參考文獻 |
Chapter 1
1. Takiyama, H. Supersaturation operation for quality control of crystalline particles in solution crystallization. Adv. Powder Technol. 2012, 23(3), 273-278.
2. He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J. Seeding techniques and optimization of solution crystallization processes. Org. Process Res. Dev. 2020, 24(10), 1839-1849.
3. Jia, S.; Gao, Z.; Tian, N.; Li, Z.; Gong, J.; Wang, J.; Rohani, S. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development. Chem. Eng. Res. Des. 2021, 166, 268-280.
4. Jim, K. M.; Kim, K. J.; Jang, Y. N. Effect of supersaturation on the particle size of ammonium sulfate in semibatch evaporative crystallization. Ind. Eng. Chem. Res. 2013, 52(32), 11151-11158.
5. Ståhl, M.; Å slund, B. L.; Rasmuson, Å. C. Reaction crystallization kinetics of benzoic acid. AlChE J. 2001, 47(7), 1544-1560.
6. Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Reactive crystallization of calcium oxalate: population balance modeling. Chem. Biochem. Eng. Q. 2018, 32(1), 11-18.
7. Teychené, S.; Rodriguez-Ruiz, I.; Ramamoorthy, R. K. Reactive crystallization: from mixing to control of kinetics by additives. Curr. Opin. Colloid Interface Sci. 2020, 46, 1-19.
8. McDonald, M. A.; Salami, H.; Harris, P. R.; Lagerman, C. E.; Yang, X.; Bommarius, A. S.; Grover, M. A.; Rousseau, R. W. Reactive crystallization: a review. React. Chem. Eng. 2021, 6(3), 364-400.
9. Liu, W. J.; Ma, C. Y.; Liu, J. J.; Zhang, Y.; Wang, X. Z. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers. AIChE J. 2017, 63(3), 967-974.
10. Zhang, W.; Zhang, F.; Ma, L.; Yang, J.; Yang, J.; Xiang, H. Prediction of the crystal size distribution for reactive crystallization of barium carbonate under growth and nucleation mechanisms. Cryst. Growth Des. 2019, 19(7), 3616-3625.
11. Albis, A.; Jiménez, Y. P.; Graber, T. A.; Lorenz, H. Reactive crystallization kinetics of K2SO4 from picromerite-based MgSO4 and KCl. Crystals, 2021, 11(12), 1-24.
12. Lee, H. L.; Chiu, C. W.; Lee, T. Engineering terephthalic acid product from recycling of pet bottles waste for downstream operations. Chem. Eng. J. Adv. 2021, 5(15), 100079.
13. Alatalo, H.; Hatakka, H.; Kohonen, J.; Reinikainen, S. P.; Louhi‐kultanen, M. Process control and monitoring of reactive crystallization of L‐glutamic acid. AIChE J. 2010, 56(8), 2063-2076.
14. Yu, S.; Zhang, Y.; Wang, X. Z. Improved understanding of cefixime trihydrate reactive crystallization and process scale-up with the aid of PAT. Org. Process Res. Dev. 2019, 23(2), 177-188.
15. Diab, S.; McQuade, D. T.; Gupton, B. F.; Gerogiorgis, D. I. Process design and optimization for the continuous manufacturing of nevirapine, an active pharmaceutical ingredient for HIV treatment. Org. Process Res. Dev. 2019, 23(3), 320-333.
16. Bhamidi, V.; Dumoleijn, K.; Guha, D.; Kirk, S. K.; De Bruyn, A.; Pymer, A. K. From experiments and models to business decisions: a scale-up study on the reactive crystallization of a crop protection agent. Org. Process Res. Dev. 2019, 23(3), 342-354.
17. Yin, J.; Weisel, M.; Ji, Y.; Liu, Z.; Liu, J.; Wallace, D. J.; Xu, F.; Sherry, B. D.; Yasuda, N. Improved preparation of a key hydroxylamine intermediate for relebactam: Rate enhancement of benzyl ether hydrogenolysis with dabco. Org. Process Res. Dev. 2018, 22(3), 273-277.
