博碩士論文 109324049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.226.186.225
姓名 洪翔荷(Hsiang-Ho Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 弱分離嵌段共聚物與低分子量均聚物混摻薄膜於熱退火之形態探討
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 本研究主要探討弱分離嵌段共聚物—聚苯乙烯-b-聚(甲基丙烯酸甲酯)(PS-b-PMMA))與低分子量均聚物—聚苯乙烯(hPS)以及氘代聚苯乙烯(dPS)的混摻薄膜於熱退火之形態探討。通過簡單的熱退火過程,根據調整混合物中均聚物的含量、薄膜厚度以及退火溫度的不同,以獲得幾種不同之奈米形態。由於低分子量的hPS以及dPS相較於嵌段共聚物PS及PMMA鏈段皆具較低表面能,因此經由退火過程後的薄膜傾向以平行基材(SiOx/Si)的排列方向形自組裝奈米形態,且薄膜樣品表面皆會有一層潤濕層(wetting layer)。
為了觀察材料的內部結構,本實驗主要以氧氣離子電漿蝕刻的方式移除潤濕層以及增強PS與PMMA鏈段間的對比度,利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、低掠角小角度X光散射技術(GISAXS)、X光反射率掃描量測(XRR)與中子反射儀(ToF-NR)鑑定其混摻薄膜結構,探討低混摻量薄膜所形成的平行穿孔層結構(perforated layer, PL//)。
透過臨場實驗(in-situ)以及量測不同入射角之方式(angle-dependent),以獲得五個顯著的繞射及散射特徵,分別為(I)truncation rods,(II)Yoneda streaks,(III)shoulder arcs,(IV)meridian streaks(V)a circle of diffraction spots。在薄膜中心區域主要可觀察到特徵(I)至(IV),而特徵(V)則主要來自於厚膜較厚邊緣之處所形成的雙螺旋結構(double-gyroid, DG)。由於雙螺旋結構為一亞穩態,故透過延長退火時間得以消除此結構的產生。
然而,由於折射效應(refraction distortion effect)的影響,沿qz方向的定量分析具有一定的挑戰性。本研究透過定量分析特徵(I)與特徵(III)可判別水平穿孔層之堆疊方式,結果如下:230 oC下退火,主要為ABC堆疊;270 oC下退火,主要為AB堆疊。此外,亦透過中子反射儀(ToF-NR)的量測,擬合薄膜平行穿孔層結構之單層厚度以及薄膜整體厚度,發現相比於270°C下進行退火,在230°C條件下之dPS鏈段更容易優先聚集於薄膜自由表面而產生表面偏析現象(surface segregation)。
摘要(英) We have demonstrated the phase behavior of substrate-supported films of a symmetric weakly segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer, and its blends with low-molecular-weight homopolystyrene (hPS) & deuterated-polystyrene (dPS) at different compositions. Upon finely tuning the blending ratio, film thickness, and temperature, we can obtain several nanostructures. All the nanodomains were obtained simply by thermal annealing. For the annealed films, self-assembled nanodomains tend to adopt parallel orientation on SiOx/Si. Because of low molecular weights, both dPS and hPS homopolymers have lower surface energies than the PS and PMMA blocks. As a result, there should be a PS overlayer on the surface.
Surface morphologies and structures in blend films were characterized by an optical microscope (OM), a scanning electron microscope (SEM), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR) or time of flight neutron reflectivity (ToF-NR). To remove the surface wetting layer and to increase the contrast between the PS and PMMA nanodomains for morphological observations through SEM characterization, the blend films on SiOx/Si were etched by oxygen plasma. The morphological observations and structural characterization demonstrate that the blend films formed perforated layers (PL//) with parallel orientation.
