參考文獻 |
References
Alvar, E. N., & Rezaei, M., Scripta Materialia 61 (2009) 212–215 213
Amini, M.M., Mirzaee, M., & Sepanj, N., Mater. Research Bull. 42 (2007) 563.
de Araújo Moreira, T.G., de Carvalho Filho, J.F.S., Carvalho, Y., de Almeida, J.M.A.R., Romano, P.N., & Sousa-Aguiar, E.F., Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane. Fuel 2021, 287, 119536.
Ashcroft, A.T., Cheetham, A.K., Green, M.L.H., & Vernon, P.D.F., Nature (London), 352 ( 1991 ) 225
Bu, K.K., Deng, J., Zhang, X., Boon, S.C.K., Yan, T., Li, H., Shi, L., & Zhang, D., Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane. Appl. Catal. B Environ. 2020, 267, 118692.
Bradford, M.C.B., & Vannice, M.A., Catal. Rev. Sci. Eng. 41 (1999) 1.
Bocanegra, S.A., Ballarini, A.D., Scenza, O.A., & Demiguel, S.R., Mater. Chem. Phys. 111 (2008) 534.
Choudhary, V.R., Uphade, B.S., & Mamman, A.S., Simultaneous steam and CO2 or reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen, Appl. Catal. A 168 (1998) 33–46.
Castro Luna, A.E., & Iriarte, M.E., Carbon dioxide reforming of methane over a metal modified Ni–Al2O3 catalyst, Appl. Catal. A 343 (2008) 10–15.
Debsikdar, J.C., J. Mater. Sci. 20 (1985) 4454.
Djaidja, A., Libs, S., A. Kiennemann, A., & Barama, A., Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Catal. Today 113 (2006) 194–200.
Fan, M.S., Abdullah, A.Z., & Bhatia, S., Catalytic technology for carbon dioxide reforming of methane to synthesis gas, Chem. Catal. Chem. 1 (2009) 192–208.
Ford, R. R., Adv. Catal.21 (1970) 51.
Gadalla, A.M., & B. Bower, B., Chem. Eng. Sci. 43 (1988) 3049.
Gadalla, A.M., & Sommer, M.E., Chem. Eng. Sci. 44 (1989) 2825.
Gholizadeh, F., Izadbakhsh, A., Huang, J., & Yan, Z., Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane. Microporous Mesoporous Mater. 2021, 310,110616.
Gökaliler, F., Selen Çaglayan, B., Ilsen Önsan, Z., & Erhan Aksoylu, A., Int. J. Hydrogen Energy, 33 (2008) 1383-1391.
Guo, J., Lou, H., Zhao, H., Wang, X., & Zheng, X., Mater. Lett. 58 (2004) 1920.
Hang, Hu Y., Solid-solution catalysts for CO2 reforming of methane, Catal. Today 148 (2009) 206–211.
HAO Panpan, LIU Jian, XIE Mingjiang, WANG Xuan, CHEN Shanyong, DING Weiping, GUO Xuefeng. Surrounded catalysts: concept, design and catalytic performance[J]. CIESC Journal, 2020, 71(11): 4957-4963.
Hu, Y.H., & Ruckenstein, E., Binary MgO-based solid solution catalysts for methane to syngas, Catal. Rev. 44 (2002) 423–453.
Hu, Y.H., & Ruckenstein, E., Characterization of a highly effective NiO/MgO solid solution catalyst in CO2 reforming of CH4, Catal. Lett. 43 (1997) 71–77.
Juan-Juan, J., Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments, Appl. Catal. A 355 (2009) 27–32.
Lang, J., Z. Phys. Chem. (Leipzig) 1888, 2, 161.
Laosiripojana, N., Sutthisripok, W., & Assabumrungrat, S., Chem. Eng. J. 112 (2005) 13.
Li, B., Yuan, X., Li, B., & Wang, X., Impact of pore structure on hydroxyapatite supported nickel catalysts (Ni/HAP) for dry reforming of methane. Fuel Process. Technol. 2020, 202, 106359.
Naray-Szabo, I., Inorganic Crystal Chemistry, Akademiai Kiado, Budapest, 1969, p. 237.
Park, K.S., Cho, J.M., Park, Y.M., Kwon, J.H., Yu, J., Jeong, H.E., Choung, J.W., & Bae, J.W., Enhanced thermal stability of Ni nanoparticles in ordered mesoporous supports for dry reforming of methane with CO2. Catal. Today 2020.
