博碩士論文 109324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.217.67.16
姓名 張育騰(Yu-Tang Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類多能幹細胞在寡肽接枝水凝膠上的培養和分化為間葉幹細胞
(Culture and Differentiation of Human Pluripotent Stem Cells into Mesenchymal Stem Cells on Oligopeptide-grafted Hydrogels)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 人類多能幹細胞 (hPSCs) 包括人類胚胎幹細胞 (hESCs) 和人類誘導多能幹細胞 (hiPSCs) 具有分化成內胚層、外胚層和中胚層等三個胚層的細胞的能力。hPSCs 充分分化為特定的細胞譜係可以通過細胞培養生物材料進行調節,因為 hPSCs 受細胞培養生物材料的物理和生物學信號的調節。在本研究中,已開發出嫁接了幾種細胞外基質 (ECM) 衍生肽的水凝膠,可用於 hPSC 培養和分化為間充質乾細胞。選擇具有最佳彈性(25.3 kPa)的聚乙烯醇-衣康酸PVA-IA、水凝膠作為基礎細胞培養生物材料。使用N-(3-二甲基氨基丙基)-N′-乙基碳二亞胺鹽酸鹽 (EDC) 和 N-羥基琥珀酰亞胺 (NHS) 化學將幾種類型的層粘連蛋白和玻連蛋白衍生的寡肽移植到 PVA-IA 水凝膠上。人類 iPSC 可以在一些具有 25.3 kPa 彈性(24 小時交聯時間)的寡肽接枝水凝膠上很好地繁殖且繼代超過 10 次。當研究每個代數中每個寡肽接枝水凝膠上 hiPSCs 的膨脹倍數時,發現接枝有 LB2CKKK (GCGGKKKPMQKMRGDVFSP) 和 KKLB2CK (KKGCGGKGGPMQKMRGDVFSP) 寡肽的水凝膠對於 hPSC 增殖是最優選的,其中水凝膠的彈性是 25.3 千帕。發現在寡肽上插入賴氨酸 (K) 的正氨基酸對於 hiPSC 在寡肽接枝水凝膠上的最佳增殖至關重要,這有助於提高水凝膠的 zeta 電位。 尤其是,隨著接枝有來自層粘連蛋白β4鏈的幾種寡肽的水凝膠的zeta電位的增加,發現在接枝有幾種寡肽的水凝膠上培養的hiPSCs的增殖更好(更高的膨脹倍數),其中賴氨酸的正氨基酸插入到寡肽促進了與寡肽接枝的水凝膠的高 zeta 電位。 人類胚胎幹細胞在移植有 (a) 層粘連蛋白衍生寡肽和 (b) 玻連蛋白衍生寡肽的水凝膠上分化為間葉幹細胞 (MSC) 。LB2CK (KGCGGKGGPMQKMRGDVFSP) 移植水凝膠上的人類 ESC 衍生 MSCs 表現出最佳形態、極好的倍增時間以及最高的 MSCs 表面標誌物表達。人類 iPSC 可以在移植有 LB2CKKK 寡肽的基於樹枝狀大分子的水凝膠上廣泛增殖並形成一個菌落,這是另一種有前途的無異種細胞培養生物材料。 我希望這項研究中開發的水凝膠將來可以用於臨床治療。
摘要(英) Human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the ability to differentiate into the cells derived from three germ layers, such as endoderm, ectoderm and mesoderm. The pluripotency maintenance and adequate differentiation of hPSCs into specific lineage of the cells can be regulated by cell culture biomaterials, because hPSCs are regulated by physical and biological cues of the cell culture biomaterials. The hydrogels grafted with several extracellular matrix (ECM)-derived peptides, which have optimal elasticity have been developed for hPSC culture and differentiation into mesenchymal stem cells in this study. Poly (vinyl alcohol-co-itaconic acid), PVA-IA, hydrogels having optimal elasticity (25.3 kPa) were selected as base cell culture biomaterials. Several types of laminin- and vitronectin-derived oligopeptides were grafted on PVA-IA hydrogels using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) chemistry. Human PSCs could proliferate well on some oligopeptides-grafted hydrogels having 25.3 kPa elasticity (24h crosslinking time) for more than 10 passages. When the expansion fold of hiPSCs was investigated on each oligopeptide-grafted hydrogel at each passage, the hydrogels grafted with oligopeptides of LB2CKKK (GCGGKKKPMQKMRGDVFSP) and KKLB2CK (KKGCGGKGGPMQKMRGDVFSP) were found to be the most preferable for hPSC proliferation where the elasticity of the hydrogels was 25.3 kPa. Positive amino acid of lysine (K) insertion on the oligopeptide was found to be critical for optimal proliferation of hPSCs on the oligopeptide-grafted hydrogels, which contributed to enhance zeta potential of the hydrogels. Especially, better proliferation (higher expansion fold) of hPSCs cultured on the hydrogels grafted with several oligopeptides was found with the increase of the zeta potential of the hydrogels grafted with several oligopeptides derived from laminin β4 chain, where positive amino acid of lysine insertion into the oligopeptides promoted high zeta potential of the hydrogels