博碩士論文 109223012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.15.225.188
姓名 詹竹玉(Zhu-Yu Zhan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 藉由注氫技術改善質譜儀電子游離源條件以優化空氣有害污染物連續監測方法
(Adoption of Jetclean Technology to Improve GC-MS Ion Source for Optimized Online Monitoring of Toxic VOCs)
相關論文
★ 開發醛酮類化合物與金屬有機骨架材料應用於周界揮發性有機物檢測方法★ 建立我國第一座有害空氣污染物環境自動連續監測示範站
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有害空氣污染物 (Hazardous Air Pollutants, HAPs) 又稱為空氣毒
性物質 (Air toxics),因與民眾健康影響有關,近年來已成為備受關注
的焦點和議題。本研究以有害空氣污染物中之揮發性有機物為監測目標物種,稱為Toxic VOCs。現行我國針對HAPs之量測方法為不鏽鋼採樣罐搭配氣相層析質譜儀 (離線分析法),因不能即時得知監測結果,且無法有效反映排放源的逐時排放特性,因此本研究將延續並加強實驗室所開發的線上連續監測方法,採用熱脫附氣相層析質譜儀 (Thermal Desorption Gas Chromatography/Mass Spectrometry, TD-GC/MS) 與除水設備,可監測86種揮發性有機物,並獲得每小時的即時數據。
根據過往經驗,質譜儀離子源易受水氣干擾,導致一週內即需停機維護,本研究使用Agilent商業化注氫技術 (Jetclean),將微量高純度氫氣注入至離子源,透過通入氫氣進而緩解經由高溫氧化下易附著於離子源表面之周界環境複雜基質,從而延長離子源壽命並提升在線連續分析技術。
研究結果顯示實驗最佳參數為使用舊款 (Inert) 離子源、中孔徑離子通道
(Drawout plate)、高氫氣流速與搭配Jetclean線上模式,可使儀器整體運作時間大幅延長至21天。藉由最佳化參數建立相關品保/品管測試,檢量線相對標準偏差 (RSD) 為0.43% ~ 11.09%,R2值介於0.992 ~ 1.000,方法偵測極限為0.04 ~ 0.77 ppb,回收率介於94.3%
~ 124.3%,精密度RSD為1.3% ~ 7.4%之間,符合標準方法NIEA A715.16B之儀器規範。
本研究藉由Agilent開發之Jetclean技術有效延長儀器連續運轉時間至雙週以上,並為線上連續監測技術開拓不同於以往做法之眼界。對於未來應用
Online TD-GC/MS連續監測污染物時不僅可獲得即時HAPs連續數據,更能以每小時逐時數據回溯污染物之排放源。
摘要(英) Hazardous Air Pollutants (HAPs), also called air toxics, have become a subject of attention in recent years due to their effect on public health. Of these air toxics, the volatile organic compounds (VOCs) are the targets of interest in this study, called toxic VOCs. The current most common analytical method for toxic VOCs is to use surface treated stainless canisters with gas chromatography mass spectrometry (GC/MS) to form a offline method, because the monitoring results are not obtained immediately. The data cannot effectively reflect the instantaneous characteristics of an emission source. As a result, this research continued
to improve the online method of Thermal Desorption Gas Chromatography / Mass Spectrometry (TD-GC/MS) with a water removal solution to achieve hourly measurements of 86 toxic VOCs.
From the past experience, the ion source of the mass spectrometer is easily contaminated by moisture in the sample, resulting in weekly cleaning of the ion source. This study used a commercial Jetclean technology by Agilent by directly introducing a small flow of high-purity hydrogen into the ion source. The complex sample matrix, which is oxidized at high temperature and prone to adhering to the surface of the ion source can be greatly alleviated by the addition of hydrogen, thereby extending the lifetime of the ion source and improving the continuity of the online technique.
The research results show that the optimal combination of parameters for extending the ion source’s lifetime is the use of the Inert ion source, the 6 mm drawout plate, the high hydrogen flow rate at 0.53 mL/min, and the online Jetclean mode. By doing so, the lifetime can be effectively
prolonged the monitoring time length to 21 days. Under the optimized condition, the quality assurance/control (QA/QC) results are as follows: the relative standard deviations (RSD) of the calibration curves ranging from 0.43% to 11.09%, linearity (R2) ranging from 0.992 ~ 1.000, MDL between 0.04 and 0.77 ppb, the recoveries between 94.3% and 124.3%, and the precision (RSD) results between 1.3% and 7.4%. All the QA/QC aspects complied with the specifications set by the NIEA A715.16B method.
