博碩士論文 109223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.135.247.94
姓名 呂秉祥(Ping-Hsiag Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 自製除水及熱脫附儀串接氣相層析質譜儀用於連續監測大氣中有機污染物
(Self-Assembled Dewater and Thermal Desorption Device to Couple with GC-MS for continuous monitoring of Volatile Organic Compounds (VOCs) in the ambient)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 台灣環境保護署為了即時掌握臭氧前驅物的排放來源與了解物種與臭氧生成的關係,而增設光化學評估監測站 (Photochemical Assessment Monitoring Stations, PAMS),每小時針對特定的54種揮發性有機化合物 (Volatile Organic Compound, VOCs) 進行連續性監測,其對應標準方法為NIEA A505.12B。除了PAMS,台灣環境保護署也對有害空氣污染物 (Hazardous Air Pollutants, HAPs) 列表中的VOCs進行環境濃度排放的監控。這些受管制的VOCs在一般空氣中濃度通常介於sub-ppb (v/v) 甚至到ppt (v/v) 等級,因此需要開發低偵測下限的分析技術以利於後續的HAPS連續監測。
為了監測VOCs的排放濃度,最有效的方法為連續監測技術,因此本研究為台塑企業建立連續監測技術,可根據六輕工業區 (Sixth Naphtha Cracker special industrial area, FPC) 的需求,針對特定12種目標化合物進行連續性的監測。一套完善的線上GC/MS系統,包括自製的除水裝置 (Dewater, DW) 及自製的濃縮系統 (Thermal Desorption, TD) 並與商業型的GC/MS/FID儀器串聯成DW-TD-GC/MS/FID與PAMS系統完全不同。PAMS系統是使用Nafion Dryer進行除水並搭配Perkin Elmer的氣相層析儀,由於GC/MS系統對於除水的條件比PAMS系統較為嚴苛,除了擔心會遺失掉極性物種外,殘留的水氣會使MS離子源受損,水氣在MS中會導致在其他GC偵測器中更嚴重的問題。在這項研究中,DW經測試後具有70%的除水效率,DW-TD設備可以與任何主流的商業型GC/MS串聯並用於連續性的監測。一套完善的DW-TD-GC/MS/FID線上系統還兼具警報功能,包括樣品管線壓力、溫度、流量和洩漏壓力計,若是數值未到達設定值,則會啟動警報功能。該設備部屬於FPC,採用NIEA A715.16B及NIEA A505.12B的方法,利用線上監測的方式以每小時量測VOCs和PAMS物種。12種目標化合物通過單一DB-1管柱利用分流的方式分別流至MS及FID,前者用於對12種目標化合物及未知化合物的物種定性,後者則針對12種目標物種進行定性及定量。台塑企業對於品保品管的標準提出要求,如線性 (R2) 需大於0.990,每日回收率需在85%~115%範圍內,各物種偵測下線 (MDL) 需低於1ppb。經過一年多的連續運行,事實證明自製的DW-TD與GC/MS/FID串聯其具有高穩定性及堅固性,至今仍依照計畫持續監測中。
摘要(英) In order to understand the instantaneous mixing ratios of ozone precursors and the relationship between precursors and ozone production, Taiwan EPA has established the numerous Photochemical Assessment Monitoring Stations (PAMS) on the island to obtain hourly mixing ratios of 54 speciated VOCs based on the NIEA A505.12B method. In addition to the PAMS program, Taiwan EPA also announced several toxic VOCs as part of the Hazardous Air Pollutants (HAPs) to be regulated with the upper limits of emissions and ambient concentrations. The ambient limits of these regulated toxic VOCs are usually at sub-ppb (v/v) or even ppt (v/v) level, which calls for the need to develop measurement techniques with sufficiently low detection limits to facilitate online measurement.
In order to detect concentration spikes of toxic VOCs, the most effective way is the online approach. Therefore, this study established an online monitoring technique for the Formosa Plastics Corporation, which can perform continuous monitoring of 12 targeted compounds in accordance with the needs of the Sixth Naphtha Cracker special industrial area (FPC). An online GC/MS system that involves a self-built water removal unit, called dewater (DW), and a thermal desorption unit (TD) to couple with a commercial GC/MS/FID instrument to form DW-TD-GC/MS/FID. Different from the PAMS system that uses PerkinElmer′s gas chromatography with a Nafion dryer to remove water vapor in the sample, the GC/MS based system has a much more stringent dehydration requirement than the PAMS system due to the concern of loss of polar compounds. Moisture will cause more severe problems in MS than other GC detectors due to insufficient  
vacuum from evaporation of residual water.