grafted with oligopeptides. Human ESCs were differentiated into MSCs on hydrogels grafted with (a) laminin derived oligopeptide and (b) vitronectin derived oligopeptide. Human ESC-derived MSCs on LB2CK (GCGGKGGPMQKMRGDVFSP)-grafted hydrogels showed the best morphology, excellent doubling time and also the highest MSCs surface marker expression. Human iPSCs could proliferate and form into a colony extensively on dendrimer-based hydrogels grafted with LB2CKKK oligopeptides, which were another promising xeno-free cell culture biomaterials. I hope that the hydrogels developed in this study can be used in clinical therapy in the future.
關鍵字(中) ★ 幹細胞
★ 分化
★ 水凝膠
★ 寡肽
★ 界達電位
關鍵字(英) ★ stem cell
★ differentiation
★ hydrogel
★ oligopeptide
★ zeta potential
論文目次 Abstract I
Index of content IV
Index of figure VII
Index of table X
Chapter 1 Introduction 1
1-1 Stem cells 1
1-1-1 Human pluripotent stem cells 1
1-1-2 Human embryonic stem cells 2
1-1-3 Human induced pluripotent stem cells 3
1-1-4 Characterization of human pluripotent stem cells 4
1-1-5 hPSCs for therapeutic application 7
1-2 Mesenchymal stem cells 8
1-2-1 Characterization of human mesenchymal stem cells 9
1-2-2 Differentiation ability of human mesenchymal stem cells 11
1-2-3 Efficient methods for mesenchymal stem cells differentiation 11
1-3 The biomaterial substrates for hPSCs cultivation 12
1-3-1 The feeder cell layers for hPSCs cultivation 12
1-3-2 The maintenance of hPSCs on feeder free and xeno-contained proteins 13
1-3-3 The maintenance of hPSCs on feeder free and xeno-free proteins 14
1-3-4 Oligopeptides for hPSC adhesion, cultivation and differentiation 16
1-4 Dendrimers 18
1-4-1 Poly(amidoamine) dendrimer 18
1-5 The goal of this study 21
Chapter 2 Materials and Method 22
2-1 Materials 22
2-1-1 Cell lines 22
2-1-2 Commercial Culture Dishes 22
2-1-3 Commercial Coated Substrates 22
2-1-4 Medium for hPSCs 22
2-1-5 Medium and chemicals for differentiation of MSCs from hPSCs 22
2-1-6 Medium and chemicals for cell passages 23
2-1-7 Phosphate buffer saline solution (PBS) 23
2-1-8 The chemicals of Oligopeptide-grafted Hydrogels 24
2-1-9 Chemicals for immunostaining 29
2-1-10 Chemicals for flow cytometry 29
2-2 Experimental instruments 30
2-3 Experimental methods 31
2-3-1 Human pluripotent stem cells maintenance 31
2-3-2 The passage method of human pluripotent stem cells 31
2-3-3 Expansion fold and differentiation ration of hPSCs 31
2-3-4 Immunostaining of hPSCs 33
2-3-5 Embryoid body (EB) formation in vitro 36
2-3-6 Flow cytometry measurements 36
2-3-7 Freezing of human pluripotent stem cells 37
2-3-8 Thawing of human pluripotent stem cells 37
2-4 Preparation of oligopeptide-grafted hydrogels 38
2-4-1 Preparation of PVA-IA coated surface 38
2-4-2 Preparation of different oligopeptide-grafted PVA-IA hydrogels 39
2-4-3 Preparation of dendrimer-based oligopeptide-grafted PVA-IA hydrogels 39
2-5 Characterization of oligopeptide-grafted hydrogels 41
2-5-1 X-ray photoelectron spectroscopy (XPS) measurements 41
2-5-2 Zeta potential measurements 42
2-5-3 PrimosCR 45 measurements 42
2-6 Differentiation of Mesenchymal stem cells 43
2-6-1 The protocol for differentiation of MSCs from hPSCs 43
2-6-2 The passage method for MSCs 44
Chapter 3 Results and discussions 45
3-1 Cultivation of hiPSCs (HPS0077) on different peptide-grafted hydrogels 45
