參考文獻 |
1. Qiao, W., et al., A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer. Journal of Cleaner Production, 2020. 244.
2. Julien, C., et al., Lithium Batteries. 2016: springer.
3. Korthauer, R., Lithium-Ion Batteries: Basics and Applications. 2018: Springer.
4. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Cent Sci, 2017. 3(10): p. 1063-1069.
5. Ould Ely, T., et al., Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019. 7.
6. Zubi, G., et al., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
7. Ding, L., et al., Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery. Journal of Power Sources, 2020. 466.
8. Cannarella, J. and C.B. Arnold, Ion transport restriction in mechanically strained separator membranes. Journal of Power Sources, 2013. 226: p. 149-155.
9. Gor, G.Y., et al., A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates. Journal of The Electrochemical Society, 2014. 161(11): p. F3065-F3071.
10. Chen, J., et al., Probing the Roles of Polymeric Separators in Lithium-Ion Battery Capacity Fade at Elevated Temperatures. Journal of The Electrochemical Society, 2014. 161(9): p. A1241-A1246.
11. Peabody, C. and C.B. Arnold, The role of mechanically induced separator creep in lithium-ion battery capacity fade. Journal of Power Sources, 2011. 196(19): p. 8147-8153.
12. Liu, K., et al., Materials for lithium-ion battery safety. Sci Adv, 2018. 4(6): p. eaas9820.
13. Schultz, C., et al., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 2017. 7(45): p. 27853-27862.
14. Pervez, S.A., et al., Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Appl Mater Interfaces, 2019. 11(25): p. 22029-22050.
15. Thangadurai, V., et al., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev, 2014. 43(13): p. 4714-27.
16. 楊勇, 固態電化學. 2017: 化學工業出版社.
17. Bohnke, O., The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics, 2008. 179(1-6): p. 9-15.
18. Zheng, F., et al., Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018. 389: p. 198-213.
19. Zheng, Y., et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev, 2020. 49(23): p. 8790-8839.
20. Cao, C., et al., Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. Frontiers in Energy Research, 2014. 2.
21. Kim, K.M., et al., Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+Al Ti2-(PO4)3 solid electrolytes. Electrochimica Acta, 2015. 176: p. 1364-1373.
22. Lu, X., et al., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3. Solid State Ionics, 2020. 354.
23. Jin, Y., et al., Building a highly functional Li1.3Al0.3Ti1.7(PO4)3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries. Journal of Alloys and Compounds, 2021. 874.
24. Liang, X., et al., Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC Advances, 2018. 8(71): p. 40498-40504.
25. Wu, Y., et al., Advances and prospects of PVDF based polymer electrolytes. Journal of Energy Chemistry, 2022. 64: p. 62-84.
26. Siyal, S.H., et al., Significant Reduction in Interface Resistance and Super-Enhanced Performance of Lithium-Metal Battery by In Situ Construction of Poly(vinylidene fluoride)-Based Solid-State Membrane with Dual Ceramic Fillers. ACS Applied Energy Materials, 2021. 4(8): p. 8604-8614.
27. Lu, Q., et al., Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte. Adv Mater, 2017. 29(13).
28. Liu, Y., et al., Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. Journal of Power Sources, 2002. 109(2): p. 507-514.
29. Aziz, S.B., et al., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018. 3(1): p. 1-17.
30. Kang, W., et al., Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. Journal of Solid State Electrochemistry, 2016. 20(10): p. 2791-2803.
31. Cui, J., et al., Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. Journal of Membrane Science, 2017. 541: p. 661-667.
32. Dirican, M., et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 2019. 136: p. 27-46.
33. Zhang, X., et al., Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J Am Chem Soc, 2017. 139(39): p. 13779-13785.
34. Yao, P., et al., Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front Chem, 2019. 7: p. 522.
35. Ding, Y., et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019. 2(1): p. 1-28.
36. Agency, U.S.E.P. Sources of Greenhouse Gas Emissions. Available from: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
37. Sun, P., et al., A Review of Battery Fires in Electric Vehicles. Fire Technology, 2020. 56(4): p. 1361-1410.
38. Liu, J., et al., Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 2009. 19(34).
39. Daniel, C., et al., Cathode materials review. 2014. p. 26-43.
40. Mohamed, N. and N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries. RSC Advances, 2020. 10(37): p. 21662-21685.
41. Jena, K.K., et al., Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy & Fuels, 2021. 35(22): p. 18257-18284.
42. Yang, K., et al., The simulation on thermal stability of LiNi0.5Mn1.5O4/C electrochemical systems. Journal of Power Sources, 2016. 302: p. 1-6.
43. Cheng, H., et al., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021. 57: p. 451-468.
44. Loeffler, B.N., et al., Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review, 2015. 59(1): p. 34-44.
45. Costa, C.M., et al., Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
46. Fan, X. and C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev, 2021. 50(18): p. 10486-10566.
47. Chen, S., et al., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A, 2018. 6(25): p. 11631-11663.
48. Fan, L., et al., Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 2018. 8(11).
49. Kraft, M.A., et al., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. J Am Chem Soc, 2018. 140(47): p. 16330-16339.