Ranjekar, A.M., & Yadav, G.D., Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. J. Indian Chem. Soc. 2021, 98,100002.
Ruckenstein, E., & Hu, Y.H., Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl. Catal. A: General 133, 149–161 (1995).
Ross, J.R.H., van Keulen, A.N.J., Hegarty, M.E.S., & Seshan, K., Catal. Today, 30 (1996) 193-199.
Richardson, J.T., & Paripatyadar, S.A., Appl. Catal. 61 (1990) 293.
Rezaei, M., Alavi, S.M., Sahebdelfar, S., Bai, P., Liu, X., & Yan, Z.F., Appl. Catal. B: Environ. 77 (2007) 346.
Rezaei, M., Alavi, S.M., Sahebdelfar, S., & Yan, Z.F., Energy & Fuels 22 (2008) 2195.
Rezaei, M., Alavi, S.M., Sahebdelfar, S., & Yan, Z.F., J. Porous Mater. 15 (2008) 171
Razaei, M., Alavi, S.M., Sahebdelfar, S., Yan, Z.F., Teunissen, H., Jacobsen, J.H., & Sehested, J., J. Mater. Sci. 42 (2007) 1228.
Rakass, S., Oudghiri-Hassani, H., Rowntree, P., & Abatzoglou, N., J. Power Sources, 158 (2006) 485-496.
Rostrup-Nielsen, J.R., Journal of Catalysis 144 (1993) 38.
Rostrup-Nielsen, J.R., Stud. Surf. Sci. Catal. 36 (1988) 73.
Scott, S.L., Crudden, C.M., & Jones, C.W., Nanostructured Catalysts, first ed., Springer Verlag, Berlin, 2003.
Sodesawa, T., Dobashi, A., & Nozaki, F., React. Kinet. Catal. Lett. 12 (1979) 107.
Sun, Y., Zhang, G., Xu, Y., Zhang, Y., Lv, Y., & Zhang, R., Comparative study on dry reforming of methane over Co-M (M = Ce, Fe, Zr) catalysts supported on N-doped activated carbon. Fuel Process. Technol. 2019, 192, 1–12.
Tomishige, K., Himeno, Y., Matsuo, Y., Yoshinaga, Y., & Fujimoto, K., Catalytic performance and carbon deposition behavior of NiO–MgO solid solution in methane reforming with carbon dioxide under pressurized condition, Ind. Eng. Chem. Res. 39 (2000) 1891–1897.
Valant, A.L., Garron, A., Bion, N., Epron, F., & Duprez, D., Catal. Today 138 (2008) 169.
Wang, J.B., Kuo, L.E., & Huang, T.J., Applied Catalysis A: General 249 (2003) 93.
Wang T. et al., Reforming of raw fuel gas from biomass gasification to syngas over highly stable nickel–magnesium solid solution catalysts, Fuel Process. Technol. 87 (2006) 421–428.
Xu, Y., Du, X., Shi, L., Chen, T., Wan, H., Wang, P., Wei, S., Yao, B., Zhu, J., & Song, M., Improved performance of Ni/Al2O3 catalyst deriving from the hydrotalcite precursor synthesized on Al2O3 support for dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 14301–14310.
Yentekakis, I.V., Panagiotopoulou, P., & Artemakis, G., A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Appl. Catal. B Environ. 2021, 296, 120210.
Yusuf, M., Farooqi, A.S., Keong, L.K., Hellgardt, K., & Abdullah, B., Contemporary trends in composite Ni-based catalysts for CO2 reforming of methane. Chem. Eng. Sci. 2021, 229,116072.
Yamazaki, O., Nozaki, T., Omata, K. & Fujimota, K., Chem. Lett. (1992) 1953.
Zecchina, A., Spoto, G., & Coluccia, S., J. Chemn. Soc. Faraday I 80 (1984) 1891.
Zawrah, M.F., Hammad, H., & Meky, S., Ceramics Inter. 33 (2007) 969.
Zanganeh, R., Rezaei, M., Zamaniyan, A., & Bozorgzadeh, H., Preparation of Ni0.1Mg0.9O nanocrystalline powder and its catalytic performance in methane reforming with carbon dioxide, J. Ind. Eng. Chem. 19 (2013) 234–239.
Zhang, Z.L., & Verykios, X.E., Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts, Catal. Today 21 (1994) 589–595. |