18. Jiang, M.; Ni, X. W. Effects of water and temperature on reaction mechanism and crystal properties in a reactive crystallization of paracetamol. Chem. Eng. Process 2018, 131, 20-26.
19. Kumar, V.; Bansal, V.; Madhavan, A.; Kumar, M.; Sindhu, R.; Awasthi, M. K.; Binod, P.; Saran, S. Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered 2022, 13(2), 4309-4327.
20. Small vs big: understanding the differences between small molecule drugs and biologic drugs (https://www.immpressmagazine.com/small-vs-big-understanding-the-differences-between-small-molecule-drugs-and-biologic-drugs/, accessed on August 19, 2021)
21. Declerck, P. J. Biologicals and biosimilars: a review of the science and its implications. GaBI J. 2012, 1(1), 13-16.
22. Will biologics surpass small molecules in the pharmaceutical race? (https://www.biopharmatrend.com/post/67-will-small-molecules-sustain-pharmaceutical-race-with-biologics/, accessed on February 21, 2022)
23. Active pharmaceutical ingredients market size, share & trends analysis report by type of synthesis (biotech, synthetic), by type of manufacturer (captive, merchant), by type, by application, by region, and segment forecasts, 2021-2028 (https://www.grandviewresearch.com/industry-analysis/active-pharmaceutical-ingredients-market#, accessed on November 18, 2021)
24. Hansen, T. B.; Simone, E.; Nagy, Z.; Qu, H. Process analytical tools to control polymorphism and particle size in batch crystallization processes. Org. Process Res. Dev. 2017, 21(6), 855-865.
25. Yang, Y.; Pal, K.; Koswara, A.; Sun, Q.; Zhang, Y.; Quon, J.; McKeown, R.; Goss, C.; Nagy, Z. K. Application of feedback control and in situ milling to improve particle size and shape in the crystallization of a slow growing needle-like active pharmaceutical ingredient. Int. J. Pharm. 2017, 533(1), 49-61.
26. Perini, G.; Salvatori, F.; Ochsenbein, D. R.; Mazzotti, M.; Vetter, T. Filterability prediction of needle-like crystals based on particle size and shape distribution data. Sep. Purif. Technol. 2019, 211, 768-781.
27. Salvalaglio, M.; Vetter, T.; Mazzotti, M.; Parrinello, M. Controlling and predicting crystal shapes: the case of urea. Angew. Chem. 2013, 125(50), 13611-13614.
28. Cote, A.; Erdemir, D.; Girard, K. P.; Green, D. A.; Lovette, M. A.; Sirota, E.; Nere, N. K. Perspectives on the current state, challenges, and opportunities in pharmaceutical crystallization process development. Cryst. Growth Des. 2020, 20(12), 7568-7581.
29. Banerjee, M.; Saraswatula, S.; Willows, L. G.; Woods, H.; Brettmann, B. Pharmaceutical crystallization in surface-modified nanocellulose organogels. J. Mater. Chem. B. 2018, 6(44), 7317-7328.
30. Liu, L. X.; Marziano, I.; Bentham, A. C.; Litster, J. D.; White, E. T.; Howes, T. Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 2008, 362(1-2), 109-117.
31. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
32. Ottoboni, S.; Simurda, M.; Wilson, S.; Irvine, A.; Ramsay, F.; Price, C. J. Understanding effect of filtration and washing on dried product: paracetamol case study. Powder Technol. 2020, 366, 305-323.
33. Shahid, M.; Sanxaridou, G.; Ottoboni, S.; Lue, L.; Price, C. Exploring the role of anti-solvent effects during washing on active pharmaceutical ingredient purity. Org. Process Res. Dev. 2021, 25(4), 969-981.
34. Kinnarinen, T.; Tuunila, R.; Häkkinen, A. Reduction of the width of particle size distribution to improve pressure filtration properties of slurries. Miner. Eng. 2017, 102, 68-74.