In this study, the DW was tested to have 70% water removal efficiency. The DW-TD device can couple with any major brand of GC/MS for online monitoring. The complete DW-TD-GC/MS/FID online system is also equipped with alarm mechanism to include sensors for the pipeline pressure, temperature, flow rate, and leak detection. If the set points are not reached, the corresponding alarm functions will be activated. This instrument was deployed at FPC by adopting the methods of NIEA A715.16B and NIEA A505.12B in an online mode to measure both toxic VOCs and PAMS species with hourly data resolution. The 12 target compounds were analyzed by a single column DB-1 and split at the end to both FID and MS. The MS is for the purpose of chemical identification of the 12 target compounds and the unknowns, whereas the FID for quantification of the 12 target compounds. Quality control criteria were set to require the linearity (as denoted by R-square) greater than 0.990, the daily recoveries within 85%~115%, and the detection limits less than 1 ppb. After more than a year of continuous operation, it has been proven that the self-made DW-TD with GC/MS/FID has demonstrated high stability and robustness, and it is still performing online monitoring as designed till this day.
關鍵字(中) ★ 自製除水
★ 自製熱脫附儀
★ 氣相層析質譜儀
★ 連續監測
★ 大氣中有機污染物
關鍵字(英) ★ HAPS
★ VOCs
★ Dewater
★ Thermal Desorption
★ GC-MS
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XXI
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 3
第二章 分析原理 5
2-1 MEDUSA SYSTEM介紹 6
2-2 MEDUSA SYSTEM運作 8
2-2-1 T1第一次捕集 (T1 Trapping) 11
2-2-2吹拂乾燥 (Dry Purge) 12
2-2-3 T1第一次熱脫附 (T1 Thermal Desorption) 及T2第一次捕集 (T2 Trapping) 13
2-2-4 T2第一次熱脫附 (T2 Thermal Desorption) 與第一次分析 (Analysis) 14
2-2-5 T1第二次熱脫附 (T1 2nd Thermal Desorption) 及T2第二次捕集 (T2 2nd Trapping) (紅色流路) 16
2-2-6 T2第二次熱脫附 (T22nd Thermal Desorption) 及第二次分析(Analysis 2nd ) 17
2-3 MEDUSA SYSTEM小結 18
第三章 DW-TD設計與開發 21
3-1 分析方法比較 24
3-2 DW開發設計 27
3-2-1 零組件布局 30
3-2-2 除水性能測試 33
3-2-3 樣品選擇 (Selector) 36
3-2-4 樣品管線保溫裝置 37
3-2-5 樣品傳輸管 (Transferline) 39
3-3 TD開發設計 42
3-3-1 濃縮阱 43
3-3-2 降溫及升溫裝置開發 44
3-3-3 自製吸附管 51
3-4 硬體閥件控制 59
3-4-1 Input-Output Controller, IOC 60
3-4-2 電磁式繼電器 (RELAY) 61
3-4-3 電磁閥 (Solenoid Valve) 62
3-4-4 固態繼電器 (SSR) 63
3-4-5 APG Remote 64
3-4-6 Mass Flow Controller (MFC) 65
3-5 DW-TD流路設計 66
3-5-1 系統停機 (System Stop): 68
3-5-2 系統待機 (Stand By) 70
3-5-3 保壓測試 (Leak Test) 72
3-5-4 系統預冷 (Pre Cooling) 75
3-5-5 樣品吹拂 (Sample Purge) 77
3-5-6 樣品捕集 (Sample Trapping) 79
3-5-7熱脫附進樣 (Thermal Desorption) 81
3-5-8系統清潔 (System Condition) 83
3-6 自動控制軟體設計 86
3-6-1 軟體主頁面 (System Status) 90
3-6-2 工程師模式 (Engineer Mode) 93
3-6-3 分析方法設定 (Method Sequence Set) 97
3-7 警訊系統 (ALARM SYSTEM) 100
3-7-1 室電保護機制 (Uninterruptible Power System UPS) 109
3-7-2 保壓機制 (Leak Test) 110
3-8 DW-TD產出報告設定 112
第四章 研究結果與討論 121
4-1 分析方法建立 122
4-1-1 目標物種方法選擇 124
4-1-2 Dean’s Switch 126
4-1-3 分流 (Split) 133
4-2 周界環境連續監測分析方法 137
4-3 層析條件建立 140
4-4 檢量線建立 143
4-5 儀器運轉穩定性 146
4-6 實場監測 151
4-6-1 儀器架設位置 152
4-6-2 污染物濃度趨勢比對 155
4-6-3 VCM事件 164
4-7 未來測站分析方法 168
第五章 結論 171
參考文獻 173
參考文獻 1. Agency, U.S.E.P.A, VOC-emissions. 1990.
