參考文獻 |
參考文獻
1. Lee, H.; Yanılmaz, M.; Toprakçı, O.; Fu, K.; Zhang, X., A Review and Recent Developments in Membrane Separators for Rechargeable Lithium-ion Batteries. Energy Environ. Sci. 2014, 7.
2. Lindsay, R., Additional Data Center Applications for Lithium-Ion Batteries. 2018.
3. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research Development on Sodium-Ion Batteries. Chemical Reviews 2014, 114 (23), 11636-11682.
4. Xu, H.; Chen, H.; Gao, C., Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. ACS Materials Letters 2021, 3 (8), 1221-1237.
5. Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q., Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries. Advanced Science 2021, 8 (13), 2004490.
6. Chen, Y.; Guo, X.; Liu, A.; Zhu, H.; Ma, T., Recent Progress of Biomass-derived Carbon Materials used for Secondary Batteries. Sustainable Energy & Fuels 2021, 5.
7. Li, R.; Zhou, Y.; Li, W.; Zhu, J.; Huang, W., Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Research 2020, 2020, 8685436.
8. Patil, R.; Khandelwal, A.; Kim, K.; Hariharan, K.; Kolake, S., Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications. Journal of The Electrochemical Society 2019, 166, A1185-A1196.
9. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials 2003, 15 (24), 2107-2111.
10. Agostini, M.; Brutti, S.; Hassoun, J., High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode. ACS Applied Materials & Interfaces 2016, 8 (17), 10850-10857.
11. Jessl, S.; Engelke, S.; Copic, D.; Baumberg, J. J.; De Volder, M., Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials 2021, 4 (6), 6299-6305.
12. Kong, N.; Jia, M.; Yang, C.; Lan, J.; Yu, Y.; Yang, X., Encapsulating V2O3 Nanoparticles in Carbon Nanofibers with Internal Void Spaces for a Self-Supported Anode Material in Superior Lithium-Ion Capacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (24), 19483-19495.
13. Saikia, D.; Deka, J. R., Insight into the Superior Lithium Storage Properties of Ultrafine CoO Nanoparticles Confined in a 3 D Bimodal Ordered Mesoporous Carbon CMK-9 Anode. 2020, 13 (11), 2952-2965.
14. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 16013.
15. Li, J. Y.; Quan, X.; Li, G.; Yin, Y. X.; Wan, L.; Guo, Y. G., Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers 2017, 1, 1691-1708.
16. Liu, W.; Liu, J.; Zhu, M.; Wang, W.; Wang, L.; Xie, S.; Wang, L.; Yang, X.; He, X.; Sun, Y., Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces 2020, 12 (51), 57055-57063.
17. Wang, B.; Cai, S.; Wang, G.; Liu, X.; Wang, H.; Bai, J., Hierarchical NiCo2O4 nanosheets grown on hollow carbon microspheres composites for advanced lithium-ion half and full batteries. Journal of colloid and interface science 2018, 513, 797-808.
18. Lamond, T. G.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
19. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12 (1), 62-65.
20. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
21. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
22. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials 1996, 8 (2), 454-462.
23. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
24. Ozaki, J.-i.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Ōya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35, 1031-1033.
25. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
26. Shen, G.; Sun, X.; Zhang, H.; Liu, Y.; Zhang, J.; Meka, A.; Zhou, L.; Yu, C., Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A 2015, 3 (47), 24041-24048.
27. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
28. Qu, Y.; Guo, M.; Wang, X.; Yuan, C., Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds 2019, 791, 874-882.
29. Lu, A.-H.; Schüth, F., Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. Advanced Materials 2006, 18 (14), 1793-1805.
30. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Advanced Materials 2018, 30, 1705708.
31. Eftekhari, A.; Zhaoyang, F., Ordered Mesoporous Carbon and Its Applications for Electrochemical Energy Storage and Conversion. Mater. Chem. Front. 2017, 1.
32. Aneeya Kumar Samantara, C. A., Dharmendra Satpathy, Chitta R. Panda, Prakash K. Bhaskara, Abhisek Sasmal, Fullerens, Graphenes and Nanotubes. 2018, 545-584.
33. Edgar Jimenez‐Cervantes Amieva, J. L. B., Ana Laura Martínez‐Hernández and Carlos Velasco‐Santos, Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules. Recent Advances in Graphene Research. 2016.
34. Iqbal, A. K. M. A.; Sakib, N.; Iqbal, A. K. M. P.; Nuruzzaman, D. M., Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 2020, 12, 100815.
