博碩士論文 109223027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.149.233.162
姓名 陳怡靜(Yi-Ching Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以CoO修飾多孔結構之松果衍生碳材PAC及NiCo2O4修飾有序管狀中孔洞與還原氧化石墨烯之複合式碳材CMK-5/rGO 於高效能鋰(鈉)離子電池負極材料之應用
(CoO modified porous pine cone-derived activated carbon (PAC) and NiCo2O4 nanorods modified mesoporous carbon and reduced graphene oxide (CMK-5/rGO) as anode material for high-efficiency lithium (sodium) ion battery)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本論文分為兩部分,第一部分主要是利用生物質材料透過活化(活化劑-磷酸)以及熱處理(氮氣環境下鍛燒)的步驟,製備出多孔洞碳材PAC,再利用含浸法結合高理論電容的氧化鈷,合成出CoO@PAC奈米複合材料,並應用於鋰(鈉)離子電池的負極。經XPS與TEM mapping發現PAC具有微量的氮、硫和磷元素,達到自摻雜的效果,並且藉由氮氣吸脫附儀分析證實PAC具有高比表面積和多孔洞的特殊結構,對於材料在電性上的表現有一定程度的幫助,再加上CoO高理論電容以及不規則排列所形成的孔隙,也使得材料有著更大的電容量。CoO@PAC-20在鋰離子電池系統以電流密度100 mA g-1進行充放電循環測試,經過50圈後能得到780.8 mA h g-1優異的電容量表現,另外在鈉離子系統中以電流密度500 mA g-1進行充放電循環測試,在900圈後能穩定得到118.5 mA h g-1的電容量顯示此材料具有良好的循環穩定性。
第二部分為透過奈米模鑄法合成出具有雙孔徑管狀結構的有序中孔洞碳材CMK-5,以物理研磨的方式成功將CMK-5與還原氧化石墨烯(rGO)結合,再利用含浸法結合高理論電容的NiCo2O4,合成出NiCo2O4@CMK-5/rGO奈米複合材料,應用在鋰(鈉)離子電極之負極材料。導電性良好的rGO可以提升材料的電荷轉移,CMK-5一方面具有高比表面積和孔洞結構,另一方面作為間隔物,避免rGO堆疊而減少電解質接觸的表面積,這些特色不僅對於有效控制NiCo2O4體積膨脹率的問題有很大的幫助,也提供鋰(鈉)離子在嵌入與嵌出時有良好的通道,作為電解質快速傳輸的路徑。在鋰離子電池系統以電流密度100 mA g-1進行充放電循環測試,經過50圈後能得到1313.5 mA h g-1優異的電容量表現,另外在鈉離子系統中以電流密度500 mA g-1進行充放電循環測試,在1000圈後能穩定得到131.4 mA h g-1的電容量顯示此材料具有良好的循環穩定性。
摘要(英) Recently, biomass derived carbons have gained enormous attention mainly because natural biomass precursors provides abundance, environmental friendliness, cost-efficient approach to develop carbonaceous electrodes and the factors associated with the utilization in energy conversion and storage systems. In this study, pinecone-derived activated carbon (PAC) obtained from pine cone powder require an activation procedure (chemical agents H3PO4), and thermal steps (annealing under N2 atmosphere), for promoting carbon porosity and surface characteristics suitable for application in anode for lithium-ion batteries. It delivers a high reversible capacity of 796.1 mA h g-1 after 475 cycles at a current density of 100 mA g-1. We also synthesize CoO@PAC as an anode for lithium/sodium-ion batteries to improve the cycling performance. It displays a high reversible capacity of 780.8 mA h g-1 after 50 cycles at a current density of 100 mA g-1 when use as anode for lithium-ion battery. When investigated in sodium-ion battery, the anode has exhibited a high reversible discharge capacity of 118.5 mA h g-1 after 900 cycles even at a current density of 500 mA g-1.
In second part, we synthesize NiCo2O4@CMK-5/rGO as an advanced anode for lithium/sodium-ion batteries. Ordered mesoporous carbon CMK-5 is combined with reduced graphene oxide (rGO) by physical grinding. CMK-5 acts as a spacer to avoid rGO stacking and reducing the surface area of the electrolyte contact. CMK-5/rGO has high specific surface area and good conducting network to accelerate the electron transport and Li-ion diffusion, and buffer the volume change of active materials upon cycling. NiCo2O4@CMK-5/rGO displays a high reversible capacity of 1313.5 and 131.4 mAh g-1 after 50 and 1000 cycles at current densities of 100 and 500 mAh/g with an outstanding rate performance in lithium-ion battery and sodium-ion battery, respectively.