This research used Jetclean technology developed by Agilent to successfully prolong the continuity of the online measurements to more than two weeks and thus broaden the prospect of of online monitoring of toxic VOCs. As a result, for future applications of the online TD-GC/MS technique, not only can one obtain the reliable instantaneous concentrations of toxic VOCs, but also allow back-tracking pollution sources from the spikes of the hourly data.
關鍵字(中) ★ 有害空氣污染物
★ 游離源
★ 注氫技術
關鍵字(英) ★ Hazardous Air Pollutants
★ Ion Source
★ Jetclean Technology
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 前言 1
1-1 研究背景 1
1-1-1 揮發性有機物 2
1-1-2 有害空氣污染物 (HAPs) 5
1-2 文獻回顧 7
1-2-1 世界各國有害空氣污染物管制方法 7
1-2-2 國內針對有害空氣污染物管制方法 12
1-2-3 揮發性有機物監測技術 17
1-3 研究動機 32
第二章 實驗方法 35
2-1 研究架構 35
2-2 實驗設備與原理 41
2-2-1 除水方式 41
2-2-2 前濃縮方法 44
2-2-3 氣相層析質譜儀 47
2-3 內標準品 52
2-4 注氫調節技術 (Jetclean) 55
2-5 連續監測系統建立 59
第三章 結果與討論 63
3-1 Jetclean測試 63
3-1-1 Off-line模式測試 63
3-1-2 On-line模式測試 68
3-2 精進實驗參數 70
3-2-1 離子通道驗證 70
3-2-2 不同型式離子源測試 75
3-2-3 氫氣流速 77
3-3 小結 79
第四章 VOCs連續監測系統最佳化測試 81
4-1 最佳化連續監測系統與分析條件 81
4-1-1 系統連續監測之運轉穩定性 97
4-1-2 天然內標準品-氟氯碳化物 113
4-2 檢量線建立 120
4-3 準確度與精密度測試 126
4-4 方法偵測極限 131
第五章 結論 135
第六章 參考文獻 137
參考文獻 [1] United States Environmental Protection Agency (US EPA), What is the definition of VOC. https://www.epa.gov/air-emissions-inventories/what-definition-voc[30 Jun. 2021]
[2] 行政院環境保護署,揮發性有機物空氣污染管制及排放標準,2013。
[3] C. Deng, X. Zhang, and N. Li (2004) Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography–mass spectrometry, Journal of Chromatography B 808, 269-277.
[4] Y. Ji, F. Gao, Z. Wu, L. Li, D. Li, H. Zhang, Y. Zhang, J. Gao, Y. Bai, and H. Li (2020) A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures, Journal of Environmental Sciences 95, 225-239.
[5] H.S. Koren, R.B. Devlin, D.E. Graham, R. Mann, M.P. McGee, D.H. Horstman, W.J. Kozumbo, S. Becker, D.E. House, and W.F. McDonnell (1989) Ozone-induced inflammation in the lower airways of human subjects, American review of respiratory disease 139, 407-415.
[6] R.P. Cody, C.P. Weisel, G. Birnbaum, and P.J. Lioy (1992) The effect of ozone associated with summertime photochemical smog on the frequency of asthma visits to hospital emergency departments, Environmental Research 58, 184-194.
[7] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, and T. Munzel (2020) Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress, Int J Mol Sci 21.
[8] T. Ryerson, M. Trainer, J. Holloway, D. Parrish, L. Huey, D. Sueper, G. Frost, S. Donnelly, S. Schauffler, and E. Atlas (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies, Science 292, 719-723.
[9] United States Environmental Protection Agency (US EPA), Health Effects of Ozone in the General Population. https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population[2022]
[10] U.S. Congress. (1990) Clean Air Act Amendments of 1990, U.S. Government Printing Office, Washington, DC.
[11] B. Lee (1991) Highlights of the clean air act amendments off 1990, Journal of the Air & Waste Management Association 41, 16-19.
