參考文獻 |
1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. arXiv preprint arXiv:0905.1886 2009.
2. Subra, P.; Jestin, P., Powders elaboration in supercritical media: comparison with conventional routes. Powder technology 1999, 103 (1), 2-9.
3. Jia, J.-f.; Zabihi, F.; Gao, Y.-h.; Zhao, Y.-p., Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent. Journal of Chemical & Engineering Data 2015, 60 (6), 1744-1749.
4. Gupta, R. B.; Shim, J.-J., Solubility in supercritical carbon dioxide. CRC press: 2006.
5. DeSimone, J. M.; Tumas, W., Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press: 2003.
6. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
7. Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Hrnčič, M. K., Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification 2019, 141, 107532.
8. Kostrzewa, D.; Dobrzyńska-Inger, A.; Turczyn, A., Experimental data and modelling of the solubility of high-carotenoid paprika extract in supercritical carbon dioxide. Molecules 2019, 24 (22), 4174.
9. Natolino, A.; Da Porto, C., Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. The Journal of Supercritical Fluids 2019, 151, 30-39.
10. dos Santos, L. C.; Bitencourt, R. G.; dos Santos, P.; e Rosa, P. d. T. V.; Martinez, J., Solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2. Fluid Phase Equilibria 2019, 493, 174-180.
11. Kayathi, A.; Chakrabarti, P. P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V., Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.
12. Qamar, S.; Torres, Y. J.; Parekh, H. S.; Falconer, J. R., Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. Journal of Chromatography B 2021, 1167, 122581.
13. Pinto, R. H. H.; Menezes, E. G. O.; Freitas, L. C.; Andrade, E. H. d. A.; Ribeiro-Costa, R. M.; Silva Júnior, J. O. C.; Carvalho Junior, R. N., Supercritical CO2 extraction of uxi (Endopleura uchi) oil: Global yield isotherms, fatty acid profile, functional quality and thermal stability. The Journal of Supercritical Fluids 2020, 165, 104932.
14. Ishak, I.; Hussain, N.; Coorey, R.; Ghani, M. A., Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. Journal of CO2 Utilization 2021, 45, 101430.
15. Bezerra, F. W. F.; Salazar, M. d. L. A. R.; Freitas, L. C.; de Oliveira, M. S.; dos Santos, I. R. C.; Dias, M. N. C.; Gomes-Leal, W.; Andrade, E. H. d. A.; Ferreira, G. C.; Carvalho, R. N. d., Chemical composition, antioxidant activity, anti-inflammatory and neuroprotective effect of Croton matourensis Aubl. Leaves extracts obtained by supercritical CO2. The Journal of Supercritical Fluids 2020, 165, 104992.
16. Jingfu, J.; Qinglong, S.; Chengyuan, Q.; yue, Z.; dan, Z.; Fahuan, G., Modelling of continuous supercritical fluids extraction to recover fatty and volatile oil from Traditional Chinese Medicinal materials. The Journal of Supercritical Fluids 2022, 180, 105456.
17. Vardanega, R.; Nogueira, G. C.; Nascimento, C. D.; Faria-Machado, A. F.; Meireles, M. A. A., Selective extraction of bioactive compounds from annatto seeds by sequential supercritical CO2 process. The Journal of Supercritical Fluids 2019, 150, 122-127.
18. Sun, Q.; Shi, J.; Scanlon, M.; Xue, S. J.; Lu, J., Optimization of supercritical-CO2 process for extraction of tocopherol-rich oil from canola seeds. Lwt 2021, 145, 111435.
19. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2017.
20. Huang, L.-F.; Tong, W.-Q. T., Impact of solid state properties on developability assessment of drug candidates. Advanced drug delivery reviews 2004, 56 (3), 321-334.
21. Wang, B.-C.; Su, C.-S., Solid solubility measurement of ipriflavone in supercritical carbon dioxide and microparticle production through the rapid expansion of supercritical solutions process. Journal of CO2 Utilization 2020, 37, 285-294.