關鍵字(中) ★ 中孔洞碳材
★ 生質碳材
★ 金屬氧化物
★ 鋰離子電池
★ 鈉離子電池
★ 負極材料
關鍵字(英) ★ Mesoporous carbon
★ Biomass carbon
★ Metal oxide
★ Lithium ion battery
★ Sodium ion battery
★ Anode material
論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池 2
1-3 金屬離子電池 7
1-4 生物質碳材 9
1-5 研究目的 10
第二章 文獻回顧 12
2-1 負極材料 12
2-1-1 碳材 13
2-1-2 非碳材 14
2-1-3 碳材-非碳材複合材料 16
2-2 有序中孔洞碳材(Ordered mesoporous carbon) 18
2-2-1 中孔洞碳材之米模鑄法(Nanocasting)合成機制 19
2-3 氧化石墨烯(GO)與還原氧化石墨烯(rGO) 22
2-4 生質碳材 25
2-5 生質碳材性能的改進手法 26
2-5-1 活化法(Activation) 27
2-5-2 模板法(Template method) 29
2-5-3 水熱法(Hydrothermal method) 30
2-5-4 異原子摻雜(Heteroatoms doping) 30
第三章 實驗藥品與儀器原理 32
3-1 實驗藥品 32
3-2 實驗鑑定儀器 35
3-3 材料鑑定儀器之原理 36
3-3-1 同步輻射光速線 36
3-3-2 X射線粉末繞射(XRD) 39
3-3-3 氮氣等溫吸脫附曲線、表面積與孔洞性質鑑定(BET) 40
3-3-4 熱重分析儀(TGA) 45
3-3-5 穿透式電子顯微鏡(TEM) 46
3-3-6 掃描式電子顯微鏡(SEM) 48
3-3-7 交流阻抗分析儀(AC-Impedance) 49
3-3-8 循環伏安法(Cyclic Voltammetry, CV) 51
3-3-9 拉曼光譜分析儀(Raman Spectroscopy) 52
3-3-10 X射線光電子能譜儀(XPS) 53
3-3-11 感應耦合電漿質譜儀(ICP-MS) 54
第四章 實驗方法 55
4-1 Part 1之負極材料製備 55
4-1-1 松果衍生碳材(Pinecone-derived carbon, PC) 55
4-1-2 活化松果衍生碳材 55
4-1-3 利用含浸法合成CoO@PAC負極材料 57
4-2 Part 2之負極材料製備 58
4-2-1 二維六角柱狀p6mm中孔洞矽材SBA-15合成 58
4-2-2 二維結構p6mm中孔洞管狀碳材CMK-5合成 59
4-2-3 層狀結構氧化石墨烯(graphene oxide)合成 60
4-2-4 層狀結構還原氧化石墨烯(reduced graphene oxide)合成 61
4-2-5 Ni-Co bimetallic hydroxide [NiCo2(OH)6]合成 61
4-2-6 利用含浸法合成NiCo2O4@CMK-5/rGO負極材料 62
4-3 電化學測試之材料製備 63
4-3-1 負極極片製作 63
4-3-2 正極極片製作 64
4-4 硬幣型2032型電池組裝 65
4-4-1 半電池 65
4-4-2 全電池 66
4-5 電池性能測試方法 67
4-5-1 定(變)電流充放電循環壽命測試 67
4-5-2 循環伏安法(CV) 68
4-5-3 電化學阻抗分析(EIS) 68
第五章 結果與討論 69
5-1 材料鑑定 69
5-1-1 大角度X光繞射分析(PXRD) 69
5-1-2 氮氣吸脫附結果分析(BET) 71
5-1-3 拉曼光譜分析(Raman) 76
5-1-4 熱重分析(TGA) 79
5-1-5 感應電漿耦合質譜(ICP-MS)分析 81
5-1-6 X光電子能譜(XPS)分析 82
5-1-7 掃描式電子顯微鏡(SEM)結果分析 85
5-1-8 穿透式電子顯微鏡(TEM)結果分析 88
5-2 材料之電化學測試 96
5-2-1 循環伏安法(CV)分析 96
5-2-2 充放電曲線之分析 97
5-2-3 電性分析 99
5-2-4 交流阻抗分析 107
5-2-5 電容貢獻度計算 110
5-2-6 應用於鈉離子電池與全電池 114
5-3 相關文獻比較 120
第六章 結果與討論 121
6-1 材料鑑定 121
6-1-1 小角度X光繞射圖譜分析(SAXRD) 121
6-1-2 大角度粉末X光繞射圖譜分析(PXRD) 123
6-1-3 氮氣吸脫附結果分析(BET) 125
6-1-4 拉曼光譜分析(Raman) 128
6-1-5 熱重分析(TGA) 130
6-1-6 感應電漿耦合質譜(ICP-MS)分析 132
6-1-7 X光電子能譜(XPS)分析 133
6-1-8 掃描式電子顯微鏡(SEM)之結果分析 137
6-1-9 穿透式電子顯微鏡(TEM)之結果分析 141
6-2 材料之電化學測試 147
6-2-1 循環伏安法(CV)分析 147
6-2-2 充放電曲線之分析 149
6-2-3 電性分析 151
6-2-4 交流阻抗分析 157
6-2-5 電容貢獻度計算 161
6-2-6 應用於鈉離子電池與全電池 165
6-3 相關文獻比較 170
第七章 結論 171
參考文獻 173

圖目錄
圖1-1 鋰離子電池充放電原理 3
圖1-2 不同元素在電池領域應用之特性 8
圖1-3 利用生質碳材的結構設計應用於不同儲能領域 9
圖1-4 CMK-5/rGO複合式碳材之示意圖 11
圖2-1碳負極材料之示意圖以及其相對應的鋰離子插層機制 13
圖2-2奈米碳材種類 14
圖2-3矽基材料膨脹率過大造成影響之示意圖 15
圖2-4 Si/C複合負極材料合成簡圖以及電性表現比較 16