[12] United States Environmental Protection Agency (US EPA), The original list of hazardous air pollutants as follows. https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications[5 January, 2022]
[13] 陳王琨,台灣與美國實施空氣品質管理計畫的歷史經驗回顧,2001。
[14] 沈克鵬,固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫,工業技術研究院綠能與環境研究所,2014。
[15] 蔡俊鴻, 溫麗琪, 李楟貽, 葉惠芬, 姚永真, 張立鵬,都會區有害性空氣污染物之管制策略及效益評估子計畫三:工業都會區有機性有害空氣污染物影響暨管制有效性評估研究,2003。
[16] United States Environmental Protection Agency (2000) National Air Toxics Program:The Integrated Urban Strategy.
[17] United States Environmental Protection Agency (2004) National Monitoring Strategy-Air Toxics Component, Final Strategy.
[18] 40 C.F.R. Part 61 (1999) National Emission Standards for Hazardous Air Pollutants. Office of the Federal Register (OFR): Washington, DC.
[19] 40 C.F.R. Part 63 (1999) National Emission Standards for Hazardous Air Pollutants for Source Categories. Office of the Federal Register (OFR) :Washington, DC.
[20] California Air Resources Board (CARB), AB 1807-Toxics Air Contaminant Identification and Control. https://ww2.arb.ca.gov/resources/documents/ab-1807-toxics-air-contaminant-identification-and-control[2022]
[21] California Air Resources Board (CARB), AB 2588 Air Toxics Hot Spots. https://ww2.arb.ca.gov/our-work/programs/ab-2588-air-toxics-hot-spots[2022]
[22] California Air Resources Board (CARB), Community Air Protection Program Communities. https://ww2.arb.ca.gov/capp-communities[2022]
[23] N.u.R. Bundesministerium für Umwelt (2002) Die Technische Anleitung zur Reinhaltung der Luft - TA Luft.
[24] Bernd Becker/Michael Tiedemann (2011) Chemikalienrecht.
[25] 日本環境省,大気汚染防止法,1996。
[26] 日本環境省中央環境審議会大氣環境部會,有害大気汚染物質に該当する可能性がある物質リスト及び優先取組物質の見直し並びに有害大気汚染物質のリスクの程度に応じた対策のあり方について,1996。
[27] 中華人民共和國國家環境保護局,大气污染物综合排放标准,1996。
[28] Tsai, W. T (2016) Toxic volatile organic compounds (VOCs) in the atmospheric environment: regulatory aspects and monitoring in Japan and Korea, Environments 3(3), 23.
[29] 香港環境保護署,Toxic Air Pollutant Emissions Inventory from Stationary Sources in Hong Kong,1997。
[30] 行政院環境保護署,固定污染源有機性有害空氣污染物管制策略研訂及推動計畫,2009。
[31] 行政院環境保護署,固定污染源有害空氣污染物排放標準草案總說明,2019。
[32] 行政院環境保護署,固定污染源有害空氣污染物排放標準,2021。
[33] 行政院環境保護署環境檢驗所,空氣中氣態有機溶劑檢驗方法—以活性碳吸附之氣相層析⁄火焰離子化偵測法 (NIEA A710.11C),1992。
[34] 行政院環境保護署環境檢驗所,空氣中氣態芳香烴化合物檢驗方法-以活性碳吸附之氣相層析⁄火焰離子化偵測法 (NIEA A719.11C),1992。
[35] 行政院環境保護署環境檢驗所,空氣中丙烯醯胺、己內醯胺、二甲基亞碸及二甲基甲醯胺檢測方法-氣相層析/火焰離子化偵測法 (NIEA A742.10B),2014。
[36] US EPA (1984) Toxic Organics - 1 (TO-1): Method for The Determination of Volatile Organic Compounds in Ambient Air Using Tenax® Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS).
[37] R. Borusiewicz, and J. Zięba-Palus (2007) Comparison of the Effectiveness of Tenax TA® and Carbotrap 300® in Concentration of Flammable Liquids Compounds, Journal of Forensic Sciences 52, 70-74.
[38] US EPA (1984) Toxic Organics - 2 (TO-2): Method for The Determination of Volatile Organic Compounds in Ambient Air by Carbon Molecular Sieve Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS).
[39] US EPA (1999) Toxic Organics - 17 (TO-17): Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes.
[40] 中华人民共和国生态环境部,固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法 (HJ 734-2014),2014。
[41] 行政院環境保護署環境檢驗所,排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法 (NIEA A722.76B),2019。
[42] 行政院環境保護署環境檢驗所,排放管道中乙酸正丁酯等氣態有機化合物檢測方法-採樣袋採樣/氣相層析儀火焰離子化偵測器法 (NIEA A738.72B),2021。
[43] 行政院環境保護署環境檢驗所,排放管道中 C5-C10 非極性氣態有機物檢測方法-採樣袋採樣/氣相層析質譜分析法 (NIEA A734.70B),2007。
[44] 中华人民共和国生态环境部,固定污染源废气 挥发性有机物的采样 气袋法 (HJ 732-2014),2014。
[45] 行政院環境保護署環境檢驗所,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.16B),2021。
[46] US EPA (1999) Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography–Mass Spectrometry (GC-MS).