In-situ and angle-dependent GISAXS results demonstrate five features: (i) truncation rods, (ii) the Yoneda streaks, (iii) shoulder arcs on the equatorial axis, (iv) meridian streaks and (v) a circle of diffraction spots. Features (i)-(iv) are shown in the GISAXS region and feature (v) is shown in the GTSAXS region. Features (i)-(iv) were produced from the middle region of the blend films. For thick films, feature (v) was present and produced from the film edge. The quantitative analysis of features (i) and (iii) demonstrate that PS-b-PMMA/PS blend films formed perforations with either AB stacks or ABC stacks. Feature (v) indicate that the edge of the thick films preferentially formed double gyroid. The double-gyroid phase is a metastable phase because it cannot preserve after prolonged annealing. Due to the refraction distortion effect, the quantitative analysis along the qz direction remains a challenging task. For thick blend films, ABC stacks of perforations are favored at 230 oC and AB stacks of perforations are favored at 270 oC. ABC and AB stacks of perforations were deeply studied by in-situ and angle-dependent GISAXS. Furthermore, a time-of-flight neutron reflectometer (ToF-NR) demonstrates that the surface of a PS-b-PMMA/dPS film was enriched with dPS chains when the film was annealed at 230 oC. The surface preference of dPS chains could be prohibited at 270 oC.
關鍵字(中) ★ 自組裝
★ 薄膜
★ 混摻
★ 嵌段共聚物
★ 相行為
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xiv
一、緒論 1
1-1共聚物之自組裝機制 1
1-2嵌段共聚物之塊材系統自組裝 3
1-3嵌段共聚物之薄膜系統自組裝 6
1-3-1表面場強度對於薄膜之影響 8
1-3-2奈米結構排向及梯田結構的形成與膜厚相稱性 10
1-3-3空間侷限效應對於薄膜之影響 12
1-4嵌段共聚物與均聚物之混摻系統 13
1-5先導研究 18
1-6研究動機 20
二、實驗 21
2-1實驗材料 21
2-1-1高分子材料 21
2-1-2溶劑 22
2-1-3基材 22
2-2實驗儀器 22
2-3實驗製備與設計 24
2-3-1矽晶圓基材處理 24
2-3-2高分子薄膜製備 24
2-3-3移除潤濕層之方法—氧氣離子電漿蝕刻 26
2-4儀器原理 27
2-4-1光學顯微鏡(OM) 27
2-4-2掃描式電子顯微鏡(SEM) 28
2-4-3中子反射儀(ToF-NR) 29
2-4-4 X光反射率掃描量測(XRR) 30
2-4-5低掠角小角度X光散射儀(GISAXS) 32
2-4-6反射式膜厚儀( Optical interferometer ) 43
三、結果與討論 44
3-1臨場實驗(in-situ)於不同厚度下之結構探討 44
3-1-1 GISAXS 2D圖之顯著特徵介紹 45
3-1-2初始厚度105 nm條件下之GISAXS臨場實驗結果 47
3-1-3初始厚度305 nm條件下之GISAXS臨場實驗結果 51
3-2水平穿孔層之層間距結構探討 56
3-2-1布拉格繞射晶格點計算堆疊方式(AB及ABC packing分析) 56
3-2-2 X光反射率掃描(XRR)量測 61
3-2-3中子反射儀(ToF-NR)擬合 62
3-2-4不同入射角下之結構探討(Angle-dependent) 64
四、結論 66
五、參考文獻 68
六、附錄 75
參考文獻 [1] Huang, J.; Turner, S. R. Recent Advances in Alternating Copolymers: The Synthesis, Modification, and Applications of Precision Polymers. Polymer 2017,116, 572-586.
[2] Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J. Microdomain Orientation of PS-b-PMMA by Controlled Interfacial Interactions. Macromolecules 2008, 41, 6431-6437.
[3] Matsen, M. W.; Bates, F. S. Unifying Weak-and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091–1098.
[4] Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44, 6725-6760.