3-1-1 Morphologies of hiPSCs (HPS0077) on different peptide-grafted hydrogels in long-term cultivation 46
3-1-2 Expansion fold of hiPSCs (HPS0077) on different peptide-grafted hydrogels in long-term cultivation 48
3-1-3 Pluripotency analysis of hiPSCs (HPS0077) on different peptide-grafted hydrogels in long-term cultivation 53
3-2 Cultivation of hiPSCs (Mix5) on different peptide-grafted hydrogels 57
3-2-1 Morphology of hiPSCs (Mix5) on different peptide-grafted hydrogels in long-term cultivation 57
3-2-2 Expansion fold of hiPSCs (Mix5) on different peptide-grafted hydrogels in long-term cultivation 59
3-2-3 Pluripotency analysis of hiPSCs (Mix5) on different peptide-grafted hydrogels in long-term cultivation 64
3-3 Correlation coefficient of expansion fold of hiPSCs and zeta potential of peptide-grafted hydrogels 68
3-4 Differentiation of human pluripotent stem cells into mesenchymal stem cells on different peptide-grafted hydrogels 70
3-4-1 Differentiation of hiPSCs-HPS0077 and Mix5 into MSCs on different peptide-grafted hydrogels 70
3-4-2 Differentiation of hESCs-H9 into MSCs on different peptide-grafted hydrogels 74
3-4-3 MSCs surface marker expression of H9-derived hMSCs on different peptide-grafted hydrogels 75
3-5 Cultivation of hiPSCs (HPS0077) on dendrimer-based peptide-grafted hydrogels 76
3-5-1 The optimal grafting method of oligopeptide onto dendrimer-based hydrogels 77
3-5-2 The optimal concentration ratio of dendrimer and crosslinker on dendrimer-based peptide-grafted hydrogels 78
3-5-3 The expansion fold of hiPSCs (HPS0077) on dendrimer-based peptide-grafted hydrogels with different concentration ratio of dendrimer and crosslinker 80
3-5-4 The optimal concentration of oligopeptide on dendrimer-based peptide-grafted hydrogels 81
3-5-5 The expansion fold of hiPSCs (HPS0077) on dendrimer-based peptide-grafted hydrogels with different concentration of oligopeptide 83
3-6 Characterization of different peptide-grafted hydrogels 85
3-6-1 X-ray photoelectron spectroscopy analysis of different peptide-grafted hydrogels 85
3-6-2 Zeta potential analysis of the surface electrical potential on different peptide-grafted hydrogels 88
3-6-3 PrimosCR 45 analysis of the surface roughness on different peptide-grafted hydrogels 90
3-7 Characterization of dendrimer-based peptide-grafted hydrogels 93
3-7-1 X-ray photoelectron spectroscopy analysis of different peptide-grafted hydrogels 93
3-7-2 PrimosCR 45 analysis of the surface roughness on different peptide-grafted hydrogels 98
Chapter 4 Conclusion 101
Reference 104
參考文獻 1. Melton, D., ‘Stemness’: definitions, criteria, and standards, in Essentials of stem cell biology. 2014, Elsevier. p. 7-17.
2. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome-hope or hype? Critical Care, 2012. 16(2): p. 1-14.
3. Takahashi, K., et al., Induction of pluripotent stem cells from fibroblast cultures. Nature protocols, 2007. 2(12): p. 3081-3089.
4. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
5. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Computational and structural biotechnology journal, 2015. 13: p. 75-84.
6. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
7. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. The international journal of biochemistry & cell biology, 2006. 38(7): p. 1063-1075.
8. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147.