[47] 中华人民共和国生态环境部,环境空气 挥发性有机物的测定罐采样/气相色谱-质谱法 (HJ 759-2015),2015。
[48] US EPA (1999) Toxic Organics - 14A (TO-14A): Compendium Method TO-14A Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography.
[49] O. Baroja, E. Rodríguez, Z. Gomez de Balugera, A. Goicolea, N. Unceta, C. Sampedro, A. Alonso, and R. Barrio (2005) Speciation of volatile aromatic and chlorinated hydrocarbons in an urban atmosphere using TCT-GC/MS, Journal of Environmental Science and Health 40, 343-367.
[50] Ö.O. Kuntasal, D. Karman, D. Wang, S.G. Tuncel, and G. Tuncel (2005) Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic–mass spectrometric analysis, Journal of Chromatography A 1099, 43-54.
[51] B. Tolnai, J. Hlavay, D. Möller, H.-J. Prümke, H. Becker, and M. Dostler (2000) Combination of canister and solid adsorbent sampling techniques for determination of volatile organic hydrocarbons, Microchemical Journal 67, 163-169.
[52] S. Cariou, and J.-M. Guillot (2006) Double-layer Tedlar bags: a means to limit humidity evolution of air samples and to dry humid air samples, Analytical and Bioanalytical Chemistry 384, 468-474.
[53] 行政院環境保護署環境檢驗所,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),2013。
[54] S. Yao, Q. Wang, J. Zhang, R. Zhang, Y. Gao, H. Zhang, J. Li, and Z. Zhou (2021) Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment, Atmospheric Pollution Research 12.
[55] C. Li, Y. Liu, B. Cheng, Y. Zhang, X. Liu, Y. Qu, J. An, L. Kong, Y. Zhang, C. Zhang, Q. Tan, and M. Feng (2022) A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation, Sci Total Environ 806, 150247.
[56] M. Wang, L. Zeng, S. Lu, M. Shao, X. Liu, X. Yu, W. Chen, B. Yuan, Q. Zhang, and M. Hu (2014) Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Analytical Methods 6, 9424-9434.
[57] J.-L. Wang, C.-C. Chang, and K.-Z. Lee (2012) In-line sampling with gas chromatography–mass spectrometry to monitor ambient volatile organic compounds, Journal of Chromatography A 1248, 161-168.
[58] 王美珠,碩士論文,針對工業排放之污染性有機氣態物質開發連續監測技術,化學學系,國立中央大學,2016。
[59] 朱晨瑄,碩士論文,以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
[60] Y.-C. Su, C.-C. Chang, and J.-L. Wang (2008) Construction of an automated gas chromatography/mass spectrometry system for the analysis of ambient volatile organic compounds with on-line internal standard calibration, Journal of Chromatography A 1201, 134-140.
[61] 曾美惠,碩士論文,離子通道孔徑對熱脫附 GC-MS 連續監測空氣有害物質穩定性的影響,化學學系,國立中央大學,2021。
[62] A. Maceira, L. Vallecillos, F. Borrull, and R. M. Marcé (2017) New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS, Science of the total environment 599, 1718-1727.
[63] A.K. Baker, F. Slemr, and C.A.M. Brenninkmeijer (2010) Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft, Atmospheric Measurement Techniques 3, 311-321.
[64] Q. Gong, and K.L. Demerjian (1995) Hydrocarbon losses on a regenerated nation® dryer, Journal Of The Air & Waste Management Association 45, 490-493.
[65] W.F. Burns, D.T. Tingey, R.C. Evans, and E.H. Bates (1983) Problems with a Nafion® membrane dryer for drying chromatographic samples, Journal of Chromatography A 269, 1-9.
[66] Perma Pure, MD-Series Gas Dryers, Nafion Gas Dryers. https://www.permapure.com/environmental-scientific/products/gas-sample-dryers/md-gas-dryers/[2022]
[67] S.W. Chen, J.L. Wang, and C. Chew (1999) Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere, Journal of Chromatography A 863, 183-193.
