博碩士論文 108324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.146.37.222
姓名 張鉯雯(Yi-Wen Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Crystal Size Enlargement in Reactive Crystallization for Processing and Powder Handling: The Study of Dicumarol)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從製程的角度是不希望反應結晶中收穫尺寸為 0.1 至 10 μm細小的固體晶粒,這可能會導致下游的單元操作,如過濾、洗滌和乾燥出現問題。此外,其他物理特性,如堆積密度、粉末流動性、團聚和晶體尺寸分佈(CSD),可能會導致儲存、配製和運輸困難。本研究以雙香豆素為模型藥物,由4-羥基香豆素與甲醛在水中縮合反應合成。由於雙香豆素極不溶於水,在反應結晶過程中,雙香豆素晶體在1 分鐘內迅速析出,且晶體尺寸小於5 μm,導致在過濾和乾燥過程中形成硬塊。因此,本研究的目的是增加雙香豆素在反應結晶中的晶體尺寸,並進一步改善粉末特性。首先,通過對24種溶劑的初步溶劑篩選,將N,N-二甲基乙醯胺(DMAc)代替水作為反應溶劑提高雙香豆素的溶解度,以降低成核速率,提供了較寬的操作範圍,從而產生大尺寸的雙香豆素晶體。本論文討論了雙香豆素合成後晶體通過冷卻而緩慢結晶,結果成功製備了接近100 μm的雙香豆素晶體。此外,藉著改變反應結晶中甲醛溶液的添加方式,將過飽和度控制在較低的值,避免快速成核,而有利於晶體生長。在實驗過程中對反應溶液進行取樣,從光學顯微鏡(OM)觀察晶體尺寸的演變,深入研究其動力學和比較最終的實驗結果,成功地將雙香豆素的晶體尺寸提高到約200 μm,且產率高達85.3%。HPLC純度測定為103.1%。卡爾指數和休止角的測量,分別為16.4±1.6% 和37.0±0.5°,顯示出粉末特性有顯著改善。所有固體樣品皆通過傅立葉轉換紅外線光譜儀(FT-IR)和粉末X射線衍射儀(PXRD)的檢查,以確定最終產品的固態特性。
摘要(英) Fine solid particles are often harvested in reactive crystallization. From the perspective of process engineering, fine crystals with sizes of 0.1 to 10 μm are undesirable, for they can cause problems in downstream unit operations, such as filtration, washing and drying. In addition, other physical properties, such as bulk density, powder flowability, agglomeration, and crystal size distribution (CSD), may cause difficulties in storage, formulation, and transportation. Dicumarol was used as a model drug in this research, and synthesized by condensation reaction of 4-hydroxycoumarin with formaldehyde originally in water. Since dicumarol is extremely insoluble in water, dicumarol crystals would be rapidly precipitated in 1 min during the course of reactive crystallization, and the resulting crystal size was less than 5 μm. Very fine dicumarol crystals led to the formation of hard lumps during filtration and drying. Therefore, the aim of this research is to increase the crystal size of dicumarol in reactive crystallization, and to further improve powder properties. First, through an initial solvent screening among 24 solvents, N,N-dimethylacetamide (DMAc) was identified to be suitable for substituting for water to improve the solubility of dicumarol, which provided a relatively wide operating window to reduce the nucleation rate, and thereby, produced large-sized dicumarol crystals. In this thesis, it was discussed that the crystals were slowly crystallized by cooling after the synthesis of dicumarol, and the result has successfully produced dicumarol crystals near 100 μm. In addition, the degree of supersaturation could be controlled at a lower value by changing the addition mode of the formaldehyde aqueous solution in reactive crystallization. Fast nucleation could be avoided thereby favoring crystal growth. The reaction solution was sampled during the experiment, the evolution of crystal habit was observed by optical microscopy (OM), and its kinetic process was thoroughly studied and compared. The final experimental results have successfully increased the crystal size of dicumarol to about 200 μm, and the yield was up to 85.3%. The HPLC assay was 103.1%. The powder properties, including Carr’s index and angle of repose, were measured, and our best case showed the much improved values of 16.4±1.6% and 37.0±0.5°, respectively. All sample solids were characterized by Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) to identify the chemical and crystal properties of the final products.
