博碩士論文 109223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.254.237
姓名 鐘意琇(Yi-Hsiu Chung)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以六甲基二矽氮烷為氮來源在微波加熱下探討含氮雜環化合物之合成反應
(Synthesis of N-Heterocyclic Compounds by Using Hexamethyldisilazane as a Nitrogen Source Under Microwave Irradiation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 含氮雜環化合物廣泛存在於材料、藥物與天然物的結構中,因此近年來許多化學家致力於發展新的含氮雜環合成方法。本篇論文使用六甲基二矽氮烷作為含氮雜環的氮原子來源,符合綠色化學環保的概念,較少的溶劑、更有效率的微波加熱方式以及搭配三氟甲磺酸三甲基矽酯、三氟化硼與納菲樹脂三種不同的酸催化劑進行催化反應探討含有吡啶、嘧啶及異喹啉雜環化合物之合成途徑。其中,納菲樹脂在反應結束後經過簡單清洗可以重複使用達十次且產率變化不大,如此一來可以達到環境友善的目的。我們也提出不同含氮雜環結構可能的反應機制。研究結果發現六甲基二矽氮烷很適合作為含氮雜環的氮元素來源,未來合成更多不同結構的氮雜環時,六甲基二矽氮烷是很好的試劑選擇。
摘要(英) N-heterocyclic compounds are widely existing in materials, pharmaceuticals and nature products. Therefore, chemists devoted to develop new synthetic methods in recent years. In this thesis, we use hexamethyldisilazane as the nitrogen source for nitrogen containing heterocycles. And combined with green chemistry, we use microwave reaction method, which requires less solvent and more efficient reaction, and use trimethylsilyl trifluoromethanesulfonate, boron trifluoride and Nafion® NR50 three different kinds of acid catalyst for catalytic reaction. The synthesis method of compounds containing pyridine, pyrimidine and isoquinoline structure were explored. Among them, Nafion® NR50 can be reused 10 times and simply cleaned after the reaction is finished. The yield changes little, so as to achieve the goal of being friendly to the environment. In addition, we also proposed probable reaction mechanisms of different nitrogen heterocycles we synthesis in this thesis. The results show that hexamethyldisilazane is very suitable as a nitrogen source for nitrogen containing heterocycles and also a good choice for the synthesis of more different nitrogen containing structure in the future.
關鍵字(中) ★ 氮雜環化合物
★ 微波
★ 六甲基二矽氮烷
關鍵字(英) ★ N-heterocyclic compounds
★ Microwave
★ Hexamethyldisilazane
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 vii
流程目錄 viii
縮寫表 x
第一章 緒論 1
1-1 引言 1
1-2 微波加熱反應 2
1-3 六甲基二矽氮烷試劑的應用 4
第二章 以查耳酮作為起始物在微波加熱下合成2,4,6-三苯環吡啶 7
2-1 緒論 7
2-2 結果與討論 10
2-2-1反應條件優化 10
2-2-2 三氟甲磺酸三甲基矽酯催化合成TAPs及3-苄基TAPs 12
2-2-3 合成TAPs及3-苄基TAPs反應機制探討 16
2-3 結論 17
2-4 實驗部分及光譜 17
2-4-1 一般實驗敘述 17
2-4-2 實驗步驟及物理數據 17
2-4-3 核磁共振光譜 44
第三章 以醛酮為起始物使用不同酸催化在微波加熱下擇 148
性合成2,4,6-三苯環吡啶與嘧啶 148
3-1 緒論 148
3-2結果與討論 151
3-2-1 反應條件優化 151
3-2-2 以三氟甲磺酸三甲基矽酯催化合成2,4,6-三苯環吡啶化合物 152
3-2-3 合成2,4,6-三苯環吡啶可能的反應機制探討 155
3-2-4 以三氟化硼催化合成2,4,6-三苯環嘧啶化合物 157
3-2-5 三氟化硼催化合成2,4,6-三苯環嘧啶化合物可能的反應機制 159
3-3 結論 160
3-4 實驗部分及光譜 161
3-4-1 一般實驗敘述 161
3-4-2實驗步驟及物理數據 161
3-4-3 核磁共振光譜 188
第四章 以Nafion為催化劑合成3-苯環異喹啉 258
4-1 緒論 258
4-2 薗頭耦合反應(Sonogashira coupling reaction)介紹 262
4-3 Nafion®樹酯介紹與在合成上的應用 263
4-4 結果與討論 264
4-4-1 以薗頭耦合反應合成起始物 264
4-4-2 3-苯環異喹啉合成反應條件優化 267
4-4-3 以Nafion®催化合成化合物45a-45w 268
4-4-4 Nafion® NR50催化合成3-苯環異喹啉反應機制探討 270
4-4-5 Nafion® NR50 回收清洗後再進行反應之探討 271
4-5 結論 273
4-6 實驗部分及光譜 274
4-6-1 一般實驗敘述 274
4-6-2 實驗步驟及物理數據 274
4-6-3 核磁共振光譜 293
第五章 文獻參考 385
參考文獻 [1] Alvarez‐Builla, J.; Barluenga, J. ChemInform 2012, 43, 1-9.