35. Plínio Fernandes Borges Silva, L. E. L. R., Vinícius Meirelles Mendonça, Sidney Nicodemos da Silva, Reduction Effect of Exposure to Ultraviolet Radiation of Graphene Oxide Aqueous Suspensions with Different pH Values. American Journal of Materials Science 2021, 11 (2), 48-55.
36. Nam, S.; Jeong, Y. J.; Park, C. E.; Jang, J., Enhanced gas barrier properties of graphene-TiO2 nanocomposites on plastic substrates assisted by UV photoreduction of graphene oxide. Organic Electronics 2017, 48, 323-329.
37. Hung, Y.-F.; Cheng, C.; Huang, C.-K.; Yang, C.-R.; Tseng, S.-F., Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors. The International Journal of Advanced Manufacturing Technology 2021, 113 (3), 1203-1213.
38. Xu, S.; Dall′Agnese, Y.; Li, J.; Gogotsi, Y.; Han, W., Thermally Reduced Graphene/MXene Film for Enhanced Li-ion Storage. Chemistry – A European Journal 2018, 24 (69), 18556-18563.
39. Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers 2019, 3.
40. Zhu, Z.; Xu, Z., The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews 2020, 134, 110308.
41. Kim, S. J.; Bai, B. C.; Kim, M. I.; Lee, Y.-S., Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors. Carbon Letters 2020, 30 (5), 585-591.
42. Ma, Y., Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation. Waste and Biomass Valorization 2017, 8.
43. Greco, G.; Canevesi, R. L. S.; Di Stasi, C.; Celzard, A.; Fierro, V.; Manyà, J. J., Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation. Renewable Energy 2022, 191, 122-133.
44. Yang, K.; Peng, J.; Xia, H.; Zhang, L.; Srinivasakannan, C.; Guo, S., Textural characteristics of activated carbon by single step CO2 activation from coconut shells. Journal of the Taiwan Institute of Chemical Engineers 2010, 41 (3), 367-372.
45. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411-2428.
46. Wang, X.; Shi, G., An introduction to the chemistry of graphene. Physical Chemistry Chemical Physics 2015, 17 (43), 28484-28504.
47. Lin, G.; Wang, Q.; Yang, X.; Cai, Z.; Xiong, Y.; Huang, B., Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Advances 2020, 10, 17768-17776.
48. Hu, X.; Fan, M.; Zhu, Y.; Zhu, Q.; Song, Q.; Dong, Z., Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols. Green Chemistry 2019.
49. Jiang, Z.-L.; Sun, H.; Shi, W.-K.; Cheng, J.-Y.; Hu, J.-Y.; Guo, H.-L.; Gao, M.-Y.; Zhou, H.; Sun, S.-G., P-Doped Hive-like Carbon Derived from Pinecone Biomass as Efficient Catalyst for Li–O2 Battery. ACS Sustainable Chemistry & Engineering 2019, 7 (16), 14161-14169.
50. Zhang, X.; Gang, D. D.; Zhang, J.; Lei, X.; Lian, Q.; Holmes, W. E.; Zappi, M. E.; Yao, H., Insight into the activation mechanisms of biochar by boric acid and its application for the removal of sulfamethoxazole. Journal of Hazardous Materials 2022, 424, 127333.
51. Fu, R.; Yu, C.; Li, S.; Yu, J.; Wang, Z.; Guo, W.; Xie, Y.; Yang, L.; Liu, K.; Ren, W.; Qiu, J., A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry 2021, 23 (9), 3400-3409.
52. Wang, L.; Hu, X., Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage. Chemistry – An Asian Journal 2018, 13 (12), 1518-1529.
53. Yu, F.; Li, S.; Chen, W.; Wu, T.; Peng, C., Biomass-Derived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives. ENERGY & ENVIRONMENTAL MATERIALS 2019, 2 (1), 55-67.
54. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 2017, 5 (6), 2411-2428.
55. Li, R.; Rao, D.; Zhou, J.; Wu, G.; Wang, G.; Zhu, Z.; Han, X.; Sun, R.; Li, H.; Wang, C.; Yan, W.; Zheng, X.; Cui, P.; Wu, Y.; Wang, G.; Hong, X., Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications 2021, 12 (1), 3102.
56. Zhang, C.; Cai, X.; Chen, W.; Yang, S.; Xu, D.; Fang, Y.; Yu, X., 3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 9930-9939.
