博碩士論文 109324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.138.141.202
姓名 趙思齊(Szu-Chi Chao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
(Study of Hydrothermally-Synthesized Li1+xAlxTi2-x(PO4)3 and Poly (vinylidenedifluoride)/Cellulose Acetate Composite Solid Electrolyte for Lithium-Ion Batteries)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本研究使用醋酸纖維素(Cellulose Acetate)及雙(三氟甲基磺醯)氨基鋰(Lithium bis(trifluoromethanesulfonyl)imide, LiTFSI)混摻於聚偏二氟乙烯(Poly(vinylidene) difluoride, PVDF)高分子中,接著添加水熱法合成之Li1.3Al0.3Ti1.7(PO4)3 (LATP)陶瓷粉末形成複合型固態電解質薄膜,並且更換不同的混摻物/PVDF高分子之比例、透過溶液澆鑄法開發具有最佳性能的複合型固態電解質薄膜。由結果可以得知此種複合型固態電解質薄膜具有寬廣的電位窗(~5 V)、高溫下的熱穩定性(~250 ℃)、以及機械可撓性,而將電解質薄膜配合少量電解液 (1 M LiTFSI in TEGDME) 應用於磷酸鐵鋰(LiFePO4, LFP)正極後,也表現出優異的電化學性能。在混摻適量的CA及LiTFSI至PVDF(PVDF: CA: LiTFSI = 4: 1: 4)後,其導電率可達到3.3⨉10-4 S cm-1,而放電容量則為139.8 mAh g-1 @ 0.1 C且維持穩定的庫倫效率(~100 %)。接著,為了進一步改善熱穩定性及電化學性能,使此電解質薄膜能應用在更多極端條件,在下一階段的研究中添加不同比例條件的LATP粉末至PVDF/CA/LiTFSI高分子電解質薄膜中,可發現當LATP陶瓷粉末添加量為20 wt%時具有最佳的電化學性能。在此摻雜比例下(PVDF: CA: LiTFSI: LATP = 4: 1: 4: 2),複合型固態電解質薄膜擁有6.6⨉10-4 S cm-1的導電率,而放電容量則被提升至162.1 mAh g-1 @ 0.1 C,並保有穩定的庫倫效率(~100 %)。此研究所開發的複合型固態電解質薄膜展現出優秀的電化學穩定性、高溫下的熱穩定性、高離子導電率及放電容量,同時採用了相對具有環境友善性的材料與製程,表明其應用於鋰離子電池的潛力。
摘要(英) In this study, cellulose acetate (CA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were added to poly(vinylidene) difluoride (PVDF) polymer, followed by the addition of hydrothermally-synthesized Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic powder to form the composite solid electrolyte (CSE) membranes via solution casting method. Different dopant/PVDF ratios were investigated to develop a composite with optimal performance. From the results, it could be known that this CSE membrane had a wide potential window (~5 V), thermal stability at high temperatures (~250 °C), and mechanical foldability. The membranes showed excellent electrochemical performance after applying to LiFePO4 (LFP) cathode with a trace amount of liquid electrolyte (1 M LiTFSI in TEGDME). After mixing an appropriate amount of CA and LiTFSI into PVDF (PVDF: CA: LiTFSI = 4: 1: 4), the conductivity could reach 3.3⨉10-4 S cm-1, and the discharge capacity was 139.8 mAh g-1 @ 0.1 C and maintained stable Coulombic efficiency (~100 %). Then, to further improve the thermal stability and electrochemical performance enabled the electrolyte membrane to be used in more extreme environments, LATP powders in different weight ratios were added to the PVDF/CA/LiTFSI solid polymer electrolyte (SPE) membrane. Upon 20 wt% doping ratio (PVDF: CA: LiTFSI: LATP = 4: 1: 4: 2), the CPE membrane had a conductivity of 6.6⨉10-4 S cm-1, and the discharge capacity was enhanced to 162.1 mAh g-1 @ 0.1 C with stable Coulombic efficiency (~100 %). The CPE membrane developed in this research exhibited excellent electrochemical stability, thermal stability at high temperatures, and high ionic conductivity and discharge capacity. Also, the process and materials were relatively environmental-friendly, indicating its potential for applying for lithium-ion batteries (LIBs).