圖2-5 HC@ NiCo2O4負極材料細部結構優勢與全電池之電性表現 17
圖2-6 硬模板和軟模板之合成示意圖 19
圖2-7 石墨、石墨烯、氧化石墨烯和還原氧化石墨烯的化學結構圖 23
圖2-8 從石墨至還原氧化石墨烯的路線流程圖 23
圖2-9 生物質衍生碳材的不同製備手法 26
圖2-10 生物質材料常見的製備方法 27
圖3-1同步輻射光源產生示意圖 37
圖3-2國家同步輻射中心加速器示意圖 37
圖3-3同步輻射作用機制示意圖 38
圖3-4布拉格方程式以及X射線繞射示意圖 39
圖3-5不同類型的等溫吸附曲線 43
圖3-6 IUPAC提出的四種遲滯迴路曲線 45
圖3-7 TGA儀器構造圖 46
圖3-8 穿透式電子顯微鏡基本構造圖 47
圖3-9 (A)掃描式電子顯微鏡基本構造圖 (B)電子信號種類與其提供之呈像訊號 49
圖3-10 交流阻抗圖譜 50
圖3-11 循環伏安圖譜 51
圖3-12 拉曼光譜散射之基本原理 52
圖3-13 (A) XPS原理示意圖 (B) XPS基本構造圖 53
圖3-14 ICP-MS基本構造圖 54
圖4-1 松果衍生碳材(PC)合成示意圖 55
圖4-2 利用KOH與K2CO3活化松果衍生碳材之示意圖 56
圖4-3 利用H3PO4與H3BO3活化松果衍生碳材之示意圖 56
圖4-4 CoO@PAC合成示意圖 57
圖4-5 中孔洞矽材SBA-15合成示意圖 58
圖4-6 中孔洞碳材CMK-5合成示意圖 59
圖4-7 氧化石墨烯(GO)合成示意圖 60
圖4-8 Ni-Co bimetallic hydroxide合成示意圖 61
圖4-9 NiCo2O4@CMK-5/rGO合成示意圖 62
圖4-10 負極極片製備示意圖 63
圖4-11 正極極片製備示意圖 64
圖4-12 半電池組裝示意圖 65
圖4-13 全電池組裝示意圖 66
圖5-1 利用不同活化劑活化生質碳材之大角度X光繞射圖 69
圖5-2 不同含浸量CoO@PAC大角度X光繞射圖 70
圖5-3 不同活化劑活化生質碳材之氮氣等溫吸脫附圖 73
圖5-4 不同含浸量CoO@PAC-X之氮氣等溫吸脫附圖 75
圖5-5 不同活化劑活化生質碳材之拉曼圖譜 76
圖5-6 不同鍛燒溫度之拉曼圖譜 77
圖5-7 不同氧化鈷含浸量之拉曼圖譜 78
圖5-8 CoO@PAC熱重分析圖 80
圖5-9 CoO@PAC在高溫下進行空氣鍛燒之大角度X光繞射圖 80
圖5-10 PAC之X光電子能譜圖 83
圖5-11 CoO@PAC-X之X光電子能譜圖 84
圖5-12 不同活化劑活化生質碳材之SEM影像分析 86
圖5-13 CoO@PAC-X之SEM影像分析 88
圖5-14 利用磷酸活化過後與未活化生質碳材之TEM影像分析 89
圖5-15 CoO@PAC-X之TEM影像分析 91
圖5-16 CoO奈米顆粒大小分布圖 91
圖5-17 PAC之TEM mapping影像分析 93
圖5-18 CoO@PAC-20之TEM mapping影像分析 94
圖5-19 CoO@PAC-20 HR-TEM分析 95
圖5-20 CoO@PAC與PAC循環伏安法測試 97
圖5-21 CoO@PAC與PAC充放電曲線圖 98
圖5-22 以電流密度100 mA g-1進行不同活化劑所製備的生質碳材之充放電測試 100
圖5-23 以電流密度1000 mA g-1進行不同活化劑所製備的生質碳材之充放電測試 100
圖5-24 石墨與硬碳之離子儲存形式是意圖 101
圖5-25 以電流密度100 mA g-1進行不同鍛燒溫度所製備的生質碳材之充放電測試 102
圖5-26 以電流密度1000 mA g-1進行不同鍛燒溫度所製備的生質碳材之充放電測試 102
圖5-27 以電流密度100 mA g-1進行不同磷酸含浸量所製備的生質碳材之充放電測試 103
圖5-28 以電流密度1000 mA g-1進行不同磷酸含浸量所製備的生質碳材之充放電測試 104
圖5-29 以電流密度100 mA g-1進行CoO@PAC之充放電測試 105
圖5-30 以電流密度1000 mA g-1進行CoO@PAC之充放電測試 105
圖5-31 CoO@PAC與PAC之變電流密度之充放電測試 106
圖5-32 CoO@PAC與PAC交流阻抗分析 108
圖5-33 不同材料於鋰離子系統中電化學交流阻抗頻譜之線性做圖 109
圖5-34 CoO@PAC-20之(A)不同掃速之循環伏安圖,(B)還原電流對不同掃速做圖, (C)氧化電流對不同掃速做圖 111
圖5-35不同掃速下電容貢獻度之CV圖 112
圖5-36 CoO@PAC-20於不同掃描速率下之電容貢獻度 113
圖5-37 CoO@PAC-20與PAC於鈉離子系統中之電性測試 115
圖5-38 CoO@PAC-20於鈉離子系統中之(A)變電流密度之充放電測試以及(B)充放電曲線圖 116
圖5-39 CoO@PAC-20與PAC於鈉離子系統中 117
圖5-40 CoO@PAC-20應用於全電池之點亮LED展示圖 119
圖5-41 CoO@PAC-20應用於全電池之充放電測試 119
圖6-1 不同材料之小角度X光繞射圖 122
圖6-2 石墨、氧化石墨烯與還原氧化石墨烯之大角度X光繞射圖 123
圖6-3 不同含浸量NiCo2O4@CMK-5/rGO大角度X光繞射圖 124
圖6-4 SBA-15氮氣等溫吸脫附圖 125
圖6-5 (A) CMK-5 (B) CMK-5/rGO氮氣等溫吸脫附圖 126
圖6-6 不同含浸量NiCo2O4@CMK-5/rGO之氮氣等溫吸脫附圖 127
圖6-7 不同材料之拉曼圖譜 129
圖6-8 NiCo2O4@CMK-5/rGO熱重分析圖 131
圖6-9 NiCo2O4@CMK-5/rGO-40之X光電子能譜圖 134
圖6-10 NiCo2O4@CMK-5/rGO-X之X光電子能譜圖 136