[2] Katritzky, A. R.; Oniciu, D. C.; Balaban A. T. Chem. Rev. 2004, 104, 2777-2812.
[3] Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B., Molecules 2020, 25, 1909.
[4] Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257−10274.
[5] Linthorst, J. A. Found Chem. 2010, 12, 55-68.
[6] Lidstorm, P.; Tierney, J.; Wathey B.; Westman J. Tetrahedron 2001, 57, 9225-9238.
[7] Hoz, A.; Dı´az-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164–178.
[8] Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldsera, L.; Leberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279-282.
[9] Rosana, M. R.; Hunt, J.; Ferrari, A.; Southworth, T. A.; Tao, Y.; Stiegman, A. E.; Dudley, G. B. J. Org. Chem. 2014, 79, 7437−7450.
[10] Burbiel, J. C.; Hockemeyer, J.; Müller, C. E. Beilstein J. Org. Chem. 2006, 2, 10.
[11] Joseph, A. A.; Verma, V. P.; Liu, X. Y.; Wu, C. H.; Dhurandhare, V. M.; Wang, C. C. Eur. J. Org. Chem. 2012, 4, 744-753.
[12] (a) Kiuru, P.; Yli-Kauhaluoma, J. Heterocycles in Nature Product Synthesis 2011, Chapter 8.
(b) Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang C.-L.; Liu, Y.-F.; Wang, Y. Drug Des. Dev. Ther. 2021, 15, 4289–4338.
(c) Guan, A.-Y.; Liu, C.-L.; Sun, X.-F.; Xie, Y.; Wang, M.-A. Bioorg. Med. Chem. 2016,
24, 342-353.
[13] (a) Liu, H.-Y.; Chen, L.-F.; Wang, H.-Y.; Wan, Y.; Wu, H. RSC Adv. 2016, 6, 94833-94839.
(b) Zhang, Y. Wang, D.; Sun, C.; Feng, H.; Zhao, D.; Bi, Y. Dyes Pigm. 2017, 141, 202–208.
(c) Ran, Q.; Ma, J.; Wang, T.; Fan, S.; Yang, Y; Qi, S.; Cheng, Y.; Song, F. New J.
Chem. 2016, 40, 6281—6288.
[14] (a) Lohmeijer, B. G. G.; Schubert, U. S. J Polym Sci A Polym Chem Part A 2003, 41, 1413-1427.
(b) Wang, H.; Liu, C.-H.; Wang, K.; Wang, M.; Yu, H.; Kandapal, S.; Brzozowski,
R.; Xu, B.; Wang, M.; Lu,S.; Hao, X.-Q.; Eswara, P. Nieh, M.-P.; Cai. J.; Li, X. J.
Am. Chem. Soc. 2019, 141, 16108−16116.
[15] Zhang, X.; Ye, Q.; Fan, Y.; Hu, X.; Shen, Y. Chem. Pap. 2020, 74, 2145–2152.
[16] Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, B.-S.; Jeong, T. C.; Lee, C.-S.; Lee, E.-S. Bioorg. Med. Chem. 2007, 15, 4351-4359.
[17] Frank, R. L.; Seven, R. P. J. Am. Chem. Soc. 1949, 71, 2629–2635.
[18] Wang, M.; Yang, Z.; Song, Z.; Wang, Q. J. Heterocycl. Chem. 2015, 52, 907–910.
[19] Maleki, B. Org. Prep. Proced. Int. 2015, 47, 173–178.
[20] Zarnegar, Z.; Safari, J.; Borjian-borujeni, M. Chem. Heterocycl. Compd. 2015, 50, 1683–1691.
[21] Zhang, X.; Wang, Z. ; Xu, K.; Feng, Y.; Zhao, W.; Xu, X.; Yan, Y.; Yi, W. Green Chem. 2016, 18, 2313–2316.