關鍵字(中) ★ 鋰離子電池
★ 固態電解質
★ 磷酸鈦鋁鋰
★ 醋酸纖維素
★ 環境友善
關鍵字(英) ★ Lithium-ion battery
★ Solid-state electrolyte
★ LATP
★ Cellulose acetate
★ Environmental-friendly
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of contents viii
List of figures xi
List of tables xvi
Chapter 1 Introduction 1
Chapter 2 Background 4
2-1 The lithium-ion batteries application and future development 4
2-1-1 Portable devices 4
2-1-2 Electric vehicles 5
2-1-3 Stationary energy storage systems 6
2-2 The basic concepts of lithium-ion batteries 6
2-3 The components of lithium-ion batteries 8
2-3-1 Cathode material 8
2-3-2 Anode material 9
2-3-3 Separator 10
2-3-4 Electrolyte 12
2-4 Solid state electrolyte 14
2-4-1 Inorganic solid-state electrolyte 15
2-4-2 LATP solid-state electrolyte synthesis 24
2-4-3 Development and challenge of LATP solid-state electrolyte 31
2-5 Polymer solid state electrolyte 33
2-5-1 PVDF-based polymer solid state electrolyte 35
2-6 Composite solid-state electrolyte 38
Chapter 3 Experiment 41
3-1 Experimental frame 41
3-2 Experimental chemicals and instruments 43
3-3 Experimental procedure 45
3-3-1 Preparation of Li1+xAlxTi2-x(PO4)3 solid electrolyte powder 45
3-3-2 Preparation of cellulose acetate / PVDF hybrid polymer 46
3-3-3 Preparation of LiTFSI-doped polymer solid electrolyte membrane 46
3-3-4 Preparation of LATP composite electrolyte membrane 47
3-3-5 Coin cell assembly and test 48
3-4 Materials analysis and electrochemical characterization 49
3-4-1 X-ray Diffraction (XRD) 50
3-4-2 Field Emission-Scanning Electron Microscopy (FE-SEM) 51
3-4-3 Thermogravimetric Analysis (TGA) 51
3-4-4 Differential Scanning Calorimetry (DSC) 52
3-4-5 Linear Sweep Voltammetry (LSV) 52
3-4-6 Electrochemical Impedance Spectroscopy (EIS) 53
Chapter 4 Result and discussion 54
4-1 Li1+xAlxTi2-x(PO4)3 inorganic electrolyte fabrication 54
4-1-1 X-ray diffraction-solvent composition effect 54
4-1-2 Surface morphology-precursor crystalline 57
4-1-3 X-ray diffraction-calcination temperature 59
4-1-4 Surface morphology-resulting LATP powder 61
4-2 PVDF/CA hybrid polymer fabrication 64
4-2-1 X-ray diffraction-hybrid polymer 64
4-2-2 Crystallinity analysis-hybrid polymer 66
4-2-3 Thermal stability-hybrid polymer 68
4-2-4 Surface morphology-hybrid polymer 70
4-2-5 Electrochemical stability-hybrid polymer 72
4-2-6 Electrochemical impedance spectroscopy-hybrid polymer 74
4-3 LiTFSI/CA/PVDF solid polymer electrolyte fabrication 76
4-3-1 X-ray diffraction 76
4-3-2 Crystallinity analysis-solid polymer electrolyte 78
4-3-3 Thermal stability-solid polymer electrolyte 80
4-3-4 Surface morphology-solid polymer electrolyte 82
4-3-5 Electrochemical stability-solid polymer electrolyte 88
4-3-6 Electrochemical impedance spectroscopy-solid polymer electrolyte 89
4-4 LATP/LiTFSI/CA/PVDF composite solid electrolyte fabrication 91
4-4-1 X-ray diffraction-composite solid electrolyte 91
4-4-2 Crystallinity analysis-composite solid electrolyte 93
4-4-3 Thermal stability-composite solid electrolyte 95
4-4-4 Surface morphology-composite solid electrolyte 97
4-4-5 Electrochemical stability-composite solid electrolyte 103
4-4-6 Electrochemical impedance spectroscopy-composite solid electrolyte 104