關鍵字(中) ★ 反應結晶
★ 晶體尺寸
★ 雙香豆素
關鍵字(英) ★ Reactive Crystallization
★ Crystal Size
★ Dicumarol
論文目次 摘要 i
Abstract ii
Acknowledgment iv
Table of Contents vi
List of Figures ix
List of Tables xv
List of Schemes xvi
Chapter 1 Introduction 1
1.1 Reactive Crystallization in Pharmaceutical Industry 1
1.2 Importance of Particle Size in APIs Manufacturing 4
1.3 Particle Size Enlargement 7
1.4 Fundamentals of Crystallization 12
1.5 Brief Introduction of Dicumarol 15
1.6 Conceptual Framework 19
1.7 References 21
Chapter 2 Experimental Materials and Method 30
2.1 Materials 30
2.1.1 Chemicals 30
2.1.2 Solvents 31
2.2 Experimental Procedures 33
2.2.1 Experimental Framework 33
2.2.2 Initial Solvent Screening 34
2.2.3 Experimental Solubility Measurements 36
2.2.4 Synthesis of Dicumarol by the Literature Method 38
2.2.5 Recrystallization of Purchased Dicumarol 40
2.2.6 Experimental Conditions for Chemical Reaction 41
2.2.7 Cooling Crystallization After Synthesis of Dicumarol 43
2.2.8 Synthesis of Dicumarol by Reactive Crystallization 46
2.2.9 Sieve Analysis 49
2.2.10 Assay Procedure 51
2.2.11 Carr’s Index 52
2.2.12 Angle of Repose 53
2.3 Analytical Measurements 54
2.3.1 Polarized Optical Microscopy (POM) 54
2.3.2 Fourier Transform Infrared (FT-IR) Spectroscopy 55
2.3.3 Powder X-Ray Diffraction (PXRD) 56
2.3.4 High Performance Liquid Chromatography (HPLC) 57
2.4 References 59
Chapter 3 Results and Discussion 61
3.1 Solvent Selection 61
3.2 Solubility Curve 65
3.3 Solid-State Characterizations of Dicumarol 66
3.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy 66
3.3.2 Powder X-Ray Diffraction (PXRD) Patterns 67
3.4 Particle Size Enlargement of Dicumarol in Reactive Crystallization 69
3.4.1 The Literature Method 69
3.4.2 Cooling Crystallization After Synthesis of Dicumarol 74
3.4.3 Reactive Crystallization Method 79
3.5 Powder Flowability 102
3.6 References 104
Chapter 4 Conclusions and Future Works 106
4.1 Conclusions 106
4.2 Future Works 108
參考文獻 Chapter 1
1. Takiyama, H. Supersaturation operation for quality control of crystalline particles in solution crystallization. Adv. Powder Technol. 2012, 23(3), 273-278.
2. He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J. Seeding techniques and optimization of solution crystallization processes. Org. Process Res. Dev. 2020, 24(10), 1839-1849.
3. Jia, S.; Gao, Z.; Tian, N.; Li, Z.; Gong, J.; Wang, J.; Rohani, S. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development. Chem. Eng. Res. Des. 2021, 166, 268-280.
4. Jim, K. M.; Kim, K. J.; Jang, Y. N. Effect of supersaturation on the particle size of ammonium sulfate in semibatch evaporative crystallization. Ind. Eng. Chem. Res. 2013, 52(32), 11151-11158.
5. Ståhl, M.; Å slund, B. L.; Rasmuson, Å. C. Reaction crystallization kinetics of benzoic acid. AlChE J. 2001, 47(7), 1544-1560.
6. Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Reactive crystallization of calcium oxalate: population balance modeling. Chem. Biochem. Eng. Q. 2018, 32(1), 11-18.
7. Teychené, S.; Rodriguez-Ruiz, I.; Ramamoorthy, R. K. Reactive crystallization: from mixing to control of kinetics by additives. Curr. Opin. Colloid Interface Sci. 2020, 46, 1-19.
8. McDonald, M. A.; Salami, H.; Harris, P. R.; Lagerman, C. E.; Yang, X.; Bommarius, A. S.; Grover, M. A.; Rousseau, R. W. Reactive crystallization: a review. React. Chem. Eng. 2021, 6(3), 364-400.
9. Liu, W. J.; Ma, C. Y.; Liu, J. J.; Zhang, Y.; Wang, X. Z. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers. AIChE J. 2017, 63(3), 967-974.
10. Zhang, W.; Zhang, F.; Ma, L.; Yang, J.; Yang, J.; Xiang, H. Prediction of the crystal size distribution for reactive crystallization of barium carbonate under growth and nucleation mechanisms. Cryst. Growth Des. 2019, 19(7), 3616-3625.