35. Shekunov, B. Y.; Chattopadhyay, P.; Tong, H. H.; Chow, A. H. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res. 2007, 24(2), 203-227.
36. Pudasaini, N.; Upadhyay, P. P.; Parker, C. R.; Hagen, S. U.; Bond, A. D.; Rantanen, J. Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org. Process Res. Dev. 2017, 21(4), 571-577.
37. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M; Srivastava, S.; Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev. 2005, 9(6), 894-901.
38. Billot, P.; Couty, M.; Hosek, P. Application of ATR-UV spectroscopy for monitoring the crystallization of UV absorbing and nonabsorbing molecules. Org. Process Res. Dev. 2010, 14(3), 511-523.
39. Yang, G.; Kubota, N.; Sha, Z.; Louhi-Kultanen, M.; Wang, J. Crystal shape control by manipulating supersaturation in batch cooling crystallization. Cryst. Growth Des. 2006, 6(12), 2799-2803.
40. Liu, J. J.; Ma, C. Y.; Hu, Y. D.; Wang, X. Z. Effect of seed loading and cooling rate on crystal size and shape distributions in protein crystallization—a study using morphological population balance simulation. Comput. Chem. Eng. 2010, 34(12), 1945-1952.
41. Mudalip, S. A.; Adam, F.; Parveen, J.; Bakar, M. A.; Amran, N.; Sulaiman, S. Z.; Man, R. C.; Arshad, Z. M.; Shaarani, S. M. Effect of cooling rates on shape and crystal size distributions of mefenamic acid polymorph in ethyl acetate. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 205(1), 012025.
42. Pratama, D. E.; Hsieh, W.-C.; Elmaamoun, A.; Lee, H. L.; Lee, T. Recovery of active pharmaceutical ingredients from unused solid dosage-form drugs. ACS Omega, 2020, 5(45), 29147-29157.
43. McGinty, J.; Chong, M. W.; Manson, A.; Brown, C. J.; Nordon, A.; Sefcik, J. Effect of process conditions on particle size and shape in continuous antisolvent crystallization of lovastatin. Crystals, 2020, 10(10), 925.
44. Bakar, M. R. A.; Nagy, Z. K.; Rielly, C. D. Seeded batch cooling crystallization with temperature cycling for the control of size uniformity and polymorphic purity of sulfathiazole crystals. Org. Process Res. Dev. 2009, 13(6), 1343-1356.
45. Parambil, J. V.; Heng, J. Y. Seeding in Crystallization. In Engineering Crystallography: From Molecule to Crystal to Functional Form; Roberts, K. J.; Docherty, R.; Tamura, R., Eds.; Springer: Dordrecht, 2017; pp. 235-245.
46. Mullin J. W. Crystallization, 4th edition; Butterworth-Heinemann: London, 2001.
47. Eren, A.; Szilagyi, B.; Quon, J. L.; Papageorgiou, C. D.; Nagy, Z. K. Experimental investigation of an integrated crystallization and wet-milling system with temperature cycling to control the size and aspect ratio of needle-shaped pharmaceutical crystals. Cryst. Growth Des. 2021, 21(7), 3981-3993.
48. van Westen, T.; Groot, R. D. Effect of temperature cycling on Ostwald ripening. Cryst. Growth Des. 2018, 18(9), 4952-4962.
49. Lenka, M.; Sarkar, D. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle. J. Cryst. Growth, 2018, 486, 130-136.
50. Malwade, C. R.; Qu, H. Antisolvent crystallization of indomethacin from a ternary solvent system with high productivity, better polymorphism, and particle size control. Org. Process Res. Dev. 2019, 23(5), 968-976.
51. Yu, Z. Q.; Chow, P. S.; Tan, R. B.; Ang, W. H. PAT-enabled determination of design space for seeded cooling crystallization. Org. Process Res. Dev. 2013, 17(3), 549-556.
52. Pitt, K.; Peña, R.; Tew, J. D.; Pal, K.; Smith, R.; Nagy, Z. K.; Litster, J. D. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling. Powder Technol. 2018, 326, 327-343.
53. Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
54. Videc, D.; Planinšek, O.; Lamešić, D. Design of experiments for optimization of the lactose spherical crystallization process. J. Pharm. Sci. 2020, 109(9), 2774-2786.
55. Zhang, H.; Chen, Y.; Wang, J.; Gong, J. Investigation on the spherical crystallization process of cefotaxime sodium. Ind. Eng. Chem. Res. 2010, 49(3), 1402−1411.
56. Kawashima, Y.; Okumura, M.; Takenaka, H. The effects of temperature on the spherical crystallization of salicylic acid. Powder Technol. 1984, 39(1), 41-47.
57. Kawashima, Y.; Furukawa, K.; Takenaka, H. The physicochemical parameters determining the size of agglomerate prepared by the wet spherical agglomeration technique. Powder Technol. 1981, 30(2), 211-216.
58. Thati, J.; Rasmuson, Å. C. Particle engineering of benzoic acid by spherical agglomeration. Eur. J. Pharm. Sci. 2012, 45(5), 657−667.
59. Orlewski, P. M.; Ahn, B.; Mazzotti, M. Tuning the particle sizes in spherical agglomeration. Cryst. Growth Des. 2018, 18(10), 6257-6265.
60. Chen, C. W.; Lee, H. L.; Yeh, K. L.; Lee, T. Effects of scale-up and impeller types on spherical agglomeration of dimethyl fumarate. Ind. Eng. Chem. Res. 2021, 60(30), 11555-11567.
61. Keshwani, B.; Jaimini, M.; Sharma, D. Spherical crystallization: a revolution in the field of particle engineering. Int. J. Curr. Pharm. Res. 2015, 7(4), 19-25.
62. Nagy, Z.; Fujiwara, M.; Braatz, R. Monitoring and Advanced Control of Crystallization Processes. In Handbook of Industrial Crystallization, 3rd ed.; Myerson, A.; Erdemir, D.; Lee, A., Eds.; Cambridge university press: England, 2019; pp. 313-345.
63. Nagy, Z. K.; Fevotte, G.; Kramer, H.; Simon, L. L. Recent advances in the monitoring, modelling and control of crystallization systems. Chem. Eng. Res. Des. 2013, 91(10), 1903-1922.
64. Lawrence, X. Y.; Lionberger, R. A.; Raw, A. S.; D′Costa, R.; Wu, H.; Hussain, A. S. Applications of process analytical technology to crystallization processes. Adv. Drug Deliv. Rev. 2004, 56(3), 349-369.
65. Çelikbilek, M.; Ersundu, A. E.; Aydın, S. Crystallization Kinetics of Amorphous Materials. In Advances in Crystallization Processes; Mastai, Y., Eds.; InTech: London, UK, 2012; pp. 127-162.
66. McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H. T.; Sefcik, J. Nucleation and Crystal Growth in Continuous Crystallization. In The Handbook of Continuous Crystallization; Yazdanpanah, N.; Nagy, Z., Eds.; Royal Society of Chemistry: London, U.K, 2020; pp. 1-50.
67. Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: an old natural anticoagulant agent. Pharm. Res. 2020, 160, 105193.
68. Kasperkiewicz, K.; Ponczek, M. B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465.
69. Cullen, J. J.; Hinkhouse, M. M.; Grady, M.; Gaut, A. W.; Liu, J.; Zhang, Y. P.; Darby Weydert, C. J.; Domann, F. E.; Oberley, L. W. Dicumarol inhibition of NADPH: quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003, 63(17), 5513-5520.
70. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
71. Abdou, M. M.; El-Saeed, R. A.; Bondock, S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab. J. Chem. 2019, 12(1), 88-121.
72. Obi, J. C.; Ezenwa, T. E.; Vera, E. Synthesis characterization and biological activities of 4-hydroxycoumarin derivatives. Eur. J. Sci. Explor. 2019, 2(1), 1-9.