圖6-11 SEM影像分析 138
圖6-12 NiCo2O4@CMK-5/rGO-X之SEM影像分析 140
圖6-13 不同材料之TEM影像分析 143
圖6-14 NiCo2O4@CMK-5/rGO-40之TEM mapping影像分析 145
圖6-15 NiCo2O4@CMK-5/rGO-40 HR-TEM分析 146
圖6-16 NiCo2O4@CMK-5/rGO與CMK-5/rGO循環伏安法測試 148
圖6-17 NiCo2O4@CMK-5/rGO-X與CMK-5/rGO充放電曲線圖 150
圖6-18 以電流密度100 mA g-1進行不同比例CMK-5/rGO之充放電測試 152
圖6-19 以電流密度1000 mA g-1進行不同比例CMK-5/rGO之充放電測試 152
圖6-20 以電流密度100 mA g-1進行NiCo2O4@CMK-5/rGO之電性測試 154
圖6-21 以電流密度1000 mA g-1進行NiCo2O4@CMK-5/rGO之電性測試 154
圖6-22 NiCo2O4@CMK-5/rGO-X與CMK-5變電流測試 156
圖6-23 不同材料於鋰離子系統中交流阻抗分析 158
圖6-24 不同材料於鋰離子系統中電化學交流阻抗頻譜之線性做圖 160
圖6-25 NiCo2O4@CMK-5/rGO-40之(A)不同掃速之循環伏安圖, (B)還原電流對不同掃速做圖, (C)氧化電流對不同掃速做圖 162
圖6-26 不同掃速下電容貢獻度之CV圖 163
圖6-27 NiCo2O4@CMK-5/rGO-40於不同掃描速率下之電容貢獻度 164
圖6-28 在鈉離子系統中以電流密度500 mA h g-1進行NiCo2O4@CMK-5/rGO-40之電性測試 165
圖6-29 在鈉離子系統中NiCo2O4@CMK-5/rGO-40之變電流測試 166
圖6-30 NiCo2O4@CMK-5/rGO-40於鈉離子系統中(A)電化學交流阻抗頻譜以及(B)線性作圖 167
圖6-31 NiCo2O4@CMK-5/rGO-40應用於全電池之點亮LED展示圖 169
圖6-32 NiCo2O4@CMK-5/rGO-40應用於全電池之充放電測試 169

表目錄
表1-1 鋰離子電池正極材料的比較 4
表2-1 以奈米模鑄法合成有序中孔洞碳材總覽 21
表3-1 負極材料藥品目錄表 32
表5-1 不同活化劑活化生質碳材之氮氣吸脫附結果表格 74
表5-2 不同含浸量CoO@PAC之氮氣等溫吸脫附表格 75
表5-3 不同活化劑活化生質碳材之拉曼分析數據表格 77
表5-4 不同鍛燒溫度之拉曼分析數據表格 77
表5-5 不同氧化鈷含浸量之拉曼分析數據表格 78
表5-6 不同磷酸含浸量之ICP-MS分析 81
表5-7 CoO@PAC之ICP-MS分析 81
表5-8 CoO粒徑大小 92
表5-9 阻抗比較 107
表5-10 CoO@PAC-X之鋰離子擴散係數比較 109
表5-11 CoO@PAC-20之鈉離子擴散係數與阻抗 118
表5-12 生質碳材應用於鋰離子電池之負極材料之文獻比較 120
表6-1 不同材料之氮氣吸脫附結果表格 128
表6-2 不同材料之拉曼分析數據表格 129
表6-3 NiCo2O4@CMK-5/rGO 之ICP-MS分析 132
表6-4 阻抗比較 157
表6-5 NiCo2O4@CMK-5/rGO-X之鋰離子擴散係數比較 159
表6-6 NiCo2O4@CMK-5/rGO-40之鈉離子擴散係數與阻抗 168
表6-7 NiCo2O4@CMK-5/rGO應用於LIBs之負極材料之文獻比較 170
參考文獻 參考文獻
1. Lee, H.; Yanılmaz, M.; Toprakçı, O.; Fu, K.; Zhang, X., A Review and Recent Developments in Membrane Separators for Rechargeable Lithium-ion Batteries. Energy Environ. Sci. 2014, 7.
2. Lindsay, R., Additional Data Center Applications for Lithium-Ion Batteries. 2018.
3. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research Development on Sodium-Ion Batteries. Chemical Reviews 2014, 114 (23), 11636-11682.
4. Xu, H.; Chen, H.; Gao, C., Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. ACS Materials Letters 2021, 3 (8), 1221-1237.
5. Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q., Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries. Advanced Science 2021, 8 (13), 2004490.
6. Chen, Y.; Guo, X.; Liu, A.; Zhu, H.; Ma, T., Recent Progress of Biomass-derived Carbon Materials used for Secondary Batteries. Sustainable Energy & Fuels 2021, 5.
7. Li, R.; Zhou, Y.; Li, W.; Zhu, J.; Huang, W., Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Research 2020, 2020, 8685436.