57. Fan, Z.; Wang, B.; Xi, Y.; Xu, X.; Li, M.; Li, J.; Coxon, P.; Cheng, S.; Gao, G.; Xiao, C.; Yang, G.; Xi, K.; Ding, S.; Kumar, R. V., A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633-641.
58. Andrade-Sanchez, M. E.; Hernandez-Perez, M. A.; García-Pacheco, G.; Ortega-Avilés, M., Temperature and pH effect on reaction mechanism and particle size of nanostructured Co<sub>3</sub>O<sub>4</sub> thin films obtained by sol-gel/dip-coating. Materials Research Express 2021, 8 (2), 025015.
59. Su, Z.; Ling, H. Y.; Li, M.; Qian, S.; Chen, H.; Lai, C.; Zhang, S., Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries. Carbon Energy 2020, 2 (2), 265-275.
60. Gu, L.; Qiu, C.; Qiu, J.; Yao, Y.; Sakai, E.; Yang, L., Preparation and Characterization of DOPO-Functionalized MWCNT and Its High Flame-Retardant Performance in Epoxy Nanocomposites. Polymers 2020, 12 (3), 613.
61. Sebastián, D.; Nieto-Monge, M.; Pérez-Rodríguez, S.; Pastor, E.; Lázaro, M., Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation. Energies 2018, 11, 831.
62. Chen, Z.; Li, H., A novel phosphatizing strategy to engineering CoO/Co1.94P@carbon polyhedron heterostructures for enhanced lithium-ion battery. Journal of Materials Science 2021, 56, 1-8.
63. Zhang, Y.; Li, X.; Dong, P.; Wu, G.; Xiao, J.; Zeng, X.; Zhang, Y.; Sun, X., Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (49), 42796-42803.
64. Xie, F.; Xu, Z.; Guo, Z.; Titirici, M.-M., Hard carbons for sodium-ion batteries and beyond. Progress in Energy 2020, 2, 042002.
65. Xiao, B.; Rojo, T.; li, X., A Minireview on Hard Carbon as Na-ion Battery Anodes: Progresses and Challenges. ChemSusChem 2018, 12.
66. Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J., Microwave-assisted synthesis of biochar‑carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology 2021, 213, 106714.
67. Yu, H.-Y.; Liang, H.-J.; Gu, Z.-Y.; Meng, Y.-F.; Yang, M.; Yu, M.-X.; Zhao, C.-D.; Wu, X.-L., Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta 2020, 361, 137041.
68. Li, R.; Huang, J.; Li, J.; Cao, L.; Zhong, X.; Yu, A.; Lu, G., Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes. Journal of Electroanalytical Chemistry 2020, 862, 114044.
69. Han, Q.; Shi, M.; Han, Z.; Li, Y.; Zhang, W.; Zhang, X., Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries. Journal of Alloys and Compounds 2020, 848, 156477.
70. Yokokura, T. J.; Rodriguez, J. R.; Pol, V. G., Waste Biomass-Derived Carbon Anode for Enhanced Lithium Storage. ACS Omega 2020, 5 (31), 19715-19720.
71. Sekar, S.; Lee, Y.; Kim, D. Y.; Lee, S., Substantial LIB Anode Performance of Graphitic Carbon Nanoflakes Derived from Biomass Green-Tea Waste. Nanomaterials (Basel) 2019, 9 (6), 871.
72. Luna-Lama, F.; Rodríguez-Padrón, D.; Puente-Santiago, A. R.; Muñoz-Batista, M. J.; Caballero, A.; Balu, A. M.; Romero, A. A.; Luque, R., Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production 2019, 207, 411-417.
73. Ma, B.; Huang, Y.; Nie, Z.; Qiu, X.; Su, D.; Wang, G.; Yuan, J.; Xie, X.; Wu, Z., Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances 2019, 9 (35), 20424-20431.
74. Kim, K.; Adams, R. A.; Kim, P. J.; Arora, A.; Martinez, E.; Youngblood, J. P.; Pol, V. G., Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. Carbon 2018, 133, 62-68.
75. Gaddam, R. R.; Yang, D.; Narayan, R.; Raju, K.; Kumar, N. A.; Zhao, X. S., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 2016, 26, 346-352.
76. Shou, W.; Guo, R.; Pan, H.; Gang, D. D. In Ordered Mesoporous Carbon: Fabrication, Characterization, and Application as Adsorbents, 2014.
77. Weinberger, C.; Hartmann, M.; Ren, S.; Sandberg, T.; Smått, J.-H.; Tiemann, M., Selective pore filling of mesoporous CMK-5 carbon studied by XRD: Comparison between theoretical simulations and experimental results. Microporous and Mesoporous Materials 2018, 266, 24-31.