22. Fang, C.-H.; Chen, P.-H.; Chen, Y.-P.; Tang, M., Micronization of Three Active Pharmaceutical Ingredients Using the Rapid Expansion of Supercritical Solution Technology. Chemical Engineering & Technology 2020, 43 (6), 1186-1193.
23. Yang, T.-M.; Li, J.-S.; Yeh, T.-F.; Su, C.-S., Solid Solubilities of Sulfonamides and Use of Rapid Expansion of Supercritical Solutions for Microparticle Production. Chemical Engineering & Technology 2020, 43 (6), 1115-1123.
24. Cuadra, I. A.; Zahran, F.; Martín, D.; Cabañas, A.; Pando, C., Preparation of 5-fluorouracil microparticles and 5-fluorouracil/poly(l-lactide) composites by a supercritical CO2 antisolvent process. The Journal of Supercritical Fluids 2019, 143, 64-71.
25. Remiro, P. d. F. R.; Rosa, P. d. T. V. e.; Moraes, Â. M., Effect of process variables on imiquimod micronization using a supercritical antisolvent (SAS) precipitation technique. The Journal of Supercritical Fluids 2022, 181, 105500.
26. Yan, T.; Tao, Y.; Wang, X.; Lv, C.; Miao, G.; Wang, S.; Wang, D.; Wang, Z., Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. The Journal of Supercritical Fluids 2021, 175, 105290.
27. Yeo, S.-D.; Kiran, E., Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids 2005, 34 (3), 287-308.
28. Bethune, S. J.; Schultheiss, N.; Henck, J.-O., Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Crystal growth & design 2011, 11 (7), 2817-2823.
29. Padrela, L.; Rodrigues, M. A.; Tiago, J.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. The Journal of Supercritical Fluids 2014, 86, 129-136.
30. Ribas, M. M.; Aguiar, G. P. S.; Muller, L. G.; Siebel, A. M.; Lanza, M.; Oliveira, J. V., Curcumin-nicotinamide cocrystallization with supercritical solvent (CSS): Synthesis, characterization and in vivo antinociceptive and anti-inflammatory activities. Industrial Crops and Products 2019, 139, 111537.
31. Dal Magro, C.; dos Santos, A. E.; Ribas, M. M.; Aguiar, G. P.; Volfe, C. R.; Lopes, M. L.; Siebel, A. M.; Müller, L. G.; Bortoluzzi, A. J.; Lanza, M., Production of curcumin-resveratrol cocrystal using cocrystallization with supercritical solvent. The Journal of Supercritical Fluids 2021, 171, 105190.
32. Gong, D.; Jing, X.; Zhao, Y.; Zheng, H.; Zheng, L., One-step supercritical CO2 color matching of polyester with dye mixtures. Journal of CO2 Utilization 2021, 44, 101396.
33. Penthala, R.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis of azo and anthraquinone dyes and dyeing of nylon-6, 6 in supercritical carbon dioxide. Journal of CO2 Utilization 2020, 38, 49-58.
34. Saus, W.; Knittel, D.; Schollmeyer, E., Dyeing of textiles in supercritical carbon dioxide. Textile Research Journal 1993, 63 (3), 135-142.
35. Guzel, B.; Akgerman, A., Mordant dyeing of wool by supercritical processing. The Journal of Supercritical Fluids 2000, 18 (3), 247-252.
36. Long, J.-J.; Ma, Y.-Q.; Zhao, J.-P., Investigations on the level dyeing of fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2011, 57 (1), 80-86.
37. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
38. Penthala, R.; Kumar, R. S.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis and efficient dyeing of anthraquinone derivatives on polyester fabric with supercritical carbon dioxide. Dyes and Pigments 2019, 166, 330-339.
39. Abate, M. T.; Seipel, S.; Yu, J.; Viková, M.; Vik, M.; Ferri, A.; Guan, J.; Chen, G.; Nierstrasz, V., Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles. Dyes and Pigments 2020, 183, 108671.