[22] Yi, Y.-K.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Green Chem. 2017, 19, 1023–1027.
[23] Adib, M.; Tahermansouri, H.; Koloogani, S. A.; Mohammadi, B.; Bijanzadeh, H. R. Tetrahedron Lett. 2006, 47, 5957–5960.
[24] Kumar,A.; Koul, S. Razdan, T. K.; Kapoor, K. K. Tetrahedron Lett., 2006, 47, 837-842.
[25] Verma, A. K.; Koul, S.; Pannu, A. P. S.; Razdan, T. K. Tetrahedron 2007, 63, 8715–8722.
[26] (a) Chan, C.-K.; Lai, C.-Y.; Lo, W.-C.; Cheng, Y.-T.; Chang, M.-Y.; Wang, C.-C. Org. Biomol. Chem., 2020, 18, 305–315.
(b) Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. Org. Biomol. Chem. 2020, 18, 7201–7212.
(c) Asressu, K. H.; Chan, C.-K.; Wang, C.-C. RSC Adv. 2021, 11, 28061–28071.
(d) Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. Synthesis 2020, 18, 1779–1794.
[27] Lagoja, I. M. Chem Biodivers. 2005, 2, 1-50.
[28] Coen, L. M. D.; Heugebaert, T. S. A.; García, D.; Stevens, C. V. Chem. Rev. 2016, 116, 80−139.
[29] Selvam, T. P.; James, C. R.; Dniandev, P. V.; Valzita, S. K. Res. Pharm. 2012, 2, 1-9.
[30] Itami, K.; Yamazaki, D.; Yoshida, J.-I. J. Am. Chem. Soc. 2004, 126, 15396-15397.
[31] Chen, D.; Su, S.-J.; Cao, Y. J. Mater. Chem. C 2014, 2, 9565-9578.
[32] Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662-666.
[33] Rakhi, C; Ramesh, K.; Darbem, M. P.; Branquinho, T. A.; Oliveira, A. R.; Manjari, P. S.; Domingues, N. L. C. Tetrahedron Lett. 2016, 57, 1656-1660.
[34] Deibl, N.; Ament, K. Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804−12807.
[35] Mastalir, M.; Glatz, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K. J. Am. Chem. Soc. 2016, 138, 15543−15546.
[36] Liu, D.; Guo, W.; Wu, W.; Jiang, H. J. Org. Chem. 2017, 82, 13609−13616.
[37] Chen, J.; Meng, H.; Zhang, F.; Xiao, F.; Deng, G.-J. Green Chem. 2019, 21, 5201-5206.
[38] Khan, A. Y.; Kumar, G. S. Biophys Rev. 2015, 7, 407-420.
[39] Kiselev, E.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2010, 53, 8716–8726.
[40] Sun, Y.; Xun, K.; Wang, Y.; Chen, X. Anticancer Drugs 2009, 20, 757-769.
[41] Stöckigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem. Int. Ed. 2011, 50, 8538–8564.
[42] Heravi, M. M.; Khaghaninejad, S.; Nazari, N. Adv. Heterocycl. Chem. 2014, 112, 183-234.
[43] Xu, X.-Y.; Qin, G.-W.; Xu, R.-S.; Zhu, X. Z. Tetrahedron 1998, 47, 14179-14188.
[44] Wong, N. C. W.; Tucker, J. E. L.; Hansen, H. C.; Chiacchia, F. S.; McCaffrey, D. U.S.Pat. Appl. US 2008188467. Chem. Abstr. 2008, 149, 246409.
[45] Dey, D.; Neogi, P.; Sen, A.; Sharma, S. D.; Nag, B. PCT Int. Appl. WO 2002030888, 2002; Chem. Abstr. 2002, 136, 309858.
[46] Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem. 2009, 74, 2893–2896.
[47] Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651-3653.
[48] Gao, H.; Zhang, J. Adv. Synth. Catal. 2009, 351, 85-88.
[49] Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett., 2010, 12, 5688-5691.
[50] Dhara, S.; Singha, R.; Nuree, Y.; Ray, J. K. Tetrahedron Lett. 2014, 55, 795-798.
[51] Kumar,S.; Saunthwal, R. K.; Aggarwal, T.; Siva K.; Reddy Kotla S. K.; Verma, A. K. Org. Biomol. Chem. 2016, 14, 9063–9071.
[52] Pan, W.-C.; Liu, J.-Q.; Wang, X.-S. Tetrahedron 2018,74, 1468-1475.
[53] Sonogashira, K J. Organomet. Chem. 2002, 653, 46-49.
