參考文獻 |
參考文獻
(1) Ge, J.; Neofytou, E.; Cahill, T. J.; Beygui, R. E.; Zare, R. N. Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano 2012, 6, 227−233.
(2) Benoit, D.S.; Overby, C.T.; Sims, K.R., Jr.; Ackun-farmmer, M.A. Drug Delivery Systems (Ch. 2.5.12). Biomaterials Science: An Introduction to Materials in Medicine (Fourth Edition); Elsevier: Amsterdam, The Netherlands, 2020, 1237–1266.
(3) Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5, 951–967.
(4) Yuk, H.; Lu, B.; Zhao, X. Hydrogel Bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667.
(5) Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomater. Sci. 2019, 7, 843–855.
(6) Lavrador, P.; Esteves, M. R.; Gaspar, V. M.; Mano, J. F. Stimuli‐Responsive Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2020, 31, 2005941.
(7) Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071.
(8) Lee, Y., Chung, H. J., Yeo, S., Ahn, C. H., Lee, H., Messersmith, P. B., & Park, T. G. Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 2010, 6(5), 977-983.
(9) Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671.
(10) Morishita, M.; Barichello, J. M.; Takayama, K.; Chiba, Y.; Tokiwa, S.; Nagai, T. Pluronic® F-127 Gels Incorporating Highly Purified Unsaturated Fatty Acids for Buccal Delivery of Insulin. Int. J. Pharm. 2001, 212, 289–293.
(11) Kadam, Y.; Yerramilli, U.; Bahadur, A. Solubilization of Poorly Water-Soluble Drug Carbamezapine in Pluronic® Micelles: Effect of Molecular Characteristics, Temperature and Added Salt on the Solubilizing Capacity. Colloids Surf., B 2009, 72, 141–147.
(12) Taha, E. I.; Badran, M. M.; El-Anazi, M. H.; Bayomi, M. A.; El-Bagory, I. M. Role of Pluronic F127 Micelles in Enhancing Ocular Delivery of Ciprofloxacin. J. Mol. Liq. 2014, 199, 251–256.
(13) Jaiswal, M.; Kumar, M.; Pathak, K. Zero Order Delivery of Itraconazole via Polymeric Micelles Incorporated In Situ Ocular Gel for the Management of Fungal Keratitis. Colloids Surf., B 2015, 130, 23–30.
(14) Wang, G.; Nie, Q.; Zang, C.; Zhang, B.; Zhu, Q.; Luo, G.; Wang, S. Self-Assembled Thermoresponsive Nanogels Prepared by Reverse Micelle→Positive Micelle Method for Ophthalmic Delivery of Muscone, a Poorly Water-Soluble Drug. J. Pharm. Sci. 2016, 105, 2752–2759.
(15) Jung, Y.-S.; Park, W.; Park, H.; Lee, D.-K.; Na, K. Thermo-Sensitive Injectable Hydrogel Based on the Physical Mixing of Hyaluronic Acid and Pluronic F-127 for Sustained NSAID Delivery. Carbohydr. Polym. 2017, 156, 403–408.
(16) Zhang, C.; Zhang, J.; Qin, Y.; Song, H.; Huang, P.; Wang, W.; Wang, C.; Li, C.; Wang, Y.; Kong, D. Co-Delivery of Doxorubicin and Pheophorbide A by Pluronic F127 Micelles for Chemo-Photodynamic Combination Therapy of Melanoma. J. Mater. Chem. B 2018, 6, 3305–3314.
(17) Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. A Review of Nonlinear Oscillatory Shear Tests: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753.
(18) Schreuders, F. K. G.; Sagis, L. M. C.; Bodnár, I.; Erni, P.; Boom, R. M.; van der Goot, A. J. Small and Large Oscillatory Shear Properties of Concentrated Proteins. Food Hydrocoll. 2021, 110, 106172.
(19) Ewoldt, R. H.; Hosoi, A. E.; McKinley, G. H. New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear. J. Rheol. 2008, 52, 1427–1458.
(20) Kleber, C.; Lienkamp, K.; Ruhe, J.; Asplund, M. Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Adv. Healthc. Mater. 2019, 8, 1801488.
(21) Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly (3, 4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481–494.
(22) Kayser, L. V.; Lipomi, D. J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.
(23) Takano, T.; Masunaga, H.; Fujiwara, A.; Okuzaki, H.; Sasaki, T. PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films. Macromolecules 2012, 45, 3859–3865.
(24) Zhang, S.; Chen, Y.; Liu, H.; Wang, Z.; Ling, H.; Wang, C.; Ni, J.; Celebi-Saltik, B.; Wang, X.; Meng, X.; Kim, H. J.; Baidya, A.; Ahadian, S.; Ashammakhi, N.; Dokmeci, M. R.; Travas-Sejdic, J.; Khademhosseini, A. Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. Adv. Mater. 2020, 32, 1904752.
(25) Fani, N.; Hajinasrollah, M.; Asghari Vostikolaee, M.; Baghaban Eslaminejad, M.; Mashhadiabbas, F.; Tongas, N.; Rasoulianboroujeni, M.; Yadegari, A.; Ede, K.; Tahriri, M. Influence of Conductive PEDOT: PSS in a Hard Tissue Scaffold: In Vitro and In Vivo Study. J. Bioact. Compat. Polym. 2019, 34, 436–441.
(26) Balding, P.; Borrelli, R.; Volkovinsky, R.; Russo, P. S. Physical Properties of Sodium Poly(styrene sulfonate): Comparison to Incompletely Sulfonated Polystyrene. Macromolecules 2022, 55, 1747–1762.
(27) Braglia, M.; Ferrari, I. V.; Djenizian, T.; Kaciulis, S.; Soltani, P.; Di Vona, M. L.; Knauth, P. Bottom-Up Electrochemical Deposition of Poly(styrene sulfonate) on Nanoarchitectured Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 22902–22910.
(28) Taylor, D. K.; Jayes, F. L.; House, A. J.; Ochieng, M. A. Temperature-Responsive Biocompatible Copolymers Incorporating Hyperbranched Polyglycerols for Adjustable Functionality. J. Funct. Biomater. 2011, 2, 173–194.
(29) Maeda, Y.; Higuchi, T.; Ikeda, I. FTIR Spectroscopic and Calorimetric Studies of the Phase Transitions of N-Isopropylacrylamide Copolymers in Water. Langmuir 2001, 17, 7535–7539.
(30) Bonacucina, G.; Spina, M.; Misici-Falzi, M.; Cespi, M.; Pucciarelli, S.; Angeletti, M.; Palmieri, G. F. Effect of Hydroxypropyl β-Cyclodextrin on the Self-Assembling and Thermogelation Properties of Poloxamer 407. Eur. J. Pharm. Sci. 2007, 32, 115–122.
(31) Pragatheeswaran, A. M.; Chen, S. B. Effect of Chain Length of PEO on the Gelation and Micellization of the Pluronic F127 Copolymer Aqueous System. Langmuir 2013, 29, 9694–9701. |