40. Abate, M. T.; Zhou, Y.; Guan, J.; Chen, G.; Ferri, A.; Nierstrasz, V., Colouration and bio-activation of polyester fabric with curcumin in supercritical CO2: Part II – Effect of dye concentration on the colour and functional properties. The Journal of Supercritical Fluids 2020, 157, 104703.
41. Abate, M. T.; Ferri, A.; Guan, J.; Chen, G.; Ferreira, J. A.; Nierstrasz, V., Single-step disperse dyeing and antimicrobial functionalization of polyester fabric with chitosan and derivative in supercritical carbon dioxide. The Journal of Supercritical Fluids 2019, 147, 231-240.
42. Abou Elmaaty, T.; Elsisi, H.; Negm, E.; Ayad, S.; Sofan, M., Novel nano silica assisted synthesis of azo pyrazole for the sustainable dyeing and antimicrobial finishing of cotton fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2022, 179, 105354.
43. Kong, X.-j.; Huang, T.-t.; Cui, H.-s.; Yang, D.-f.; Lin, J.-x., Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide. Journal of CO2 Utilization 2019, 33, 1-11.
44. Kasim, N. A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A. S.; Junginger, H. E.; Stavchansky, S. A.; Midha, K. K.; Shah, V. P.; Amidon, G. L., Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Molecular Pharmaceutics 2004, 1 (1), 85-96.
45. Custodio, J. M.; Wu, C.-Y.; Benet, L. Z., Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Advanced Drug Delivery Reviews 2008, 60 (6), 717-733.
46. Wang, S.-W.; Chen, J.-Z.; Hsieh, C.-M., Measurement and Correlation of Solubility of Methylsalicylic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2021, 66 (1), 280-289.
47. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data 1996, 25 (6), 1509-1596.
48. Jcgm, J., Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Int. Organ. Stand. Geneva ISBN 2008, 50, 134.
49. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. US Department of Commerce, Technology Administration, National Institute of …: 1994; Vol. 1297.
50. Ellison, S. L.; Williams, A., Quantifying uncertainty in analytical measurement. 2012.
51. Kragten, J., Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
52. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, 2001.
53. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
54. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158, 501-510.
55. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
56. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
57. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
58. Gurdial, G. S.; Foster, N. R., Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide. Industrial & engineering chemistry research 1991, 30 (3), 575-580.
59. Ke, J.; Mao, C.; Zhong, M.; Han, B.; Yan, H., Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent. The Journal of Supercritical Fluids 1996, 9 (2), 82-87.
60. Lucien, F. P.; Foster, N. R., Influence of matrix composition on the solubility of hydroxybenzoic acid isomers in supercritical carbon dioxide. Industrial & engineering chemistry research 1996, 35 (12), 4686-4699.
61. Stassi, A.; Bettini, R.; Gazzaniga, A.; Giordano, F.; Schiraldi, A., Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions. Journal of Chemical & Engineering Data 2000, 45 (2), 161-165.
62. Bristow, S.; Shekunov, B. Y.; York, P., Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems. Industrial & engineering chemistry research 2001, 40 (7), 1732-1739.
63. Ravipaty, S.; Koebke, K. J.; Chesney, D. J., Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity. Journal of Chemical & Engineering Data 2008, 53 (2), 415-421.
64. Manna, L.; Banchero, M., Solubility of Tolbutamide and Chlorpropamide in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2018, 63 (5), 1745-1751.
65. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. The Journal of Supercritical Fluids 2019, 152, 104498.
66. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. Journal of Chemical & Engineering Data 2019, 64 (12), 5338-5348.
67. Huang, Z.; Guo, Y.-H.; Sun, G.-B.; Chiew, Y. C.; Kawi, S., Representing dyestuff solubility in supercritical carbon dioxide with several density-based correlations. Fluid Phase Equilibria 2005, 236 (1), 136-145. |