73. Mayo, D. W.; Pike, R. M.; Butcher, S. S. Microscale organic laboratory; Wiley: New York, 1986; pp. 208-214.
74. Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Ullah, Z.; Choudhary, M. I.; Rahman, A; Perveen, S. Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem. 2004, 2(8), 1963-1968.
75. Karmakar, B.; Nayak, A.; Banerji, J. Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols—a green approach. Tetrahedron Lett. 2012, 53(33), 4343-4346.
Chapter 2
1. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
2. Anderson, N. G. Solvent Selection. In Practical Process Research and Development, 2nd ed.; Academic press: New York, 2012; pp. 121-168.
3. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
4. Lin, P. Y.; Lee, H. L.; Chen, C. W.; Lee, T. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank. Int. J. Pharm. 2015, 495(2), 886-894.
5. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
6. Lee, T.; Hsu, F. B. A cross-performance relationship between Carr′s index and dissolution rate constant: the study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33(11), 1273-1284.
7. Dicumarol ─ Certificate of Analysis (COA) (https://www.fishersci.com/store/certificates/pdf?certificateNumber=20412&lotNumber=A0399979&docType=01&description=Dicumarol%2C99%25&countryCode=US&language=en, accessed on July 12, 2022)
8. Al-Hashemi, H. M. B.; Al-Amoudi, O. S. B. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397-417.
9. Hroboňová, K.; Sádecká, J.; Čižmárik, J. HPLC separation and determination of dicoumarol and other simple coumarins in sweet clover. Nova Biotechnol. Chim. 2018, 17(1), 95-102.
Chapter 3
1. Anderson, N. G. Solvent Selection. In Practical Process Research and Development, 1st ed.; Academic press, New York, 2000; pp. 81-112.
2. Croker, D. M.; Kelly, D. M.; Horgan, D. E.; Hodnett, B. K.; Lawrence, S. E.; Moynihan, H. A.; Rasmuson, Å. C. Demonstrating the influence of solvent choice and crystallization conditions on phenacetin crystal habit and particle size distribution. Org. Process Res. Dev. 2015, 19(12), 1826-1836.
3. Mirmehrabi, M.; Rohani, S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J. Pharm. Sci. 2005, 94(7), 1560-1576.
4. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
5. Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data. CRC press, Boca Raton, FL, 2010, p. 1186.
6. Li, J.; Hou, Z.; Chen, G.-H.; Li, F.; Zhou, Y.; Xue, X.-Y.; Li, Z.-P.; Jia, M.; Zhang, Z.-D.; Li, M.-K.; Luo, X.-X. Synthesis, antibacterial activities, and theoretical studies of dicoumarols. Org. Biomol. Chem. 2014, 12(29), 5528-5535.
7. IR Spectrum Table & Chart (https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html, accessed on February 21, 2022)
8. Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-activity relationships of 3,3′-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Sci. World J. 2013, 178649, 1-11.
9. Beckmann, W. Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org. Process Res. Dev. 2000, 4(5), 372-383.
10. McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H. T.; Sefcik, J. Nucleation and Crystal Growth in Continuous Crystallization. In The Handbook of Continuous Crystallization; Yazdanpanah, N.; Nagy, Z., Eds.; Royal Society of Chemistry: London, U.K, 2020; pp. 1-50.
11. McDonald, M. A.; Salami, H.; Harris, P. R.; Lagerman, C. E.; Yang, X.; Bommarius, A. S.; Grover, M. A.; Rousseau, R. W. Reactive crystallization: a review. React. Chem. Eng. 2021, 6(3), 364-400.
12. Zauner, R.; Jones, A. G. Mixing effects on product particle characteristics from semi-batch crystal precipitation. Chem. Eng. Res. Des. 2000, 78(6), 894-902.
13. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M; Srivastava, S.; Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev. 2005, 9(6), 894-901.
14. Lumay, G.; Boschini, F.; Traina, K.; Bontempi, S.; Remy, J. C.; Cloots, R.; Vandewalle, N. Measuring the flowing properties of powders and grains. Powder Technol. 2012, 224, 19-27. |