4-4-7 Charge and discharge test 107
4-4-8 Cycle Performance 109
Chapter 5 Conclusion and Prospect 111
5-1 Conclusion 111
5-1-1 Li1+xAlxTi2-x(PO4)3 inorganic electrolyte fabrication 111
5-1-2 LATP/LiTFSI/CA/PVDF composite solid electrolyte fabrication 112
5-2 Prospect 114
Chapter 6 Reference 115
2021 TWIChE poster I
2022 pre-oral poster II

參考文獻 1. Qiao, W., et al., A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer. Journal of Cleaner Production, 2020. 244.
2. Julien, C., et al., Lithium Batteries. 2016: springer.
3. Korthauer, R., Lithium-Ion Batteries: Basics and Applications. 2018: Springer.
4. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Cent Sci, 2017. 3(10): p. 1063-1069.
5. Ould Ely, T., et al., Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019. 7.
6. Zubi, G., et al., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
7. Ding, L., et al., Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery. Journal of Power Sources, 2020. 466.
8. Cannarella, J. and C.B. Arnold, Ion transport restriction in mechanically strained separator membranes. Journal of Power Sources, 2013. 226: p. 149-155.
9. Gor, G.Y., et al., A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates. Journal of The Electrochemical Society, 2014. 161(11): p. F3065-F3071.
10. Chen, J., et al., Probing the Roles of Polymeric Separators in Lithium-Ion Battery Capacity Fade at Elevated Temperatures. Journal of The Electrochemical Society, 2014. 161(9): p. A1241-A1246.
11. Peabody, C. and C.B. Arnold, The role of mechanically induced separator creep in lithium-ion battery capacity fade. Journal of Power Sources, 2011. 196(19): p. 8147-8153.
12. Liu, K., et al., Materials for lithium-ion battery safety. Sci Adv, 2018. 4(6): p. eaas9820.
13. Schultz, C., et al., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 2017. 7(45): p. 27853-27862.
14. Pervez, S.A., et al., Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Appl Mater Interfaces, 2019. 11(25): p. 22029-22050.
15. Thangadurai, V., et al., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev, 2014. 43(13): p. 4714-27.
16. 楊勇, 固態電化學. 2017: 化學工業出版社.
17. Bohnke, O., The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics, 2008. 179(1-6): p. 9-15.
18. Zheng, F., et al., Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018. 389: p. 198-213.
19. Zheng, Y., et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev, 2020. 49(23): p. 8790-8839.
20. Cao, C., et al., Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. Frontiers in Energy Research, 2014. 2.
21. Kim, K.M., et al., Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+Al Ti2-(PO4)3 solid electrolytes. Electrochimica Acta, 2015. 176: p. 1364-1373.
22. Lu, X., et al., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3. Solid State Ionics, 2020. 354.
23. Jin, Y., et al., Building a highly functional Li1.3Al0.3Ti1.7(PO4)3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries. Journal of Alloys and Compounds, 2021. 874.
24. Liang, X., et al., Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC Advances, 2018. 8(71): p. 40498-40504.
25. Wu, Y., et al., Advances and prospects of PVDF based polymer electrolytes. Journal of Energy Chemistry, 2022. 64: p. 62-84.