50. Yu, C., et al., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy, 2021. 83.
51. Rossbach, A., et al., Structural and transport properties of lithium-conducting NASICON materials. Journal of Power Sources, 2018. 391: p. 1-9.
52. Arbi, K., et al., Local structure and lithium mobility in intercalated Li3Al(x)Ti(2-x)(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. Phys Chem Chem Phys, 2014. 16(34): p. 18397-405.
53. Zhang, B., et al., Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping. Journal of Materials Chemistry A, 2020. 8(1): p. 342-348.
54. Monchak, M., et al., Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. Inorg Chem, 2016. 55(6): p. 2941-5.
55. Wu, X.M., et al., Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique. Materials Letters, 2004. 58(7-8): p. 1227-1230.
56. Lee, S.S., et al., Effect of sol-gel process parameters on the properties of a Li1.3Ti1.7Al0.3(PO4)3 solid electrolyte for Li-ion batteries. Journal of the Korean Physical Society, 2016. 68(1): p. 28-34.
57. Kotobuki, M. and M. Koishi, Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceramics International, 2013. 39(4): p. 4645-4649.
58. Kotobuki, M. and M. Koishi, Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources. Journal of Asian Ceramic Societies, 2020. 8(3): p. 891-897.
59. Hallopeau, L., et al., Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Journal of Power Sources, 2018. 378: p. 48-52.
60. Duan, S., et al., Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity. Nano Energy, 2018. 51: p. 19-25.
61. He, S., et al., Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. Chemical Engineering Journal, 2018. 345: p. 483-491.
62. Hartmann, P., et al., Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. The Journal of Physical Chemistry C, 2013. 117(41): p. 21064-21074.
63. Liu, Y., et al., Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Appl Mater Interfaces, 2018. 10(37): p. 31240-31248.
64. Wright, P.V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal, 1975. 7(5): p. 319-327.
65. Armand, M., The history of polymer electrolytes. Solid State Ionics, 1994. 69(3-4): p. 309-319.
66. Zhang, Q., et al., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017. 10(12): p. 4139-4174.
67. Golodnitsky, D., et al., Review—On Order and Disorder in Polymer Electrolytes. Journal of The Electrochemical Society, 2015. 162(14): p. A2551-A2566.
68. Asghar, M.R., et al., Lithium Salt Doped Poly(Vinylidene Fluoride)/Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery. IOP Conference Series: Materials Science and Engineering, 2019. 654(1).
69. Gopalan, A., et al., Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. Journal of Membrane Science, 2008. 325(2): p. 683-690.
70. Kim, J.R., et al., Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochimica Acta, 2004. 50(1): p. 69-75.
71. Li, H., et al., Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. Journal of Membrane Science, 2011. 379(1-2): p. 397-402.
72. Lizundia, E., et al., Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020. 1.
73. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett, 2015. 15(4): p. 2740-5.
74. Wang, G., et al., Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Materials, 2022. 45: p. 1212-1219.
75. Rajapaksha, R., et al., Nanoparticles in electrochemical bioanalytical analysis, in Nanoparticles in Analytical and Medical Devices. 2021, Elsevier. p. 83-112.
76. Yen, P.-Y., et al., Optimization of sintering process on Li1+Al Ti2-(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ceramics International, 2020. 46(12): p. 20529-20536.
77. Hafez, R.S., et al., Dielectric and Thermal Properties of PEO/PVDF Blend Doped with Different Concentrations of Li4Ti5O12 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2020. 30(11): p. 4468-4480.
78. Zhou, C., et al., Understanding the Role of Solvents on the Morphological Structure and Li-Ion Conductivity of Poly(vinylidene fluoride)-Based Polymer Electrolytes. Journal of The Electrochemical Society, 2020. 167(7).
79. Razalli, S.M.M., et al., Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior. Functional Materials Letters, 2015. 8(3).
80. Xue, C., et al., Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries. ACS Appl Mater Interfaces, 2020. 12(22): p. 24837-24844.
81. Li, W., et al., A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017. 7(38): p. 23494-23501.
82. Ramesh, S., et al., Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture. Carbohydr Polym, 2013. 91(1): p. 14-21.
83. Ma, W., et al., Effect of Initial Polymer Concentration on the Crystallization of Poly (Vinylidene Fluoride)/Poly (Methyl Methacrylate) Blend from Solution Casting. Journal of Macromolecular Science, Part B, 2008. 47(1): p. 139-149.
84. Osaka, N., et al., Influence of lithium salt-induced phase separation on thermal behaviors of poly(vinylidene fluoride)/ionic liquid gels and pore/void formation by competition with crystallization. RSC Adv, 2018. 8(71): p. 40570-40580.
85. Wieczorek, W., Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics, 1996. 85(1-4): p. 67-72.
86. Wu, N., et al., Fast Li(+) Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. J Am Chem Soc, 2020. 142(5): p. 2497-2505.
87. Bae, J., et al., A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. Angew Chem Int Ed Engl, 2018. 57(8): p. 2096-2100.
88. Guo, Q., et al., New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2017. 9(48): p. 41837-41844.
89. Li, Y., et al., A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries. ACS Applied Energy Materials, 2021. 4(3): p. 2318-2326.
90. Yu, X. and A. Manthiram, A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020. 3(3): p. 2916-2924.
|