11. Albis, A.; Jiménez, Y. P.; Graber, T. A.; Lorenz, H. Reactive crystallization kinetics of K2SO4 from picromerite-based MgSO4 and KCl. Crystals, 2021, 11(12), 1-24.
12. Lee, H. L.; Chiu, C. W.; Lee, T. Engineering terephthalic acid product from recycling of pet bottles waste for downstream operations. Chem. Eng. J. Adv. 2021, 5(15), 100079.
13. Alatalo, H.; Hatakka, H.; Kohonen, J.; Reinikainen, S. P.; Louhi‐kultanen, M. Process control and monitoring of reactive crystallization of L‐glutamic acid. AIChE J. 2010, 56(8), 2063-2076.
14. Yu, S.; Zhang, Y.; Wang, X. Z. Improved understanding of cefixime trihydrate reactive crystallization and process scale-up with the aid of PAT. Org. Process Res. Dev. 2019, 23(2), 177-188.
15. Diab, S.; McQuade, D. T.; Gupton, B. F.; Gerogiorgis, D. I. Process design and optimization for the continuous manufacturing of nevirapine, an active pharmaceutical ingredient for HIV treatment. Org. Process Res. Dev. 2019, 23(3), 320-333.
16. Bhamidi, V.; Dumoleijn, K.; Guha, D.; Kirk, S. K.; De Bruyn, A.; Pymer, A. K. From experiments and models to business decisions: a scale-up study on the reactive crystallization of a crop protection agent. Org. Process Res. Dev. 2019, 23(3), 342-354.
17. Yin, J.; Weisel, M.; Ji, Y.; Liu, Z.; Liu, J.; Wallace, D. J.; Xu, F.; Sherry, B. D.; Yasuda, N. Improved preparation of a key hydroxylamine intermediate for relebactam: Rate enhancement of benzyl ether hydrogenolysis with dabco. Org. Process Res. Dev. 2018, 22(3), 273-277.
18. Jiang, M.; Ni, X. W. Effects of water and temperature on reaction mechanism and crystal properties in a reactive crystallization of paracetamol. Chem. Eng. Process 2018, 131, 20-26.
19. Kumar, V.; Bansal, V.; Madhavan, A.; Kumar, M.; Sindhu, R.; Awasthi, M. K.; Binod, P.; Saran, S. Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered 2022, 13(2), 4309-4327.
20. Small vs big: understanding the differences between small molecule drugs and biologic drugs (https://www.immpressmagazine.com/small-vs-big-understanding-the-differences-between-small-molecule-drugs-and-biologic-drugs/, accessed on August 19, 2021)
21. Declerck, P. J. Biologicals and biosimilars: a review of the science and its implications. GaBI J. 2012, 1(1), 13-16.
22. Will biologics surpass small molecules in the pharmaceutical race? (https://www.biopharmatrend.com/post/67-will-small-molecules-sustain-pharmaceutical-race-with-biologics/, accessed on February 21, 2022)
23. Active pharmaceutical ingredients market size, share & trends analysis report by type of synthesis (biotech, synthetic), by type of manufacturer (captive, merchant), by type, by application, by region, and segment forecasts, 2021-2028 (https://www.grandviewresearch.com/industry-analysis/active-pharmaceutical-ingredients-market#, accessed on November 18, 2021)
24. Hansen, T. B.; Simone, E.; Nagy, Z.; Qu, H. Process analytical tools to control polymorphism and particle size in batch crystallization processes. Org. Process Res. Dev. 2017, 21(6), 855-865.
25. Yang, Y.; Pal, K.; Koswara, A.; Sun, Q.; Zhang, Y.; Quon, J.; McKeown, R.; Goss, C.; Nagy, Z. K. Application of feedback control and in situ milling to improve particle size and shape in the crystallization of a slow growing needle-like active pharmaceutical ingredient. Int. J. Pharm. 2017, 533(1), 49-61.
26. Perini, G.; Salvatori, F.; Ochsenbein, D. R.; Mazzotti, M.; Vetter, T. Filterability prediction of needle-like crystals based on particle size and shape distribution data. Sep. Purif. Technol. 2019, 211, 768-781.
27. Salvalaglio, M.; Vetter, T.; Mazzotti, M.; Parrinello, M. Controlling and predicting crystal shapes: the case of urea. Angew. Chem. 2013, 125(50), 13611-13614.