[54] Carla, H.-W. J. Membr. Sci. 1996, 120, 1-33.
[55] Yamato, T.; Hideshima, C; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1991, 56, 2089-2091.
[56] Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. Catalysts 2021, 11, 877.
[57] Gopalaiah, K; Choudhary, R. Tetrahedron 2021,98, 132429.
[58] Shen, J.; Cai, D.; Kuai, C.; Liu, Y.; Wei, M.; Cheng, G.; Cui, X. J. Org. Chem. 2015, 80, 6584-6589.
[59] Mao, Z.-Y.; Liao, X.-Y.; Wang, H.-S.; Wang, C.-G.; Huang, K.-B.; Pan, Y.-M. RSC Adv. 2017, 7, 13123-13129.
[60] Bai, C.; Guo, H.; Liu, X.; Liu, D.; Sun, Z.; Bao, A.; Baiyin, M.; Muschin, T.; Bao, Y.-S. J. Org. Chem. 2021, 86, 12664-12675.
[61] Ling, F.; Shen, L.; Pan, Z.; Fang, L.; Song, D.; Xie, Z.; Zhong, W. Tetrahedron Lett. 2018, 59, 3678-3682.
[62] Rohokale, R. S.; Koenig, B.; Dhavale, D. D. J. Org. Chem. 2016, 81, 7121-7126.
[63] Xiang, J.-C.; Wang, M.; Cheng, Y.; Wu, A.-X. Org. Lett. 2016, 18, 24-27.
[64] Low, C.-H.; Rosenberg, J. N.; Lopez, M. A.; Agapie, T. J. Am. Chem. Soc. 2018, 140, 11906-11910.
[65] Adib, M.; Mahmoodi, N.; Mahdavi, M.; Bijanzadeh, H. R. Tetrahedron Lett. 2006, 52, 9365-9368.
[66] Bains, A. K.; Adhikari, D. Catal. Sci. Technol. 2020, 10, 6309-6318.
[67] Hiraga, Y.; Kuwahara, R.; Hatta, T. Tetrahedron 2021, 94, 132317.
[68] Mondal, R.; Herbert, D. E. Organometallics 2020, 39, 1310-1317.
[69] Jongcharoenkamol, J.; Chuathong, P.; Amako, Y.; Kono, M.; Poonswat, K.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem. 2018, 83, 13184-13210.
[70] Yanada, R.; Hashimoto, K.; Tokizane R.; Miwa, Y.; Minami, H.; Yanada, K.; Ishikura, M.; Takemoto, Y. J. Org. Chem. 2008, 73, 5135-5138.
[71] Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228-2231.
[72] Too, P. C.; Chiba, S. Chem. Commun. 2012, 48, 7634-7636.
[73] Zhang, J.; Xiao, Y.; Chen, K.; Wu, W.; Jiang, H.; Zhu, S. Adv. Synth. Catal. 2016, 358, 2684-2691.
[74] Verma, A. K.; Choudhary, D.; Saunthwal, R. K.; Rustagi, V.; Patel, M.; Tiwari, R. K. J. Org. Chem. 2013, 78, 6657-6669.
[75] Claus, V.; Molinari, L.; Bullmann, S.; Thusek, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2019, 25, 9385-9389.
[76] Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nosel, P.; Jongbloed, L.; Rudolph M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555-562.
[77] Alfonsi, M.; Dell’Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati, G.; Rossi, E. Eur. J. Org. Chem. 2009, 2852-2862.
[78] Yamada, T.; Park, K.; Tachikawa, T.; Fujii, A.; Rudolph, M.; Hashimi, A. S. K.; Sajiki, H. Org. Lett. 2020, 22, 1883−1888.
[79] Tang, Y.; Yu, Y.; Wei, X.; Yang, J.; Zhu, Y.; Zhao, Y.-H.; Tang, Z.; Zhou, Z.; Li, X.; Yu, X. Tetrahedron Lett. 2019, 60, 151187.
[80] Jeganathan, M.; Pitchumani, K. RSC Adv. 2014, 4, 38491–38497.
[81] Barman, D.; Ghosh, T.; Show, K.; Debnath, S.; Ghosh, T.; Maiti, D. K. Org. Lett. 2021, 23, 2178−2182.
[82] Wu, X.; Ding, G.; Yang, L.; Lu, W.; Li, W.; Zhang, Z.; Xie, X. Org. Lett. 2018, 20, 5610−5613.
指導教授 王正中 侯敦仁(Cheng-Chung Wang Duen-Ren Hou) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明