9. Landry, D.W. and H.A. Zucker, Embryonic death and the creation of human embryonic stem cells. The Journal of Clinical Investigation, 2004. 114(9): p. 1184-1186.
10. Castro-Viñuelas, R., et al., Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Scientific Reports, 2020. 10(1): p. 1-13.
11. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell, 2009. 4(6): p. 472.
12. Miyoshi, K., et al., Generation of human induced pluripotent stem cells from oral mucosa. Journal of bioscience and bioengineering, 2010. 110(3): p. 345-350.
13. Ohnuki, M., K. Takahashi, and S. Yamanaka, Generation and characterization of human induced pluripotent stem cells. Current protocols in stem cell biology, 2009. 9(1): p. 4A. 2.1-4A. 2.25.
14. Takayama, N., et al., Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010. 207(13): p. 2817-2830.
15. Faravelli, I., et al., Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cellular and molecular life sciences, 2014. 71(17): p. 3257-3268.
16. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
17. Bai, H. and Z. Wang, Directing human embryonic stem cells to generate vascular progenitor cells. Gene therapy, 2008. 15(2): p. 89-95.
18. Martin, U., Therapeutic application of pluripotent stem cells: challenges and risks. Frontiers in medicine, 2017. 4: p. 229.
19. Liu, G., et al., Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem cell reviews and reports, 2020. 16(1): p. 3-32.
20. Jiang, B., et al., Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications. Stem cells, 2019. 37(5): p. 572-581.
21. Sohni, A. and C.M. Verfaillie, Mesenchymal stem cells migration homing and tracking. Stem cells international, 2013. 2013.
22. Parekkadan, B. and J.M. Milwid, Mesenchymal stem cells as therapeutics. Annual review of biomedical engineering, 2010. 12: p. 87-117.
23. Merimi, M., et al., The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Frontiers in Cell and Developmental Biology, 2021. 9.
24. Ferreira, J.R., et al., Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Frontiers in immunology, 2018. 9: p. 2837.
25. Hynes, K., et al., Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem cells and development, 2014. 23(10): p. 1084-1096.
26. Penny, J., et al., The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Front Biosci, 2012. 17(3): p. 892.
27. Sharma, R.R., et al., Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 2014. 54(5): p. 1418-1437.
28. Ullah, I., R.B. Subbarao, and G.J. Rho, Human mesenchymal stem cells-current trends and future prospective. Bioscience reports, 2015. 35(2).
29. Gronthos, S., et al., The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. 1994.
30. Mamidi, M.K., et al., Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. Journal of cellular biochemistry, 2012. 113(10): p. 3153-3164.
31. Otsuru, S., et al., Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy, 2013. 15(2): p. 146-153.
32. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-147.
33. Stewart, K., et al., Further characterization of cells expressing STRO‐1 in cultures of adult human bone marrow stromal cells. Journal of Bone and Mineral Research, 1999. 14(8): p. 1345-1356.
34. Baglioni, S., et al., Characterization of human adult stem‐cell populations isolated from visceral and subcutaneous adipose tissue. The FASEB Journal, 2009. 23(10): p. 3494-3505.
35. Gronthos, S., et al., Surface protein characterization of human adipose tissue‐derived stromal cells. Journal of cellular physiology, 2001. 189(1): p. 54-63.
36. Pendleton, C., et al., Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PloS one, 2013. 8(3): p. e58198.
37. Wagner, W., et al., Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental hematology, 2005. 33(11): p. 1402-1416.
38. Zhang, X., et al., Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. Journal of cellular biochemistry, 2011. 112(4): p. 1206-1218.
39. Cai, J., et al., Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal of Biological Chemistry, 2010. 285(15): p. 11227-11234.
40. Tsai, M.S., et al., Isolation of human multipotent mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage culture protocol. Human reproduction, 2004. 19(6): p. 1450-1456.
41. int Anker, P.S., et al., Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003. 102(4): p. 1548-1549.
42. Kadar, K., et al., Differentiation potential of stem cells from human dental origin-promise for tissue engineering. J Physiol Pharmacol, 2009. 60(Suppl 7): p. 167-175.
43. Seifrtová, M., et al., The response of human ectomesenchymal dental pulp stem cells to cisplatin treatment. International endodontic journal, 2012. 45(5): p. 401-412.