8. Patil, R.; Khandelwal, A.; Kim, K.; Hariharan, K.; Kolake, S., Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications. Journal of The Electrochemical Society 2019, 166, A1185-A1196.
9. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials 2003, 15 (24), 2107-2111.
10. Agostini, M.; Brutti, S.; Hassoun, J., High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode. ACS Applied Materials & Interfaces 2016, 8 (17), 10850-10857.
11. Jessl, S.; Engelke, S.; Copic, D.; Baumberg, J. J.; De Volder, M., Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials 2021, 4 (6), 6299-6305.
12. Kong, N.; Jia, M.; Yang, C.; Lan, J.; Yu, Y.; Yang, X., Encapsulating V2O3 Nanoparticles in Carbon Nanofibers with Internal Void Spaces for a Self-Supported Anode Material in Superior Lithium-Ion Capacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (24), 19483-19495.
13. Saikia, D.; Deka, J. R., Insight into the Superior Lithium Storage Properties of Ultrafine CoO Nanoparticles Confined in a 3 D Bimodal Ordered Mesoporous Carbon CMK-9 Anode. 2020, 13 (11), 2952-2965.
14. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 16013.
15. Li, J. Y.; Quan, X.; Li, G.; Yin, Y. X.; Wan, L.; Guo, Y. G., Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers 2017, 1, 1691-1708.
16. Liu, W.; Liu, J.; Zhu, M.; Wang, W.; Wang, L.; Xie, S.; Wang, L.; Yang, X.; He, X.; Sun, Y., Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces 2020, 12 (51), 57055-57063.
17. Wang, B.; Cai, S.; Wang, G.; Liu, X.; Wang, H.; Bai, J., Hierarchical NiCo2O4 nanosheets grown on hollow carbon microspheres composites for advanced lithium-ion half and full batteries. Journal of colloid and interface science 2018, 513, 797-808.
18. Lamond, T. G.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
19. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12 (1), 62-65.
20. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
21. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
22. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials 1996, 8 (2), 454-462.
23. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
24. Ozaki, J.-i.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Ōya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35, 1031-1033.
25. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
26. Shen, G.; Sun, X.; Zhang, H.; Liu, Y.; Zhang, J.; Meka, A.; Zhou, L.; Yu, C., Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A 2015, 3 (47), 24041-24048.
27. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
28. Qu, Y.; Guo, M.; Wang, X.; Yuan, C., Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds 2019, 791, 874-882.
29. Lu, A.-H.; Schüth, F., Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. Advanced Materials 2006, 18 (14), 1793-1805.
30. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Advanced Materials 2018, 30, 1705708.
31. Eftekhari, A.; Zhaoyang, F., Ordered Mesoporous Carbon and Its Applications for Electrochemical Energy Storage and Conversion. Mater. Chem. Front. 2017, 1.
32. Aneeya Kumar Samantara, C. A., Dharmendra Satpathy, Chitta R. Panda, Prakash K. Bhaskara, Abhisek Sasmal, Fullerens, Graphenes and Nanotubes. 2018, 545-584.
33. Edgar Jimenez‐Cervantes Amieva, J. L. B., Ana Laura Martínez‐Hernández and Carlos Velasco‐Santos, Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules. Recent Advances in Graphene Research. 2016.
34. Iqbal, A. K. M. A.; Sakib, N.; Iqbal, A. K. M. P.; Nuruzzaman, D. M., Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 2020, 12, 100815.
35. Plínio Fernandes Borges Silva, L. E. L. R., Vinícius Meirelles Mendonça, Sidney Nicodemos da Silva, Reduction Effect of Exposure to Ultraviolet Radiation of Graphene Oxide Aqueous Suspensions with Different pH Values. American Journal of Materials Science 2021, 11 (2), 48-55.
36. Nam, S.; Jeong, Y. J.; Park, C. E.; Jang, J., Enhanced gas barrier properties of graphene-TiO2 nanocomposites on plastic substrates assisted by UV photoreduction of graphene oxide. Organic Electronics 2017, 48, 323-329.
37. Hung, Y.-F.; Cheng, C.; Huang, C.-K.; Yang, C.-R.; Tseng, S.-F., Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors. The International Journal of Advanced Manufacturing Technology 2021, 113 (3), 1203-1213.
38. Xu, S.; Dall′Agnese, Y.; Li, J.; Gogotsi, Y.; Han, W., Thermally Reduced Graphene/MXene Film for Enhanced Li-ion Storage. Chemistry – A European Journal 2018, 24 (69), 18556-18563.
39. Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers 2019, 3.
40. Zhu, Z.; Xu, Z., The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews 2020, 134, 110308.
41. Kim, S. J.; Bai, B. C.; Kim, M. I.; Lee, Y.-S., Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors. Carbon Letters 2020, 30 (5), 585-591.
42. Ma, Y., Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation. Waste and Biomass Valorization 2017, 8.
43. Greco, G.; Canevesi, R. L. S.; Di Stasi, C.; Celzard, A.; Fierro, V.; Manyà, J. J., Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation. Renewable Energy 2022, 191, 122-133.
44. Yang, K.; Peng, J.; Xia, H.; Zhang, L.; Srinivasakannan, C.; Guo, S., Textural characteristics of activated carbon by single step CO2 activation from coconut shells. Journal of the Taiwan Institute of Chemical Engineers 2010, 41 (3), 367-372.
45. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411-2428.
46. Wang, X.; Shi, G., An introduction to the chemistry of graphene. Physical Chemistry Chemical Physics 2015, 17 (43), 28484-28504.
47. Lin, G.; Wang, Q.; Yang, X.; Cai, Z.; Xiong, Y.; Huang, B., Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Advances 2020, 10, 17768-17776.
48. Hu, X.; Fan, M.; Zhu, Y.; Zhu, Q.; Song, Q.; Dong, Z., Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols. Green Chemistry 2019.
49. Jiang, Z.-L.; Sun, H.; Shi, W.-K.; Cheng, J.-Y.; Hu, J.-Y.; Guo, H.-L.; Gao, M.-Y.; Zhou, H.; Sun, S.-G., P-Doped Hive-like Carbon Derived from Pinecone Biomass as Efficient Catalyst for Li–O2 Battery. ACS Sustainable Chemistry & Engineering 2019, 7 (16), 14161-14169.
50. Zhang, X.; Gang, D. D.; Zhang, J.; Lei, X.; Lian, Q.; Holmes, W. E.; Zappi, M. E.; Yao, H., Insight into the activation mechanisms of biochar by boric acid and its application for the removal of sulfamethoxazole. Journal of Hazardous Materials 2022, 424, 127333.
51. Fu, R.; Yu, C.; Li, S.; Yu, J.; Wang, Z.; Guo, W.; Xie, Y.; Yang, L.; Liu, K.; Ren, W.; Qiu, J., A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry 2021, 23 (9), 3400-3409.
52. Wang, L.; Hu, X., Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage. Chemistry – An Asian Journal 2018, 13 (12), 1518-1529.
53. Yu, F.; Li, S.; Chen, W.; Wu, T.; Peng, C., Biomass-Derived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives. ENERGY & ENVIRONMENTAL MATERIALS 2019, 2 (1), 55-67.
54. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 2017, 5 (6), 2411-2428.
55. Li, R.; Rao, D.; Zhou, J.; Wu, G.; Wang, G.; Zhu, Z.; Han, X.; Sun, R.; Li, H.; Wang, C.; Yan, W.; Zheng, X.; Cui, P.; Wu, Y.; Wang, G.; Hong, X., Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications 2021, 12 (1), 3102.
56. Zhang, C.; Cai, X.; Chen, W.; Yang, S.; Xu, D.; Fang, Y.; Yu, X., 3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 9930-9939.
57. Fan, Z.; Wang, B.; Xi, Y.; Xu, X.; Li, M.; Li, J.; Coxon, P.; Cheng, S.; Gao, G.; Xiao, C.; Yang, G.; Xi, K.; Ding, S.; Kumar, R. V., A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633-641.
58. Andrade-Sanchez, M. E.; Hernandez-Perez, M. A.; García-Pacheco, G.; Ortega-Avilés, M., Temperature and pH effect on reaction mechanism and particle size of nanostructured Co<sub>3</sub>O<sub>4</sub> thin films obtained by sol-gel/dip-coating. Materials Research Express 2021, 8 (2), 025015.
59. Su, Z.; Ling, H. Y.; Li, M.; Qian, S.; Chen, H.; Lai, C.; Zhang, S., Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries. Carbon Energy 2020, 2 (2), 265-275.
60. Gu, L.; Qiu, C.; Qiu, J.; Yao, Y.; Sakai, E.; Yang, L., Preparation and Characterization of DOPO-Functionalized MWCNT and Its High Flame-Retardant Performance in Epoxy Nanocomposites. Polymers 2020, 12 (3), 613.
61. Sebastián, D.; Nieto-Monge, M.; Pérez-Rodríguez, S.; Pastor, E.; Lázaro, M., Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation. Energies 2018, 11, 831.
62. Chen, Z.; Li, H., A novel phosphatizing strategy to engineering CoO/Co1.94P@carbon polyhedron heterostructures for enhanced lithium-ion battery. Journal of Materials Science 2021, 56, 1-8.
63. Zhang, Y.; Li, X.; Dong, P.; Wu, G.; Xiao, J.; Zeng, X.; Zhang, Y.; Sun, X., Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (49), 42796-42803.
64. Xie, F.; Xu, Z.; Guo, Z.; Titirici, M.-M., Hard carbons for sodium-ion batteries and beyond. Progress in Energy 2020, 2, 042002.
65. Xiao, B.; Rojo, T.; li, X., A Minireview on Hard Carbon as Na-ion Battery Anodes: Progresses and Challenges. ChemSusChem 2018, 12.
66. Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J., Microwave-assisted synthesis of biochar‑carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology 2021, 213, 106714.
67. Yu, H.-Y.; Liang, H.-J.; Gu, Z.-Y.; Meng, Y.-F.; Yang, M.; Yu, M.-X.; Zhao, C.-D.; Wu, X.-L., Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta 2020, 361, 137041.
68. Li, R.; Huang, J.; Li, J.; Cao, L.; Zhong, X.; Yu, A.; Lu, G., Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes. Journal of Electroanalytical Chemistry 2020, 862, 114044.
69. Han, Q.; Shi, M.; Han, Z.; Li, Y.; Zhang, W.; Zhang, X., Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries. Journal of Alloys and Compounds 2020, 848, 156477.
70. Yokokura, T. J.; Rodriguez, J. R.; Pol, V. G., Waste Biomass-Derived Carbon Anode for Enhanced Lithium Storage. ACS Omega 2020, 5 (31), 19715-19720.
71. Sekar, S.; Lee, Y.; Kim, D. Y.; Lee, S., Substantial LIB Anode Performance of Graphitic Carbon Nanoflakes Derived from Biomass Green-Tea Waste. Nanomaterials (Basel) 2019, 9 (6), 871.
72. Luna-Lama, F.; Rodríguez-Padrón, D.; Puente-Santiago, A. R.; Muñoz-Batista, M. J.; Caballero, A.; Balu, A. M.; Romero, A. A.; Luque, R., Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production 2019, 207, 411-417.
73. Ma, B.; Huang, Y.; Nie, Z.; Qiu, X.; Su, D.; Wang, G.; Yuan, J.; Xie, X.; Wu, Z., Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances 2019, 9 (35), 20424-20431.
74. Kim, K.; Adams, R. A.; Kim, P. J.; Arora, A.; Martinez, E.; Youngblood, J. P.; Pol, V. G., Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. Carbon 2018, 133, 62-68.
75. Gaddam, R. R.; Yang, D.; Narayan, R.; Raju, K.; Kumar, N. A.; Zhao, X. S., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 2016, 26, 346-352.