[5] Sparnacci, K.; Antonioli, D.; Gianotti, V.; Laus, M.; Ferrarese Lupi F.; Giammaria, T. J.; Seguini, G.; Perego, M. Ultrathin Random Copolymer Grafted Layers for Block Copolymer Self-assembly. ACS applied materials & interfaces 2015. 7, 10944-10951.
[6] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 1995, 28, 8796-8806.
[7] Knoll, A.; Magerle, R.; Krausch, G. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Experiments. The Journal of chemical physics 2004, 120, 1105-1116.
[8] Huinink, H. P.; Brokken-Zijp, J. C. M.; Van Dijk, M. A.; Sevink, G. J. A. Asymmetric Block Copolymers Confined in a Thin Film. The Journal of Chemical Physics 2000, 112, 2452-2462.

[9] Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Direct Imaging and Mesoscale Modelling of Phase Transitions in a Nanostructured Fluid. Nature materials 2004, 3, 886-891.
[10] Black, C. T.; Ruiz, R.; Breyta, G.; Cheng, J. Y.; Colburn, M. E.; Guarini, K. W.; Kim, H.; Zhang, Y. Polymer Self Assembly in Semiconductor Microelectronics. IBM Journal of Research and Development 2007, 51, 605–633.
[11] Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y. Functional Nanomaterials Based on Block Copolymer Self-Assembly. Progress in Polymer Science 2010, 35, 1325–1349.
[12] Kohei, Y. Postpolymerization Modification of Polystyrene-block-Poly (methyl methacrylate) to Fabricate 10-nm-Scale Microphase-Separated Structure. Hokkaido University Doctoral dissertation, 2019.
[13] Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Mesoscale Modeling. The Journal of chemical physics 2004, 120, 1117-1126.
[14] Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. Role of Dissimilar Interfaces in Thin Films of Cylinder-Forming Block Copolymers. The Journal of chemical physics 2004, 120, 1127–1137
[15] Hamley, I. W. Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications. Progress in Polymer Science 2009, 34 , 1161-1210.
[16] Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89, 035501.

[17] Brassat, K.,; Lindner, J. K. Nanoscale Block Copolymer Self‐Assembly and Microscale Polymer Film Dewetting: Progress in Understanding the Role of Interfacial Energies in the Formation of Hierarchical Nanostructures. Advanced Materials Interfaces 2020, 7, 1901565.
[18] Walton, D. G.; Kellogg, G. J.; Mayes, A. M.; Lambooy, P.; Russell, T. P. A Free Energy Model for Confined Diblock Copolymers. Macromolecules 1994, 27, 6225.
[19] Huang, E.; Pruzinsky, S.; Russell, T. P.; Mays, J.; Hawker, C. J. Neutrality Conditions for Block Copolymer Systems on Random Copolymer Brush Surfaces. Macromolecules 1999, 32, 5299–5303.
[20] Huang, E.; Mansky, P.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Mixed Lamellar Films : Evolution, Commensurability Effects, and Preferential Sefect Formation. Macromolecules 2000, 33, 80–88.
[21] Coulon, G.; Russell, T. P.; Deline, V. R.; Green, P. F. Surface-induced Orientation of Symmetric, Diblock Copolymers: A Secondary Ion Mass-Spectrometry Study. Macromolecules 1989, 22, 2581-2589.
[22] Anastasiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Neutron Reflectivity Studies of the Surface-Induced Ordering of Diblock Copolymer Films. Physical Review Letters 1989, 62, 1852-1855.
[23] Henkee, C. S.; Thomas, E. L.; Fetters. L. J. The Effect of Surface Constraints on the Ordering of Block Copolymer Domains. Journal of Materials Science 1988, 23, 1685-1694.
[24] Court, F.; Yamaguchi, D.; Hashimoto, T. Morphological Studies of Binary Mixtures of Block Copolymers: Temperature Dependence of Cosurfactant Effects. Macromolecules 2006, 39, 2596-2605.
[25] Doerk, G. S.; Yager, K. G., Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends. ACS Nano 2017, 11, 12326-12336.