44. Huang, G.-J., S. Gronthos, and S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of dental research, 2009. 88(9): p. 792-806.
45. Schüring, A.N., et al., Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertility and sterility, 2011. 95(1): p. 423-426.
46. Jiao, F., et al., Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages. Cellular Reprogramming (Formerly" Cloning and Stem Cells"), 2012. 14(4): p. 324-333.
47. Ab Kadir, R., et al., Characterization of mononucleated human peripheral blood cells. The Scientific World Journal, 2012. 2012.
48. Raynaud, C., et al., Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem cells international, 2012. 2012.
49. Moretti, P., et al., Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications, in Bioreactor Systems for Tissue Engineering II. 2009, Springer. p. 29-54.
50. Kita, K., et al., Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem cells and development, 2010. 19(4): p. 491-502.
51. Riekstina, U., et al., Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology, 2008. 58(3): p. 153-162.
52. Bartsch Jr, G., et al., Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem cells and development, 2005. 14(3): p. 337-348.
53. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
54. Filip, S., et al., Stem cell plasticity and issues of stem cell therapy. Folia biologica, 2005. 51(6): p. 180.
55. Li, E., et al., Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition. International journal of biological sciences, 2018. 14(13): p. 1901.
56. Higuchi, A., et al., Stem Cell Culture on Polymer Hydrogels, in Hydrogels. 2018, Springer. p. 357-408.
57. Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chemical reviews, 2013. 113(5): p. 3297-3328.
58. Pessach, I.M., et al., Induced pluripotent stem cells: a novel frontier in the study of human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2011. 127(6): p. 1400-1407. e4.
59. Gavrilov, S., et al., Derivation of two new human embryonic stem cell lines from nonviable human embryos. Stem Cells International, 2011. 2011.
60. Polak, U., et al., Selecting and isolating colonies of human induced pluripotent stem cells reprogrammed from adult fibroblasts. JoVE (Journal of Visualized Experiments), 2012(60): p. e3416.
61. Soares, F.A., R.A. Pedersen, and L. Vallier, Generation of human induced pluripotent stem cells from peripheral blood mononuclear cells using Sendai virus, in Induced Pluripotent Stem (iPS) Cells. 2015, Springer. p. 23-31.
62. Wang, I.-N.E., et al., Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PloS one, 2012. 7(6): p. e38328.
63. Ulm, A., et al., Cultivate primary nasal epithelial cells from children and reprogram into induced pluripotent stem cells. JoVE (Journal of Visualized Experiments), 2016(109): p. e53814.
64. Geis, F.K., et al., Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells. Retrovirology, 2017. 14(1): p. 1-15.
65. Uchida, N., et al., Efficient generation of β-globin-expressing erythroid cells using stromal cell-derived induced pluripotent stem cells from patients with sickle cell disease. Stem Cells, 2017. 35(3): p. 586-596.
66. Kleinman, H.K. and G.R. Martin. Matrigel: basement membrane matrix with biological activity. in Seminars in cancer biology. 2005. Elsevier.
67. Benton, G., et al., Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Advanced drug delivery reviews, 2014. 79: p. 3-18.
68. Taub, M., et al., Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proceedings of the National Academy of Sciences, 1990. 87(10): p. 4002-4006.
69. Basic, N., et al., TGF‐β and basement membrane matrigel stimulate the chondrogenic phenotype in osteoblastic cells derived from fetal rat calvaria. Journal of Bone and Mineral Research, 1996. 11(3): p. 384-391.
70. Suzuki, A., et al., Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. 2003.
71. Naugle, J.E., et al., Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 2006. 290(1): p. H323-H330.
72. Kihara, T., et al., Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochemical and biophysical research communications, 2006. 341(4): p. 1029-1035.
73. Haylock, D.N. and S.K. Nilsson, Stem Cell Regulation by the Haemopoietic Stem Cell Niche. Cell cycle, 2005. 4(10): p. 1353-1355.
74. Flaim, C.J., S. Chien, and S.N. Bhatia, An extracellular matrix microarray for probing cellular differentiation. Nature methods, 2005. 2(2): p. 119-125.
75. Campbell, A., M.S. Wicha, and M. Long, Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. The Journal of clinical investigation, 1985. 75(6): p. 2085-2090.