[68] 李冠均,碩士論文,自製新型除水及熱脫附濃縮裝置用於 GC/MS 線上分析揮發性有機汙染物,化學學系,國立中央大學,2020。
[69] 曾柏勝,碩士論文,自製除水器及熱脫附儀用於線上 GC/MS/FID 揮發性有機污染物之分析,化學學系,國立中央大學,2021。
[70] D.A. Skoog, F.J. Holler, and S.R. Crouch, Principles of instrumental analysis, Cengage learning2017.
[71] Agilent 5977 Series MSD System Concepts Guide.
[72] Agilent 5977B Series MSD Operating Manual.
[73] Agilent 5977 Series EI Source Selection Guide.
[74] K.A. Anderson, M.J. Szelewski, G. Wilson, B.D. Quimby, and P.D. Hoffman (2015) Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses, J Chromatogr A 1419, 89-98.
[75] B.D. Quimby, M.J. Szeleski, M.K. Freed, and H.F. Prest (2019) In-situ conditioning in mass spectrometer systems, Agilent Technologies Inc, United States.
[76] M. Lesieur, E. Almasi, and T. Sheehan (2017) Significant Robustness Improvements of PAHs Analysis in Palm Oil Using the JetClean Self-Cleaning Ion Source in a GC/MS/MS System, Agilent Technologies Inc, United States.
[77] A.A. Andrianova, and B.D. Quimby (2019) Optimized GC/MS Analysis for PAHs in Challenging Matrices, Application Note Food Testing & Agriculture.
[78] D. Wong, L. Zhao, B. Quimby, and J. Riener (2019) EU Priority PAH Analysis in Pumpkin Seed Oil Using Bond Elut EMR–Lipid Cleanup by GC/MS/MS, Application Note Food Testing & Agriculture, Agilent Technologies Inc, United States.
[79] B. Quimby, M. Szelewski, E. Almasi, and K. Brady (2016) Using the JetClean Self- Cleaning Ion Source to Extend Maintenance Free Operation, Agilent Technologies Inc, United States.
[80] LabWrench, GC - Gas Chromatography/GC Accessories/Agilent Technologies-JetClean Self-Cleaning Ion Source. https://www.labwrench.com/equipment/24541/agilent-technologies-jetclean-self-cleaning-ion-source[2022]
[81] Agilent JetClean: In-situ GCMS Ion Source Cleaning and Conditioning.
[82] 行政院環境保護署環境檢驗所,「空氣中四氯甲烷等揮發性有害空氣污染物擴散式採樣與現地質譜監測調查技術精進開發」,2021。
[83] N. Abas, A.R. Kalair, N. Khan, A. Haider, Z. Saleem, and M.S. Saleem (2018) Natural and synthetic refrigerants, global warming: A review, Renewable and Sustainable Energy Reviews 90, 557-569.
[84] E. Halimic, D. Ross, B. Agnew, A. Anderson, and I. Potts (2003) A comparison of the operating performance of alternative refrigerants, Applied thermal engineering 23, 1441-1451.
[85] M.J. Molina, and F.S. Rowland (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, Nature 249, 810-812.
[86] Ozone Secretariat (2000), The Montreal protocol on substances that deplete the ozone layer, United Nations Environment Programme (UNEP).
[87] National Oceanic and Atomspheric Administration (NOAA), Global Monitoring Laboratory - Halocarbons and other Atmospheric Trace Species. https://gml.noaa.gov/hats/data.html[2022]
[88] J.-L. Wang, C. Chew, S.-W. Chen, and S.-R. Kuo (2000) Concentration variability of anthropogenic halocarbons and applications as internal reference in volatile organic compound measurements, Environmental science & technology 34, 2243-2248.
[89] B. Yuan, W. Hu, M. Shao, M. Wang, W. Chen, S. Lu, L. Zeng, and M. Hu (2013) VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China, Atmospheric Chemistry and Physics, 13, 8815-8832.
[90] United States Environmental Protection Agency (US EPA), Chapter One of the SW-846 Compendium: Project Quality Assurance and Quality Control. https://www.epa.gov/hw-sw846/chapter-one-sw-846-compendium-project-quality-assurance-and-quality-control[2022]
[91] 行政院環境保護署環境檢驗所,環境檢驗方法偵測極限測定指引,2005。
指導教授 王家麟 劉文治(Jia-Lin Wang Wen-Tzu Liu) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明