78. Weinberger, C.; Ren, S.; Hartmann, M.; Wagner, T.; Karaman, D. Ş.; Rosenholm, J. M.; Tiemann, M., Bimodal Mesoporous CMK-5 Carbon: Selective Pore Filling with Sulfur and SnO2 for Lithium Battery Electrodes. ACS Applied Nano Materials 2018, 1 (1), 455-462.
79. Hidayah, N. M. S.; Liu, W.-W.; Lai, C.-W.; Noriman, N. Z.; Khe, C.-S.; Hashim, U.; Lee, H. C., Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings 2017, 1892 (1), 150002.
80. Zhang, Y.; Liu, J.; Zhang, Y.; Liu, J.; Duan, Y., Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Advances 2017, 7 (85), 54031-54038.
81. Aragaw, B. A., Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. Journal of Nanostructure in Chemistry 2020, 10 (1), 9-18.
82. Rayati, S.; Nafarieh, P.; Amini, M., The synthesis, characterization and catalytic application of manganese porphyrins bonded to the novel modified SBA-15. New Journal of Chemistry 2018, 42.
83. Cheng, Y.; Guo, G.; Cheng, X.; Liu, M.; Ji, J., Synthesis and research of MnO2–NiCo2O4 anode material from spent LiNi0.6Co0.2Mn0.2O2 cathodes. Ionics 2022, 28 (4), 1647-1656.
84. Nguyen, T. V.; Son, L. T.; Thuy, V. V.; Thao, V. D.; Hatsukano, M.; Higashimine, K.; Maenosono, S.; Chun, S.-E.; Thu, T. V., Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton Transactions 2020, 49 (20), 6718-6729.
85. Lei, Z.; Liu, Z.; Wang, H.; Sun, X.; Lu, L.; Zhao, X. S., A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. Journal of Materials Chemistry A 2013, 1 (6), 2313-2321.
86. Kakarla, A. K.; Narsimulu, D.; Yu, J. S., Two-dimensional porous NiCo2O4 nanostructures for use as advanced high-performance anode material in lithium-ion batteries. Journal of Alloys and Compounds 2021, 886, 161224.
87. Islam, M.; Ali, G.; Jeong, M.-G.; Chung, K. Y.; Nam, K.-W.; Jung, H.-G., Electrochemical storage behavior of NiCo2O4 nanoparticles anode with structural and morphological evolution in lithium-ion and sodium-ion batteries. International Journal of Energy Research 2021, 1-13.
88. Sun, L.; Huang, X.; Li, Y.; Deng, L.; Mi, H.; Ren, X.; Zhang, P., Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials. Journal of Physics and Chemistry of Solids 2021, 148, 109761.
89. Chu, K.; Li, Z.; Xu, S.; Yao, G.; Xu, Y.; Niu, P.; Zheng, F., MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalton Transactions 2020, 49 (31), 10808-10815.
90. Zhang, C.; Xie, Z.; Yang, W.; Liang, Y.; Meng, D.; He, X.; Liang, P.; Zhang, Z., NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources 2020, 451, 227761.
91. Wang, H.; Wang, C.; Li, C.; Sun, Q., Wrinkled Carbon-Coated NiCo2O4 Nanoclusters Constructed by Self-Encapsulation of Cellulose Nanonetwork for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (12), 10840-10846.
92. Ren, Q.; Wu, G.; Xing, W.; Han, J.; Li, P.; Li, B.; Cheng, J.; Wu, S.; Zou, R.; Hu, J., Highly Ordered Mesoporous NiCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Frontiers in Chemistry 2019, 7.
93. Liu, L.; Zhang, H.; Yang, J.; Mu, Y.; Wang, Y., Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (44), 22393-22403.
94. Yang, Y.; Huang, G. Y.; Sun, H.; Ahmad, M.; Mou, Q.; Zhang, H., Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. Journal of colloid and interface science 2018, 529, 357-365.
95. Rong, H.; Qin, Y.; Jiang, Z.; Jiang, Z.-j.; Liu, M., A novel NiCo 2 O 4 @GO hybrid composite with core-shell structure as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds 2017, 731.
96. Mondal, A. K.; Su, D.; Chen, S.; Xie, X.; Wang, G., Highly Porous NiCo2O4 Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces 2014, 6 (17), 14827-14835.
97. Shen, L.; Che, Q.; Li, H.; Zhang, X., Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage. Advanced Functional Materials 2014, 24 (18), 2630-2637. |