28. Cote, A.; Erdemir, D.; Girard, K. P.; Green, D. A.; Lovette, M. A.; Sirota, E.; Nere, N. K. Perspectives on the current state, challenges, and opportunities in pharmaceutical crystallization process development. Cryst. Growth Des. 2020, 20(12), 7568-7581.
29. Banerjee, M.; Saraswatula, S.; Willows, L. G.; Woods, H.; Brettmann, B. Pharmaceutical crystallization in surface-modified nanocellulose organogels. J. Mater. Chem. B. 2018, 6(44), 7317-7328.
30. Liu, L. X.; Marziano, I.; Bentham, A. C.; Litster, J. D.; White, E. T.; Howes, T. Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 2008, 362(1-2), 109-117.
31. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
32. Ottoboni, S.; Simurda, M.; Wilson, S.; Irvine, A.; Ramsay, F.; Price, C. J. Understanding effect of filtration and washing on dried product: paracetamol case study. Powder Technol. 2020, 366, 305-323.
33. Shahid, M.; Sanxaridou, G.; Ottoboni, S.; Lue, L.; Price, C. Exploring the role of anti-solvent effects during washing on active pharmaceutical ingredient purity. Org. Process Res. Dev. 2021, 25(4), 969-981.
34. Kinnarinen, T.; Tuunila, R.; Häkkinen, A. Reduction of the width of particle size distribution to improve pressure filtration properties of slurries. Miner. Eng. 2017, 102, 68-74.
35. Shekunov, B. Y.; Chattopadhyay, P.; Tong, H. H.; Chow, A. H. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res. 2007, 24(2), 203-227.
36. Pudasaini, N.; Upadhyay, P. P.; Parker, C. R.; Hagen, S. U.; Bond, A. D.; Rantanen, J. Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org. Process Res. Dev. 2017, 21(4), 571-577.
37. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M; Srivastava, S.; Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev. 2005, 9(6), 894-901.
38. Billot, P.; Couty, M.; Hosek, P. Application of ATR-UV spectroscopy for monitoring the crystallization of UV absorbing and nonabsorbing molecules. Org. Process Res. Dev. 2010, 14(3), 511-523.
39. Yang, G.; Kubota, N.; Sha, Z.; Louhi-Kultanen, M.; Wang, J. Crystal shape control by manipulating supersaturation in batch cooling crystallization. Cryst. Growth Des. 2006, 6(12), 2799-2803.
40. Liu, J. J.; Ma, C. Y.; Hu, Y. D.; Wang, X. Z. Effect of seed loading and cooling rate on crystal size and shape distributions in protein crystallization—a study using morphological population balance simulation. Comput. Chem. Eng. 2010, 34(12), 1945-1952.
41. Mudalip, S. A.; Adam, F.; Parveen, J.; Bakar, M. A.; Amran, N.; Sulaiman, S. Z.; Man, R. C.; Arshad, Z. M.; Shaarani, S. M. Effect of cooling rates on shape and crystal size distributions of mefenamic acid polymorph in ethyl acetate. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 205(1), 012025.
42. Pratama, D. E.; Hsieh, W.-C.; Elmaamoun, A.; Lee, H. L.; Lee, T. Recovery of active pharmaceutical ingredients from unused solid dosage-form drugs. ACS Omega, 2020, 5(45), 29147-29157.
43. McGinty, J.; Chong, M. W.; Manson, A.; Brown, C. J.; Nordon, A.; Sefcik, J. Effect of process conditions on particle size and shape in continuous antisolvent crystallization of lovastatin. Crystals, 2020, 10(10), 925.
44. Bakar, M. R. A.; Nagy, Z. K.; Rielly, C. D. Seeded batch cooling crystallization with temperature cycling for the control of size uniformity and polymorphic purity of sulfathiazole crystals. Org. Process Res. Dev. 2009, 13(6), 1343-1356.
45. Parambil, J. V.; Heng, J. Y. Seeding in Crystallization. In Engineering Crystallography: From Molecule to Crystal to Functional Form; Roberts, K. J.; Docherty, R.; Tamura, R., Eds.; Springer: Dordrecht, 2017; pp. 235-245.
46. Mullin J. W. Crystallization, 4th edition; Butterworth-Heinemann: London, 2001.
47. Eren, A.; Szilagyi, B.; Quon, J. L.; Papageorgiou, C. D.; Nagy, Z. K. Experimental investigation of an integrated crystallization and wet-milling system with temperature cycling to control the size and aspect ratio of needle-shaped pharmaceutical crystals. Cryst. Growth Des. 2021, 21(7), 3981-3993.