[26] Matsen, M. W. Phase Behavior of Block Copolymer/Homopolymer Blends. Macromolecules 1995, 28, 5765-5773.
[27] Hasegawa, H.; Hashimoto, T. Self-Assembly and Morphology of Block Copolymer Systems. Comprehensive polymer science 1989, 2, 497.
[28] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular Weight Homopolymers. Macromolecules 1991, 24, 240-251.
[29] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23, 4378–4386.
[30] Choi, C.; Ahn, S.; Kim, J. K. Diverse Morphologies of Block Copolymers by Blending with Homo(and Co)Polymers. Macromolecules 2020, 53, 4577−4580
[31] 洪嘉彣,弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為,國立中央大學,化學工程與材料工程學系碩士論文,2021。
[32] Stein, G. E.; Laws, T. S.; Verduzco, R. Tailoring the Attraction of Polymers Toward Surfaces. Macromolecules 2019, 52, 4787-4802.
[33] Ting, Y. H.; Liu, C. C.; Park, S. M.; Jiang, H.; Nealey, P. F.; Wendt, A. E. Surface Roughening of Polystyrene and Poly (methyl methacrylate) in Ar/O2 Plasma Etching. Polymers 2010, 2, 649-663.
[34] Farrell, R. A.; Petkov, N.; Shaw, M. T.; Djara, V.; Holmes, J. D.; Morris, M. A. Monitoring PMMA Elimination by Reactive Ion Etching from a Lamellar PS-b-PMMA Thin Film by ex Situ TEM Methods. Macromolecules 2010, 43, 20, 8651–8655.
[35] Transmitted Light Microscopy Optical Pathways, Olympus America . 2022年06月30日,取自https://lsmicro.olympus-lifescience.com/data/olympusmicro/htmltutorials/source/v2/tutorials/microscopy/transmitted/images/microBodyClosed2x.png。
[36] Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.;
Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-ray Microanalysis. 3rd Ed. Springer, New York, NY. 2003.
[37] James, M.; Nelson, A.; Holt, S. A.; Saebeck, T.; Hamilton, W. A.; Klose, F. The Multipurpose Time-of-Flight Neutron Reflectometer “Platypus” at Australia’s OPAL Reactor. Nucl. Instrum. Methods Phys. Res., Sect. A 2011, 632, 112−123.
[38] Nelson, A. R.; Prescott, S. W. Refnx: Neutron and X-ray Reflectometry Analysis in Python. J. Appl. Crystallogr. 2019, 52, 193− 200.
[39] Hong, J. W.; Jian, Y. Q.; Liao, Y. P.; Hung, H. H.; Huang, T. Y.; Nelson, A.; Tsao, I. Y.; Wu, C. M.; Sun, Y. S. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene-block-poly (methyl methacrylate). Langmuir 2021, 37, 13046-13058.
[40] Hong, J. W.; Chang, J. H.; Hung, H. H.; Liao, Y. P.; Jian, Y. Q.; Chang, I. C. Y.; Huang, T. Y.; Nelson, A.; Lin, I. M.; Chiang, Y.W.; Sun, Y. S. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-block-poly (methyl methacrylate). Macromolecules 2022, 55 , 2130-2147.
[41] Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Homopolymer Distributions in Ordered Block Copolymers. Macromolecules 1992, 25, 6523-6531.
[42] 蔡增光、林文智、卓恩宗,X光反射率在奈米半導體製程的新應用,科儀新知,第二十四卷第三期,2002。
[43] Liou, J. Y.; Sun, Y. S. Monolayers of Diblock Copolymer Micelles by Spin-Coating from O-xylene on SiO x/Si Studied in Real and Reciprocal Space. Macromolecules 2012, 45 , 1963-1971.