26. Siyal, S.H., et al., Significant Reduction in Interface Resistance and Super-Enhanced Performance of Lithium-Metal Battery by In Situ Construction of Poly(vinylidene fluoride)-Based Solid-State Membrane with Dual Ceramic Fillers. ACS Applied Energy Materials, 2021. 4(8): p. 8604-8614.
27. Lu, Q., et al., Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte. Adv Mater, 2017. 29(13).
28. Liu, Y., et al., Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. Journal of Power Sources, 2002. 109(2): p. 507-514.
29. Aziz, S.B., et al., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018. 3(1): p. 1-17.
30. Kang, W., et al., Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. Journal of Solid State Electrochemistry, 2016. 20(10): p. 2791-2803.
31. Cui, J., et al., Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. Journal of Membrane Science, 2017. 541: p. 661-667.
32. Dirican, M., et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 2019. 136: p. 27-46.
33. Zhang, X., et al., Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J Am Chem Soc, 2017. 139(39): p. 13779-13785.
34. Yao, P., et al., Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front Chem, 2019. 7: p. 522.
35. Ding, Y., et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019. 2(1): p. 1-28.
36. Agency, U.S.E.P. Sources of Greenhouse Gas Emissions. Available from: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
37. Sun, P., et al., A Review of Battery Fires in Electric Vehicles. Fire Technology, 2020. 56(4): p. 1361-1410.
38. Liu, J., et al., Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 2009. 19(34).
39. Daniel, C., et al., Cathode materials review. 2014. p. 26-43.
40. Mohamed, N. and N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries. RSC Advances, 2020. 10(37): p. 21662-21685.
41. Jena, K.K., et al., Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy & Fuels, 2021. 35(22): p. 18257-18284.
42. Yang, K., et al., The simulation on thermal stability of LiNi0.5Mn1.5O4/C electrochemical systems. Journal of Power Sources, 2016. 302: p. 1-6.
43. Cheng, H., et al., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021. 57: p. 451-468.
44. Loeffler, B.N., et al., Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review, 2015. 59(1): p. 34-44.
45. Costa, C.M., et al., Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
46. Fan, X. and C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev, 2021. 50(18): p. 10486-10566.
47. Chen, S., et al., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A, 2018. 6(25): p. 11631-11663.
48. Fan, L., et al., Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 2018. 8(11).
49. Kraft, M.A., et al., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. J Am Chem Soc, 2018. 140(47): p. 16330-16339.
50. Yu, C., et al., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy, 2021. 83.
51. Rossbach, A., et al., Structural and transport properties of lithium-conducting NASICON materials. Journal of Power Sources, 2018. 391: p. 1-9.
52. Arbi, K., et al., Local structure and lithium mobility in intercalated Li3Al(x)Ti(2-x)(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. Phys Chem Chem Phys, 2014. 16(34): p. 18397-405.
53. Zhang, B., et al., Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping. Journal of Materials Chemistry A, 2020. 8(1): p. 342-348.
54. Monchak, M., et al., Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. Inorg Chem, 2016. 55(6): p. 2941-5.
55. Wu, X.M., et al., Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique. Materials Letters, 2004. 58(7-8): p. 1227-1230.
56. Lee, S.S., et al., Effect of sol-gel process parameters on the properties of a Li1.3Ti1.7Al0.3(PO4)3 solid electrolyte for Li-ion batteries. Journal of the Korean Physical Society, 2016. 68(1): p. 28-34.
57. Kotobuki, M. and M. Koishi, Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceramics International, 2013. 39(4): p. 4645-4649.
58. Kotobuki, M. and M. Koishi, Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources. Journal of Asian Ceramic Societies, 2020. 8(3): p. 891-897.
59. Hallopeau, L., et al., Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Power Sources, 2018. 378: p. 48-52.
60. Duan, S., et al., Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity. Nano Energy, 2018. 51: p. 19-25.
61. He, S., et al., Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. Chemical Engineering Journal, 2018. 345: p. 483-491.