48. van Westen, T.; Groot, R. D. Effect of temperature cycling on Ostwald ripening. Cryst. Growth Des. 2018, 18(9), 4952-4962.
49. Lenka, M.; Sarkar, D. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle. J. Cryst. Growth, 2018, 486, 130-136.
50. Malwade, C. R.; Qu, H. Antisolvent crystallization of indomethacin from a ternary solvent system with high productivity, better polymorphism, and particle size control. Org. Process Res. Dev. 2019, 23(5), 968-976.
51. Yu, Z. Q.; Chow, P. S.; Tan, R. B.; Ang, W. H. PAT-enabled determination of design space for seeded cooling crystallization. Org. Process Res. Dev. 2013, 17(3), 549-556.
52. Pitt, K.; Peña, R.; Tew, J. D.; Pal, K.; Smith, R.; Nagy, Z. K.; Litster, J. D. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling. Powder Technol. 2018, 326, 327-343.
53. Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
54. Videc, D.; Planinšek, O.; Lamešić, D. Design of experiments for optimization of the lactose spherical crystallization process. J. Pharm. Sci. 2020, 109(9), 2774-2786.
55. Zhang, H.; Chen, Y.; Wang, J.; Gong, J. Investigation on the spherical crystallization process of cefotaxime sodium. Ind. Eng. Chem. Res. 2010, 49(3), 1402−1411.
56. Kawashima, Y.; Okumura, M.; Takenaka, H. The effects of temperature on the spherical crystallization of salicylic acid. Powder Technol. 1984, 39(1), 41-47.
57. Kawashima, Y.; Furukawa, K.; Takenaka, H. The physicochemical parameters determining the size of agglomerate prepared by the wet spherical agglomeration technique. Powder Technol. 1981, 30(2), 211-216.
58. Thati, J.; Rasmuson, Å. C. Particle engineering of benzoic acid by spherical agglomeration. Eur. J. Pharm. Sci. 2012, 45(5), 657−667.
59. Orlewski, P. M.; Ahn, B.; Mazzotti, M. Tuning the particle sizes in spherical agglomeration. Cryst. Growth Des. 2018, 18(10), 6257-6265.
60. Chen, C. W.; Lee, H. L.; Yeh, K. L.; Lee, T. Effects of scale-up and impeller types on spherical agglomeration of dimethyl fumarate. Ind. Eng. Chem. Res. 2021, 60(30), 11555-11567.
61. Keshwani, B.; Jaimini, M.; Sharma, D. Spherical crystallization: a revolution in the field of particle engineering. Int. J. Curr. Pharm. Res. 2015, 7(4), 19-25.
62. Nagy, Z.; Fujiwara, M.; Braatz, R. Monitoring and Advanced Control of Crystallization Processes. In Handbook of Industrial Crystallization, 3rd ed.; Myerson, A.; Erdemir, D.; Lee, A., Eds.; Cambridge university press: England, 2019; pp. 313-345.
63. Nagy, Z. K.; Fevotte, G.; Kramer, H.; Simon, L. L. Recent advances in the monitoring, modelling and control of crystallization systems. Chem. Eng. Res. Des. 2013, 91(10), 1903-1922.
64. Lawrence, X. Y.; Lionberger, R. A.; Raw, A. S.; D′Costa, R.; Wu, H.; Hussain, A. S. Applications of process analytical technology to crystallization processes. Adv. Drug Deliv. Rev. 2004, 56(3), 349-369.
65. Çelikbilek, M.; Ersundu, A. E.; Aydın, S. Crystallization Kinetics of Amorphous Materials. In Advances in Crystallization Processes; Mastai, Y., Eds.; InTech: London, UK, 2012; pp. 127-162.
66. McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H. T.; Sefcik, J. Nucleation and Crystal Growth in Continuous Crystallization. In The Handbook of Continuous Crystallization; Yazdanpanah, N.; Nagy, Z., Eds.; Royal Society of Chemistry: London, U.K, 2020; pp. 1-50.
67. Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: an old natural anticoagulant agent. Pharm. Res. 2020, 160, 105193.
68. Kasperkiewicz, K.; Ponczek, M. B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465.
69. Cullen, J. J.; Hinkhouse, M. M.; Grady, M.; Gaut, A. W.; Liu, J.; Zhang, Y. P.; Darby Weydert, C. J.; Domann, F. E.; Oberley, L. W. Dicumarol inhibition of NADPH: quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003, 63(17), 5513-5520.
70. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
71. Abdou, M. M.; El-Saeed, R. A.; Bondock, S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab. J. Chem. 2019, 12(1), 88-121.
72. Obi, J. C.; Ezenwa, T. E.; Vera, E. Synthesis characterization and biological activities of 4-hydroxycoumarin derivatives. Eur. J. Sci. Explor. 2019, 2(1), 1-9.
73. Mayo, D. W.; Pike, R. M.; Butcher, S. S. Microscale organic laboratory; Wiley: New York, 1986; pp. 208-214.
74. Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Ullah, Z.; Choudhary, M. I.; Rahman, A; Perveen, S. Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem. 2004, 2(8), 1963-1968.
75. Karmakar, B.; Nayak, A.; Banerji, J. Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols—a green approach. Tetrahedron Lett. 2012, 53(33), 4343-4346.

Chapter 2
1. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
2. Anderson, N. G. Solvent Selection. In Practical Process Research and Development, 2nd ed.; Academic press: New York, 2012; pp. 121-168.
3. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
4. Lin, P. Y.; Lee, H. L.; Chen, C. W.; Lee, T. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank. Int. J. Pharm. 2015, 495(2), 886-894.
5. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
6. Lee, T.; Hsu, F. B. A cross-performance relationship between Carr′s index and dissolution rate constant: the study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33(11), 1273-1284.
7. Dicumarol ─ Certificate of Analysis (COA) (https://www.fishersci.com/store/certificates/pdf?certificateNumber=20412&lotNumber=A0399979&docType=01&description=Dicumarol%2C99%25&countryCode=US&language=en, accessed on July 12, 2022)
8. Al-Hashemi, H. M. B.; Al-Amoudi, O. S. B. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397-417.
9. Hroboňová, K.; Sádecká, J.; Čižmárik, J. HPLC separation and determination of dicoumarol and other simple coumarins in sweet clover. Nova Biotechnol. Chim. 2018, 17(1), 95-102.

Chapter 3
1. Anderson, N. G. Solvent Selection. In Practical Process Research and Development, 1st ed.; Academic press, New York, 2000; pp. 81-112.
2. Croker, D. M.; Kelly, D. M.; Horgan, D. E.; Hodnett, B. K.; Lawrence, S. E.; Moynihan, H. A.; Rasmuson, Å. C. Demonstrating the influence of solvent choice and crystallization conditions on phenacetin crystal habit and particle size distribution. Org. Process Res. Dev. 2015, 19(12), 1826-1836.
3. Mirmehrabi, M.; Rohani, S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J. Pharm. Sci. 2005, 94(7), 1560-1576.
4. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
5. Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data. CRC press, Boca Raton, FL, 2010, p. 1186.
6. Li, J.; Hou, Z.; Chen, G.-H.; Li, F.; Zhou, Y.; Xue, X.-Y.; Li, Z.-P.; Jia, M.; Zhang, Z.-D.; Li, M.-K.; Luo, X.-X. Synthesis, antibacterial activities, and theoretical studies of dicoumarols. Org. Biomol. Chem. 2014, 12(29), 5528-5535.
7. IR Spectrum Table & Chart (https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html, accessed on February 21, 2022)
8. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
9. Beckmann, W. Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org. Process Res. Dev. 2000, 4(5), 372-383.
10. McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H. T.; Sefcik, J. Nucleation and Crystal Growth in Continuous Crystallization. In The Handbook of Continuous Crystallization; Yazdanpanah, N.; Nagy, Z., Eds.; Royal Society of Chemistry: London, U.K, 2020; pp. 1-50.
11. McDonald, M. A.; Salami, H.; Harris, P. R.; Lagerman, C. E.; Yang, X.; Bommarius, A. S.; Grover, M. A.; Rousseau, R. W. Reactive crystallization: a review. React. Chem. Eng. 2021, 6(3), 364-400.
12. Zauner, R.; Jones, A. G. Mixing effects on product particle characteristics from semi-batch crystal precipitation. Chem. Eng. Res. Des. 2000, 78(6), 894-902.
13. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M; Srivastava, S.; Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev. 2005, 9(6), 894-901.
14. Lumay, G.; Boschini, F.; Traina, K.; Bontempi, S.; Remy, J. C.; Cloots, R.; Vandewalle, N. Measuring the flowing properties of powders and grains. Powder Technol. 2012, 224, 19-27.
指導教授 李度(Tu Lee) 審核日期 2022-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明