2. Agency, U.S.E.P.A, VOCs Emissions. 2022.
3. 行政院環境保護署. 揮發性有機物空氣污染管制及排放標準. 2010; Available from: https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL045538.
4. Epa, U., Environmental Protection Agency.(2002). Registration eligibility science chapter for chlorpyrifos: fate and environmental assessment, 2002.
5. Hubbell, B.J., et al., Policy monitor: regulation and progress under the 1990 clean air act amendments. Review of Environmental Economics and Policy, 2010. 4(1): p. 122-138.
6. 行政院環保署. 行政院環保署針對HAPs物種進行管制策略. 2021; Available from: https://air.epa.gov.tw/EnvTopics/StationarySource_13.aspx.
7. 行政院環保署, 特殊性工業區緩衝地帶及空氣品質監測設施設置標準. 2014.
8. Tseng, P.-S., 自製除水器及熱脫附儀用於線上 GC/MS/FID 揮發性有機污染物之分析. 2021, National Central University.
9. 中華民國行政院環境保護署環境檢驗所, NIEA A50512B. 2014.
10. 王美珠, 針對工業排放之污染性有機氣態物質開發連續監測技術. 2016.
11. Agency, U.S.E.P.A, TO-14A. 1999.
12. Agency, U.S.E.P.A, TO-15. 1999.
13. Agency, U.S.E.P.A, TO-17. 1999. 
14. 中華民國行政院環境保護署環境檢驗所, NIEA A715.16B. 2021.
15. 黃致穎, 自行組裝前濃縮儀搭配氣相層析質譜儀建立有害空氣污染物連續監測法及環境鑑識. 2018.
16. Experiment, A.G.A.G. 2022; Available from: https://agage.mit.edu/.
17. Burns, W.F., et al., Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A, 1983. 269: p. 1-9.
18. Pleil, J.D., K.D. Oliver, and W.A. McClenny, Enhanced performance of Nafion dryers in removing water from air samples prior to gas chromatographic analysis. Japca, 1987. 37(3): p. 244-248.
19. Gong, Q. and K.L. Demerjian, Hydrocarbon losses on a regenerated nation® dryer. Journal Of The Air & Waste Management Association, 1995. 45(6): p. 490-493.
20. Prinn, R.G., et al., Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophysical Research Letters, 2005. 32(7): p. n/a-n/a.
21. Nations, U., MULTILATERAL. 1987.
22. Change, U.N.F.C.o.C., 1997.
23. Gawłowski, J., et al., Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds from the atmospheric air. The Analyst, 2000. 125(11): p. 2112-2117.
24. Kostiainen, R., Effect of operating parameters in purge-and-trap GC-MS of polar and nonpolar organic compounds. Chromatographia, 1994. 38(11): p. 709-714.
25. Zang, L.-H., et al., An improved method for testing weak VOCs in dry plants  
with a purge and trap concentrator coupled to GC-MS. Chromatographia, 2008. 68(5): p. 351-356.
26. Su, Y.-C., et al., Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Journal of Chromatography A, 2011. 1218(34): p. 5733-5742.
27. Wang, J.-L., C.-C. Chang, and K.-Z. Lee, In-line sampling with gas chromatography–mass spectrometry to monitor ambient volatile organic compounds. Journal of Chromatography A, 2012. 1248: p. 161-168.
28. 曾美惠, 離子通道孔徑對熱脫附 GC-MS 連續監測空氣有害物質穩定性的影響. 2021.
29. Maceira, A., et al., New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS. Science of the total environment, 2017. 599: p. 1718-1727.
