 998.
[144] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, “Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method” Nat. Commun., 2014, 5, 3005.
[145] M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang, Y.-W. Huang, T.- S. Hu, G.-H. Lee, A. Facchetti, “One-pot [1+1+1] synthesis of dithieno[2,3-b:3’,2’-d]thiophene (DTT) and their functionalized derivatives for organic thin-film transistors” Chem. Commun., 2009, 1846.
[146] C. C. Lin, A. Velusamy, S. H. Tung, I. Osaka, M. C. Chen, C. L. Liu, “Tunable Photoelectric Properties of n‐Type Semiconducting Polymer: Small Molecule Blends for Red Light Sensing Phototransistors” Adv. Opt. Mater., 2022, 10, 2102650.
[147] K. Shi, R. Jin, S. Huang, H. Lei, P. Dai, D. Chi, W. Zhang, G. Yu, “Pentacene/non- fullerene acceptor heterojunction type phototransistors for broadened spectral photoresponsivity and ultralow level light detection” J. Mater. Chem. C, 2021, 9, 322.
[148] H. Wang, Z. Zhang, X. Liu, S. Qu, S. Guang, Z. Ye, J. Yu, W. Tang, “14.55% efficiency PBDB-T ternary organic solar cells enabled by two alloy-forming acceptors featuring distinct structural orders” Chem. Eng. J., 2021, 413, 127444.
[149] J. Belasco, S. K. Mohapatra, Y. Zhang, S. Barlow, S. R. Marder, A. Kahn, “Molecular doping and tuning threshold voltage in 6, 13-bis (triisopropylsilylethynyl) pentacene/polymer blend transistors” Appl. Phys. Lett., 2014, 105, 063301.
[150] J. H. Kim, M. W. Choi, S. Y. Kim, S. Jung, Y. S. Choi, S. Y. Park, “Novel Organic Semiconductors Based on 1, 5‐Naphthyridine‐2, 6‐Dione Unit for Blue‐Selective Organic Phototransistor” Adv. Opt. Mater., 2020, 8, 2000695.
[151] D. Kufer, G. Konstantatos, “Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials” ACS Photonics, 2016, 3, 2197.
[152] D. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhong, Z.-Y. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, “Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays” Nat. Commun., 2019, 10, 1.
[153] Y. Qin, S. Long, Q. He, H. Dong, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, Y. Lu, “Amorphous gallium oxide‐based gate‐tunable high‐performance thin film phototransistor forsolar‐blind imaging” Adv. Electron. Mater., 2019, 5, 1900389.
[154] F. Huang, X. Wang, K. Xu, Y. Liang, Y. Peng, G. Liu, “Broadband organic phototransistor with high photoresponse from ultraviolet to near-infrared realized via synergistic effect of trilayer heterostructure” J. Mater. Chem. C, 2018, 6, 8804.
[155] P. Agnihotri, P. Dhakras, J. U. Lee, “Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains” Nano Lett., 2016, 16, 4355.
[156] H. Wang, C. Cheng, L. Zhang, H. Liu, Y. Zhao, Y. Guo, W. Hu, G. Yu, Y. Liu, “Inkjet Printing Short‐Channel Polymer Transistors with High‐Performance and Ultrahigh Photoresponsivity” Adv. Mater., 2014, 26, 4683.
[157] R. Jia, X. Wu, W. Deng, X. Zhang, L. Huang, K. Niu, L. Chi, J. Jie, “Unraveling the mechanism of the persistent photoconductivity in organic phototransistors” Adv. Funct. Mater., 2019, 29, 1905657.
[158] D. Ljubic, W. Liu, C. E. González‐Espinoza, N. X. Hu, Y. Wu, S. Zhu, “Binary Blends of Polyimide and Benzothienobenzothiophene for High‐Performance Solution‐Processed Organic Phototransistors” Adv. Electron. Mater., 2017, 3, 1700284.
[159] P. C. Chow, N. Matsuhisa, P. Zalar, M. Koizumi, T. Yokota, T. Someya, “Dual-gate organic phototransistor with high-gain and linear photoresponse” Nat. Commun., 2018, 9, 4546.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明