76. Chen, S.S., et al., Cell‐cell and cell‐extracellular matrix interactions regulate embryonic stem cell differentiation. Stem cells, 2007. 25(3): p. 553-561.
77. Schnaper, H.W. and H.K. Kleinman, Regulation of cell function by extracellular matrix. Pediatric Nephrology, 1993. 7(1): p. 96-104.
78. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chemical reviews, 2012. 112(8): p. 4507-4540.
79. Jia, J., et al., Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Science advances, 2020. 6(28): p. eaaz5894.
80. Jia, J., et al., Engineering alginate as bioink for bioprinting. Acta biomaterialia, 2014. 10(10): p. 4323-4331.
81. Zhou, P., et al., Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids and Surfaces B: Biointerfaces, 2018. 171: p. 451-460.
82. Zhou, P., et al., Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials, 2016. 87: p. 1-17.
83. Chen, K.G., et al., Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell stem cell, 2014. 14(1): p. 13-26.
84. Deng, Y., et al., Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly (OEGMA-co-HEMA) brushes under fully defined conditions. Acta biomaterialia, 2013. 9(11): p. 8840-8850.
85. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature methods, 2010. 7(12): p. 989-994.
86. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 606-610.
87. Hirano, Y., et al., Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. Journal of Biomaterials Science, Polymer Edition, 1993. 4(3): p. 235-243.
88. Pierschbacher, M.D. and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984. 309(5963): p. 30-33.
89. Cooke, M., et al., Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010. 93(3): p. 824-832.
90. Nomizu, M., et al., Cell binding sequences in mouse laminin α1 chain. Journal of Biological Chemistry, 1998. 273(49): p. 32491-32499.
91. Jia, J., et al., Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta biomaterialia, 2016. 45: p. 110-120.
92. Higuchi, A., et al., Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells. Journal of Macromolecular Science®, Part C: Polymer Reviews, 2009. 49(3): p. 181-200.
93. Oldberg, A., et al., Identification of a bone sialoprotein receptor in osteosarcoma cells. Journal of Biological Chemistry, 1988. 263(36): p. 19433-19436.
94. Salasznyk, R.M., et al., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004. 2004(1): p. 24-34.
95. Suzuki, S., et al., Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. The EMBO journal, 1985. 4(10): p. 2519-2524.
96. Buhleier, E., W. Wehner, and F. Vogtle, Synthesis of molecular cavity topologies. Synthesis, 1978. 2: p. 155-158.
97. Liang, C.O. and J.M. Fréchet, Incorporation of functional guest molecules into an internally functionalizable dendrimer through olefin metathesis. Macromolecules, 2005. 38(15): p. 6276-6284.
98. McElhanon, J.R. and D.V. McGrath, Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry, 2000. 65(11): p. 3525-3529.
99. Antoni, P., et al., Bifunctional dendrimers: from robust synthesis and accelerated one‐pot postfunctionalization strategy to potential applications. Angewandte Chemie, 2009. 121(12): p. 2160-2164.
100. Hermanson, G.T., Bioconjugate techniques. 2013: Academic press.
101. Maiti, P.K., et al., Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004. 37(16): p. 6236-6254.
102. Araújo, R.V.d., et al., New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018. 23(11): p. 2849.
103. Janaszewska, A., et al., Cytotoxicity of dendrimers. Biomolecules, 2019. 9(8): p. 330.
104. Caminade, A.-M., et al., Phosphorus dendrimers: from synthesis to applications. Comptes Rendus Chimie, 2003. 6(8-10): p. 791-801.
105. Kesharwani, P., et al., PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015. 18(10): p. 565-572.
106. Rao, C. and J.P. Tam, Synthesis of peptide dendrimer. Journal of the American Chemical Society, 1994. 116(15): p. 6975-6976.
107. Esfand, R. and D.A. Tomalia, Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today, 2001. 6(8): p. 427-436.
108. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7(1): p. 1-16.
109. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Scientific reports, 2015. 5(1): p. 1-16.
110. Muduli, S., et al., Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. Journal of Polymer Engineering, 2017. 37(7): p. 647-660.
111. Sung, T.-C., et al., Human pluripotent stem cell culture on polyvinyl alcohol-co-itaconic acid hydrogels with varying stiffness under xeno-free conditions. JoVE (Journal of Visualized Experiments), 2018(132): p. e57314.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2022-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明