30. 朱晨瑄, 以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物. 2020.
31. Pure, P. MD-Series Gas Dryers. 2022; Available from: https://www.permapure.com/environmental-scientific/products/gas-sample-dryers/md-gas-dryers/.
32. Chung, D., Electromagnetic interference shielding effectiveness of carbon materials. carbon, 2001. 39(2): p. 279-285.
33. Scanlon, P., R. Henriksen, and J. Allen, Approaches to electromagnetic induction. American Journal of Physics, 1969. 37(7): p. 698-708.
34. Gay, W., DHT11 sensor, in Advanced Raspberry Pi. 2018, Springer. p. 399-418.

35. Labs, N. Arduino LCD (1602). 2019; Available from: https://blog.jmaker.com.tw/lcd1602/.
36. Ferdoush, S. and X. Li, Wireless sensor network system design using
Raspberry Pi and Arduino for environmental monitoring applications. Procedia Computer Science, 2014. 34: p. 103-110.
37. Hagiwara, M. and H. Akagi. PWM control and experiment of modular multilevel converters. in 2008 IEEE Power Electronics Specialists Conference. 2008. IEEE.
38. 李冠均, 自製新型除水及熱脫附濃縮裝置用於GC/MS 線上分析揮發性有機污染物. 2020.
39. Schmidbauer, N. and M. Oehme, Improvement of a cryogenic preconcentration unit for C2‐C6 hydrocarbons in ambient air at ppt levels. Journal of High Resolution Chromatography, 1986. 9(9): p. 502-505.
40. Wang, J.-L., et al., Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere. Journal of Chromatography A, 1999. 844(1-2): p. 259-269.
41. Wang, J.-L., S.-W. Chen, and C. Chew, Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere. Journal of Chromatography A, 1999. 863(2): p. 183-193.
42. Wilson, R.B., et al., High-speed cryo-focusing injection for gas chromatography: Reduction of injection band broadening with concentration enrichment. Talanta, 2012. 97: p. 9-15.
43. Fuoco, R., et al., Analysis of priority pollutants in environmental samples by on-line supercritical fluid chromatography cleanup–cryo-trap–gas  
chromatography–mass spectrometry. Journal of Chromatography A, 1999. 846(1-2): p. 387-393.
44. You, K.-K., 新型熱脫附濃縮儀設計應用於揮發性有機污染物分析. 2017, National Central University.
45. Drebushchak, V., The peltier effect. Journal of Thermal Analysis and Calorimetry, 2008. 91(1): p. 311-315.
46. Sulaiman, A.C., et al. Cooling performance of thermoelectric cooling (TEC) and applications: a review. in MATEC Web of Conferences. 2018. EDP Sciences.
47. T-Global, 導熱矽膠片. 2022.
48. Loganathan, A. and I. Mani, A fuzzy based hybrid multi criteria decision making methodology for phase change material selection in electronics cooling system. Ain Shams Engineering Journal, 2018. 9(4): p. 2943-2950.
49. Wu, T.-M., et al., Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A, 2006. 1105(1-2): p. 168-175.
50. Su, Y.-C., H.-M. Kao, and J.-L. Wang, Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. Journal of Chromatography A, 2010. 1217(36): p. 5643-5651.
51. 行政院環境保護署環境檢驗所, 環境檢測標準方法訂定準則. 2012.
52. 王介亨, 以 Heart-cut 技術配合單偵檢器發展氣相層析“剪裁(tailoring)”技術. 2014.
53. Deans, D., A new technique for heart cutting in gas chromatography [1]. Chromatographia, 1968. 1(1): p. 18-22. 
54. J., D.R., USE OF HEART CUTTING IN GAS CHROMATOGRAPHY A REVIEW. 1981.
55. Agilent, Dean’s Switch G2855A. 2022.
56. Aglient. 2022; Available from: https://www.agilent.com/about/companyinfo/index.htmlv.
57. Ribes, A., et al., Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent
adsorption and gas chromatography/mass spectrometry thermal desorption system. Journal of Chromatography A, 2007. 1140(1-2): p. 44-55.
58. Wang, C.-H., C.-C. Chang, and J.-L. Wang, Peak tailoring concept in gas chromatographic analysis of volatile organic pollutants in the atmosphere. Journal of Chromatography A, 2005. 1087(1-2): p. 150-157.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明