62. Hartmann, P., et al., Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. The Journal of Physical Chemistry C, 2013. 117(41): p. 21064-21074.
63. Liu, Y., et al., Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Appl Mater Interfaces, 2018. 10(37): p. 31240-31248.
64. Wright, P.V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal, 1975. 7(5): p. 319-327.
65. Armand, M., The history of polymer electrolytes. Solid State Ionics, 1994. 69(3-4): p. 309-319.
66. Zhang, Q., et al., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017. 10(12): p. 4139-4174.
67. Golodnitsky, D., et al., Review—On Order and Disorder in Polymer Electrolytes. Journal of The Electrochemical Society, 2015. 162(14): p. A2551-A2566.
68. Asghar, M.R., et al., Lithium Salt Doped Poly(Vinylidene Fluoride)/Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery. IOP Conference Series: Materials Science and Engineering, 2019. 654(1).
69. Gopalan, A., et al., Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. Journal of Membrane Science, 2008. 325(2): p. 683-690.
70. Kim, J.R., et al., Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochimica Acta, 2004. 50(1): p. 69-75.
71. Li, H., et al., Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. Journal of Membrane Science, 2011. 379(1-2): p. 397-402.
72. Lizundia, E., et al., Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020. 1.
73. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett, 2015. 15(4): p. 2740-5.
74. Wang, G., et al., Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Materials, 2022. 45: p. 1212-1219.
75. Rajapaksha, R., et al., Nanoparticles in electrochemical bioanalytical analysis, in Nanoparticles in Analytical and Medical Devices. 2021, Elsevier. p. 83-112.
76. Yen, P.-Y., et al., Optimization of sintering process on Li1+Al Ti2-(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ceramics International, 2020. 46(12): p. 20529-20536.
77. Hafez, R.S., et al., Dielectric and Thermal Properties of PEO/PVDF Blend Doped with Different Concentrations of Li4Ti5O12 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2020. 30(11): p. 4468-4480.
78. Zhou, C., et al., Understanding the Role of Solvents on the Morphological Structure and Li-Ion Conductivity of Poly(vinylidene fluoride)-Based Polymer Electrolytes. Journal of The Electrochemical Society, 2020. 167(7).
79. Razalli, S.M.M., et al., Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior. Functional Materials Letters, 2015. 8(3).
80. Xue, C., et al., Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries. ACS Appl Mater Interfaces, 2020. 12(22): p. 24837-24844.
81. Li, W., et al., A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017. 7(38): p. 23494-23501.
82. Ramesh, S., et al., Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture. Carbohydr Polym, 2013. 91(1): p. 14-21.
83. Ma, W., et al., Effect of Initial Polymer Concentration on the Crystallization of Poly (Vinylidene Fluoride)/Poly (Methyl Methacrylate) Blend from Solution Casting. Journal of Macromolecular Science, Part B, 2008. 47(1): p. 139-149.
84. Osaka, N., et al., Influence of lithium salt-induced phase separation on thermal behaviors of poly(vinylidene fluoride)/ionic liquid gels and pore/void formation by competition with crystallization. RSC Adv, 2018. 8(71): p. 40570-40580.
85. Wieczorek, W., Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics, 1996. 85(1-4): p. 67-72.
86. Wu, N., et al., Fast Li(+) Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. J Am Chem Soc, 2020. 142(5): p. 2497-2505.
87. Bae, J., et al., A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. Angew Chem Int Ed Engl, 2018. 57(8): p. 2096-2100.
88. Guo, Q., et al., New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2017. 9(48): p. 41837-41844.
89. Li, Y., et al., A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries. ACS Applied Energy Materials, 2021. 4(3): p. 2318-2326.
90. Yu, X. and A. Manthiram, A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020. 3(3): p. 2916-2924.
指導教授 劉奕宏 審核日期 2022-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明