博碩士論文 109223010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.223.101.189
姓名 謝沁芸(Chin-Yun Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 研究化學修飾的胜肽水凝膠
(The study of chemically-engineered peptide hydrogel)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 自組裝 (Self-assembly) 是由無序分子透過特定、局部交互作用組織成具功能性且有序結構的自發性聚集過程,也是常見製成奈米結構的方式。自組裝在科學上受到大量關注的原因之一為其對於生命體的重要性,如形成生物體最小的組成單位細胞,是由自組裝的磷脂質、蛋白質、DNA 四聯體以及其他分子所組成。自組裝材料中有一類具水溶性官能基的分子,能構成奈米等級的三維交聯網狀結構,在含水的環境下,水分子會被吸附在此網狀結構中,形成巨觀下的水凝膠 (Hydrogel) 。一般常見水凝膠原料分為合成及天然兩種:合成原料的水凝膠,如聚乙烯醇、聚丙烯酸等,通常分子容易修飾、混摻且擁有不錯的機械性質。天然原料的水凝膠,如玻尿酸、明膠、胜肽等,通常具有高度的生物相容性以及生物降解性。其中,氨基酸所構成
的胜肽水凝膠同時具有合成及天然原料的優點。因其分子小,能透過改變氨基酸組成或化學修飾,以調整水凝膠的機械性質或成膠條件。本篇研究以化學合成的方式,合成一系列化學修飾的胜肽。在穿透式電子顯微鏡中,我們觀察到此類胜肽在酸性與中性下為球狀,在鹼性下則為纖維狀 (巨觀下為水凝膠) 的結構,說明 pH 值可調控胺基酸帶電的比例,進而影響到自組裝結構。而後,我們嘗試改變胜肽濃度、胜肽親疏水性對成膠的影響,發現高胜肽濃度及高疏水性胺基酸可促使化學修飾胜肽在較低的pH值下成膠。根據實驗結果以及文獻參考,當胜肽序列引入更為疏水的氨基酸後可於中性環境成膠。最後,我們也將老鼠纖維母細胞 (L929 mouse fibroblast) 培養在水凝膠上,成功驗證此人工合成胜肽為生物相容性的材料。
摘要(英) Self-assembly is the spontaneous aggregation process which disordered molecules organize into ordered or functional structures through specific interactions, which is a common
way of building nanostructures. In life science, self-assembly processes are widely identified in cell biology, including the formations of phospholipid membrane, protein superstructure, DNA quadruplex and other molecules. Among them, some amphiphilic materials form three-dimensional interconnected network structure. This network structure in an aqueous environment will absorb water to form hydrogel at the macroscopic level. Common hydrogel-forming materials can be divided into two categories including synthetic materials [e.g., poly(acrylic acid) and polyethylene glycol] and natural ones (e.g., hyaluronic acid and peptide). Synthetic materials have strong mechanical properties and easy to modify through the change of monomers. On the other hand, natural materials benefit from their superior biocompatibility and biodegradability. Among these cases, peptide-based hydrogel possesses the advantage of both cases. They are biocompatible and easy to modify through the change of sequence or amino acid modification. In this study, we designed a series of chemically-engineer peptides for preparing hydrogel. We observed that some peptides self-assembled into spherical-like structures in acid or neutral conditions but transformed into hydrogel with nano-fibrils in base conditions. We also found that high peptide concentration and the addition of hydrophobic amino acids could promote gel formation. Moreover, increasing the hydrophobicity makes the peptide able to form hydrogel in neutral condition. Finally, we successfully seeded L929 fibroblast cells onto the hydrogel at neutral pH value,
indicating this chemically-engineered peptides could be applied as a biocompatible material.
關鍵字(中) ★ 胜肽水凝膠 關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
附錄目錄 x
第一章 緒論 1
1-1 分子自組裝 1
1-2 常見的自組裝材料及結構之應用 2
1-3 水凝膠 (Hydrogel) 性質和應用 4
1-4 胜肽水凝膠 (Peptide-based hydrogel) 6
1-5 研究動機與目的 7
第二章 實驗儀器及藥品 9
2-1 實驗儀器 9
2-2 實驗藥品 10
2-2-1 胜肽合成藥品與純化試劑配置 10
2-2-2 實驗藥品 11
第三章 實驗方法 13
3-1 樣品製備 13
3-1-1 固相胜肽合成方法 (Solid Phase Peptide Synthesis, SPPS) 13
3-1-2 高效液相層析 (High-Performance Liquid Chromatography) 16
3-1-3 基質輔助雷射脫附游離化法 (MALDI Mass Spectroscopy) 17
3-2 自組裝胜肽材料性質分析 19
3-2-1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 19
3-2-1-1 胜肽樣品負染步驟 20
3-2-2 流變儀 (Rheometer) 21
3-2-3 界面電位分析 (Zeta potential analysis) 22
3-3 三維水凝膠細胞培養 23
3-3-1 水凝膠製備與細胞培養 23
3-3-2 螢光染色 24
第四章 實驗結果 25
4-1 自組裝胜肽水凝膠劑之設計 25
4-2 自組裝胜肽合成、純化與鑑定 27
4-3 胜肽自組裝性質鑑定 28
4-4 pH值對胜肽自組裝之影響 29
4-4-1 Lys+去質子化對胜肽自組裝之影響 31
4-4-2 纖維狀、球形結構示意圖 33
4-5 胜肽濃度對胜肽自組裝之影響 35
4-6 pH值、胜肽濃度對自組裝胜肽之成膠影響 37
4-7 胜肽親疏水性序列調控對胜肽自組裝之影響 39
4-7-1 胜肽親疏水性序列調控對自組裝胜肽之成膠影響 42
4-8 芳香環平面性修飾對自組裝胜肽之成膠影響 47
4-9 未修飾芘羧酸胜肽自組裝之影響 49
4-10 Pyr-L3K3水凝膠性質鑑定 50
4-10-1 水凝膠之黏彈性 50
4-10-2 水凝膠之界面電位 51
4-10-3 水凝膠之親疏水性 52
4-10-4 三維水凝膠細胞培養 53
第五章 實驗討論 55
第六章 總結 57
附錄 58
參考文獻 64
參考文獻 [1] Varga, M., Self-assembly of nanobiomaterials. 2016; Vol. Applications of Nanobiomaterials, p 57-90.