76. Shou, W.; Guo, R.; Pan, H.; Gang, D. D. In Ordered Mesoporous Carbon: Fabrication, Characterization, and Application as Adsorbents, 2014.
77. Weinberger, C.; Hartmann, M.; Ren, S.; Sandberg, T.; Smått, J.-H.; Tiemann, M., Selective pore filling of mesoporous CMK-5 carbon studied by XRD: Comparison between theoretical simulations and experimental results. Microporous and Mesoporous Materials 2018, 266, 24-31.
78. Weinberger, C.; Ren, S.; Hartmann, M.; Wagner, T.; Karaman, D. Ş.; Rosenholm, J. M.; Tiemann, M., Bimodal Mesoporous CMK-5 Carbon: Selective Pore Filling with Sulfur and SnO2 for Lithium Battery Electrodes. ACS Applied Nano Materials 2018, 1 (1), 455-462.
79. Hidayah, N. M. S.; Liu, W.-W.; Lai, C.-W.; Noriman, N. Z.; Khe, C.-S.; Hashim, U.; Lee, H. C., Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings 2017, 1892 (1), 150002.
80. Zhang, Y.; Liu, J.; Zhang, Y.; Liu, J.; Duan, Y., Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Advances 2017, 7 (85), 54031-54038.
81. Aragaw, B. A., Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. Journal of Nanostructure in Chemistry 2020, 10 (1), 9-18.
82. Rayati, S.; Nafarieh, P.; Amini, M., The synthesis, characterization and catalytic application of manganese porphyrins bonded to the novel modified SBA-15. New Journal of Chemistry 2018, 42.
83. Cheng, Y.; Guo, G.; Cheng, X.; Liu, M.; Ji, J., Synthesis and research of MnO2–NiCo2O4 anode material from spent LiNi0.6Co0.2Mn0.2O2 cathodes. Ionics 2022, 28 (4), 1647-1656.
84. Nguyen, T. V.; Son, L. T.; Thuy, V. V.; Thao, V. D.; Hatsukano, M.; Higashimine, K.; Maenosono, S.; Chun, S.-E.; Thu, T. V., Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton Transactions 2020, 49 (20), 6718-6729.
85. Lei, Z.; Liu, Z.; Wang, H.; Sun, X.; Lu, L.; Zhao, X. S., A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. Journal of Materials Chemistry A 2013, 1 (6), 2313-2321.
86. Kakarla, A. K.; Narsimulu, D.; Yu, J. S., Two-dimensional porous NiCo2O4 nanostructures for use as advanced high-performance anode material in lithium-ion batteries. Journal of Alloys and Compounds 2021, 886, 161224.
87. Islam, M.; Ali, G.; Jeong, M.-G.; Chung, K. Y.; Nam, K.-W.; Jung, H.-G., Electrochemical storage behavior of NiCo2O4 nanoparticles anode with structural and morphological evolution in lithium-ion and sodium-ion batteries. International Journal of Energy Research 2021, 1-13.
88. Sun, L.; Huang, X.; Li, Y.; Deng, L.; Mi, H.; Ren, X.; Zhang, P., Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials. Journal of Physics and Chemistry of Solids 2021, 148, 109761.
89. Chu, K.; Li, Z.; Xu, S.; Yao, G.; Xu, Y.; Niu, P.; Zheng, F., MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalton Transactions 2020, 49 (31), 10808-10815.
90. Zhang, C.; Xie, Z.; Yang, W.; Liang, Y.; Meng, D.; He, X.; Liang, P.; Zhang, Z., NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources 2020, 451, 227761.
91. Wang, H.; Wang, C.; Li, C.; Sun, Q., Wrinkled Carbon-Coated NiCo2O4 Nanoclusters Constructed by Self-Encapsulation of Cellulose Nanonetwork for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (12), 10840-10846.
92. Ren, Q.; Wu, G.; Xing, W.; Han, J.; Li, P.; Li, B.; Cheng, J.; Wu, S.; Zou, R.; Hu, J., Highly Ordered Mesoporous NiCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Frontiers in Chemistry 2019, 7.
93. Liu, L.; Zhang, H.; Yang, J.; Mu, Y.; Wang, Y., Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (44), 22393-22403.
94. Yang, Y.; Huang, G. Y.; Sun, H.; Ahmad, M.; Mou, Q.; Zhang, H., Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. Journal of colloid and interface science 2018, 529, 357-365.
95. Rong, H.; Qin, Y.; Jiang, Z.; Jiang, Z.-j.; Liu, M., A novel NiCo 2 O 4 @GO hybrid composite with core-shell structure as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds 2017, 731.
96. Mondal, A. K.; Su, D.; Chen, S.; Xie, X.; Wang, G., Highly Porous NiCo2O4 Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces 2014, 6 (17), 14827-14835.
97. Shen, L.; Che, Q.; Li, H.; Zhang, X., Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage. Advanced Functional Materials 2014, 24 (18), 2630-2637.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明