[44] Busch, P.; Rauscher, M.; Moulin, J. F.; Mueller-Buschbaum, P. Debye–Scherrer Rings from Block Copolymer Films with Powder-like Order. Journal of applied crystallography, 2011, 44, 370-379.
[45] Müller-Buschbaum, P.; Kaune, G.; Haese-Seiller, M.; Moulin, J. F. Morphology Determination of Defect-Rich Diblock Copolymer Films with Time-of-Flight Grazing-incidence Small-Angle Neutron Scattering. Journal of Applied Crystallography 2014, 47, 1228-1237.
[46] Smilgies, D. M. Grazing-Incidence Small-Angle Scattering (GISAXS). The SAXS Guide, 4th Edition 2017 Chapter, 6.
[47] 孫亞賢、劉峻佑、簡士偉,低掠角小角度X光散射原理及在高分子薄膜結構之應用,科儀新知,第三十四卷第四期,2013。
[48] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. Macromolecules 2005, 38, 4311–4323.
[49] Zhu, L.; Huang, P.; Chen, W. Y.; Weng, X.; Cheng, S. Z.; Ge, Q.; Quirk, R. P.; Senador, T.; Shaw, M. T.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. “Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-b-poly(ethylene oxide)Diblock Copolymer. Macromolecules 2003, 36, 3180–3188.
[50] Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial Phase Transition of Polystyrene-b-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38, 10532–10536.
[51] Ahn, H.; Shin, C.; Lee, B.; Ryu, D. Y. Phase Transitions of Block Copolymer Film on Homopolymer-Grafted Substrate. Macromolecules 2010, 43, 1958–1963.
[52] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K. W.; Shin, T. J.; Chung, B.; Chung, T.; Ree, M. Polystyrene-b-Polyisoprene Thin Films with Hexagonally Perforated Layer Structure: Quantitative Grazing-Incidence X-ray Scattering Analysis. Journal of Applied Crystallography 2008, 41, 281-291.
[53] Förster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition. Macromolecules 1994, 27, 6922-6935.
[54] Ahn, J. H.; Zin, W. C. Structure of Shear-Induced Perforated Layer Phase in Styrene−Isoprene Diblock Copolymer Melts. Macromolecules 2000, 33, 641-644.
[55] Lee, B.; Park, I.; Park, H.; Lo, C. T.; Chang, T.; Winans, R. E. Electron Density Map Using Multiple Scattering in Grazing-Incidence Small-Angle X-ray Scattering. Journal of Applied Crystallography 2007, 40, 496-504.
[56] Lu, X.; Yager, K. G.; Johnston, D.; Black, C. T.; Ocko, B. M. Grazing-Incidence Transmission X-ray Scattering: Surface Scattering in the Born Approximation. Journal of Applied Crystallography 2013, 46, 165-172.
[57] Liu, J.; Yager, K. G. Unwarping GISAXS Data . IUCrJ 2018, 5, 737-752.
[58] Matsen, M. W.; Bates, F. S. Block Copolymer Microstructures in the Intermediate-Segregation Regime. The Journal of chemical physics 1997,106, 2436-2448.
[59] Hariharan, A.; Kumar, S. K.; Rafailovich, M. H.; Sokolov, J.; Zheng, X.; Duong, D.; Schwarz, S. A.; Russell, T. P. The Effect of Finite Film Thickness on the Surface Segregation in Symmetric Binary Polymer Mixtures. The Journal of chemical physics 1993, 99, 656−663.
[60] Hariharan, A.; Kumar, S. K.; Russell, T. P. Reversal of the Isotopic Effect in the Surface Behavior of Binary Polymer Blends. The Journal of chemical physics 1993, 98, 4163−4173.
[61] Hariharan, A.; Kumar, S. K.; Russell, T. P. Free Surfaces of Polymer Blends. II. Effects of Molecular Weight and Applications to Asymmetric Polymer Blends. The Journal of chemical physics 1993, 99, 4041−4050.
指導教授 孫亞賢 審核日期 2022-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明