[2] Amabilino, D. B., et al., "Supramolecular materials." Chem Soc Rev 2017, 46 (9), 2404-2420.
[3] Frisch, H.; Besenius, P., "pH-switchable self-assembled materials." Macromol Rapid Commun 2015, 36 (4), 346-63.
[4] Ghosh, G.; Fernandez, G., "pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide." Beilstein J Org Chem 2020, 16, 2017-2025.
[5] Gibson, M. I.; O′Reilly, R. K., "To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles." Chem Soc Rev 2013, 42 (17), 7204-13.
[6] Castelletto, V., et al., "Influence of salt on the self-assembly of two model amyloid heptapeptides." J Phys Chem B 2010, 114 (23), 8002-8.
[7] Ahmed, S., et al., "Solvent Assisted Tuning of Morphology of a Peptide-Perylenediimide Conjugate: Helical Fibers to Nano-Rings and their Differential Semiconductivity." Sci Rep 2017, 7 (1), 9485.
[8] Whitesides, G. M.; Boncheva, M., "Beyond molecules: self-assembly of mesoscopic and macroscopic components." Proc Natl Acad Sci U S A 2002, 99 (8), 4769-74.
[9] Levin, A., et al., "Biomimetic peptide self-assembly for functional materials." Nat Rev Chem 2020, 4 (11), 615-634.
[10] Delfi, M., et al., "Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy." Nano Today 2021, 38.
[11] Das, A. K.; Gavel, P. K., "Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications." Soft Matter 2020, 16 (44), 10065-10095.
[12] Sinha, V.; Chakma, S., "Advances in the preparation of hydrogel for wastewater treatment: A concise review." J Environ Chem Eng 2019, 7 (5).
[13] Li, J. L., et al., "Hydrogel: Diversity of Structures and Applications in Food Science." Food Rev Int 2021, 37 (3), 313-372.
[14] Pan, Z., et al., "Recent advances on polymeric hydrogels as wound dressings." Apl Bioeng 2021, 5 (1).
[15] Li, J. L., et al., "Recent advances of self-assembling peptide-based hydrogels for biomedical applications." Soft Matter 2019, 15 (8), 1704-1715.
[16] Ahn, W., et al., "Designed protein- and peptide-based hydrogels for biomedical sciences." J Mater Chem B 2021, 9 (8).
[17] Das, S.; Das, D., "Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications." Front Chem 2021, 9.
[18] Wang, L., et al., "Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing." Acs Appl Mater Inter 2021, 13 (49), 58329-58339.
[19] Pedersen, S. L., et al., "Microwave heating in solid-phase peptide synthesis." Chemical Society Reviews 2012, 41 (5), 1826-1844.
[20] Whitesides, G. M., et al., "Molecular Self-Assembly and Nanochemistry - a Chemical Strategy for the Synthesis of Nanostructures." Science 1991, 254 (5036), 1312-1319.
[21] Reches, M.; Gazit, E., "Casting metal nanowires within discrete self-assembled peptide nanotubes." Science 2003, 300 (5619), 625-627.
[22] Yu, Z. Q., et al., "Self-Assembling Peptide Nanofibrous Hydrogel as a Versatile Drug Delivery Platform." Curr Pharm Design 2015, 21 (29), 4342-4354.
[23] Draper, E. R.; Adams, D. J., "Low-Molecular-Weight Gels: The State of the Art." Chem-Us 2017, 3 (3), 390-410.
[24] Lee, S., et al., "Self-Assembling Peptides and Their Application in the Treatment of Diseases." Int J Mol Sci 2019, 20 (23).
[25] Talloj, S. K., et al., "Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation." J Mater Chem B 2020, 8 (33), 7483-7493.
[26] Nowak, A. P., et al., "Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles." Nature 2002, 417 (6887), 424-428.
[27] Meng, Q. B., et al., "Tunable Self-Assembled Peptide Amphiphile Nanostructures." Langmuir 2012, 28 (11), 5017-5022.
[28] Guler, M. O., et al., "Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers." J Mater Chem 2005, 15 (42), 4507-4512.
[29] Kim, S., et al., "Complexation and coacervation of like-charged polyelectrolytes inspired by mussels." P Natl Acad Sci USA 2016, 113 (7), E847-E853.
[30] Kim, S., et al., "Cation-pi interaction in DOPA-deficient mussel adhesive protein mfp-1." J Mater Chem B 2015, 3 (5), 738-743.
指導教授 黃人則 謝發坤(Jen-Tse Huang Fa-Kuen Shieh) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明