參考文獻 |
1. 經濟部能源局. 再生能源展望-氫能篇. 2018; Available from: https://www.re.org.tw/knowledge/more.aspx?cid=201&id=2158.
2. 台灣科技媒體中心. 國際氫能發展近況與我國氫能發展契機. 2020; Available from: https://smctw.tw/7949/.
3. Wang, J., et al., Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv Mater, 2017. 29(14).
4. 經濟部技術處. 產業技術評析-全球氫氣生產方式的發展與趨勢. 2021; Available from: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=364.
5. Newborough, M. and G. Cooley, Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020. 2020(11): p. 16-22.
6. Chen, P., et al., Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. Journal of Alloys and Compounds, 2021. 883.
7. Zhu, J., et al., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev, 2020. 120(2): p. 851-918.
8. Wang, S., et al., Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2018. 43(33): p. 15673-15686.
9. Sun, C.B., et al., Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020. 381: p. 454-461.
10. Suen, N.T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 2017. 46(2): p. 337-365.
11. Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011. 660(2): p. 254-260.
12. Fabbri, E., et al., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol., 2014. 4(11): p. 3800-3821.
13. Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010. 36(3): p. 307-326.
14. Luo, Y., Y. Shi, and N. Cai, Hybrid Systems and Multi-energy Networks for the Future Energy Internet. 2020: Academic Press.
15. Tahir, M., et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017. 37: p. 136-157.
16. Masa, J., et al., Amorphous Cobalt Boride (Co2
B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016. 6(6).
17. Parsons, R., The Rate of Electrolytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen. . Trans. Faraday Soc., 1958. 54, 1053−1063.
18. Seh, Z.W.K., J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F., Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 2017. 355, eaad4998.
19. Sheng, W., et al., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 2013. 6(5).
20. Hu, C., L. Zhang, and J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 2019. 12(9): p. 2620-2645.
21. Man, I.C., et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
22. Sun, C., et al., Direct Electrodeposition of Phosphorus-Doped Nickel Superstructures from Choline Chloride–Ethylene Glycol Deep Eutectic Solvent for Enhanced Hydrogen Evolution Catalysis. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 1529-1537.
23. Zhang, Q., et al., Orthorhombic α-NiOOH Nanosheet Arrays: Phase Conversion and Efficient Bifunctional Electrocatalysts for Full Water Splitting. ACS Sustainable Chemistry & Engineering, 2017. 5(5): p. 3808-3818.
24. Zalineeva, A., et al., Octahedral Palladium Nanoparticles as Excellent Hosts for Electrochemically Adsorbed and Absorbed Hydrogen. Sci. Adv., 2017. 3.
25. Liu, S., et al., Pd Nanoparticle Assemblies as Efficient Catalysts for the Hydrogen Evolution and Oxygen Reduction Reactions. European Journal of Inorganic Chemistry, 2017. 2017(3): p. 535-539.
26. Liao, H., et al., A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nano-Pd Surface in Alkaline Media. Advanced Energy Materials, 2017. 7(21).
27. Conway, B.E.a.T., B. V., Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of H2, and the Role of Chemisorbed H. Electrochim. Acta, 2002. 47, 3571−3594.
28. Chen, J., et al., Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2009. 4(1): p. 81-95.
29. Ji, L., et al., In Situ Preparation of Pt Nanoparticles Supported on N-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Production. The Journal of Physical Chemistry C, 2017. 121(16): p. 8923-8930.
30. Tavakkoli, M., et al., Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis, 2017. 7(5): p. 3121-3130.
31. Chen, C., et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014. 343(6177): p. 1339-43.
32. Du, X.X., et al., Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy & Environmental Science, 2016. 9(8): p. 2623-2632.
33. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015. 44(15): p. 5148-80.
34. Miles, M.H., and Thomason, M.A., Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies. Electrochem. Soc., 1976. 123.
35. Yang, T., et al., Highly Efficient and Durable PtCo Alloy Nanoparticles Encapsulated in Carbon Nanofibers for Electrochemical Hydrogen Generation. Chem. Commun., 2016. 52.
36. Wang, M., et al., Facile One-Step Electrodeposition Preparation of Porous NiMo Film as Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy, 2015. 40: p. 2173-2182.
37. McKone, J.R., et al., Ni-Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catal., 2013. 3: p. 166-169.
38. Yang, Y., et al., Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catal., 2017. 7: p. 469-479.
39. Marshall, A.T. and R.G. Haverkamp, Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochimica Acta, 2010. 55(6): p. 1978-1984.
40. Audichon, T., et al., IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting. The Journal of Physical Chemistry C, 2016. 120(5): p. 2562-2573.
41. J. O. M. Bockris and T. Otagawa, J., The Electrocatalysis of Oxygen Evolution on Perovskites. Electrochem. Soc., 1984. 131: p. 290-302.
42. Li, M., et al., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-30.
43. Subbaraman, R., et al., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater, 2012. 11(6): p. 550-7.
44. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun, 2014. 5: p. 4477.
45. Smith, E.L., et al., Deep eutectic solvents (DESs) and their applications. Chem Rev, 2014. 114(21): p. 11060-82.
46. Zhang, Q., et al., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012.
47. Abbott, A.P., et al., Eutectic‐based ionic liquids with metal‐containing anions and cations. Chemistry–A European Journal, 2007.
48. Gambino, M., et al., Enthalpie de fusion de l′uree et de quelques melanges eutectiques a base d′uree. Thermochimica acta, 1987.
49. Sun, H., et al., Theoretical study on the structures and properties of mixtures of urea and choline chloride. Journal of molecular modeling, 2013.
50. Hansen, B.B., et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev, 2021. 121(3): p. 1232-1285.
51. Ashworth, C.R., et al., Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys Chem Chem Phys, 2016. 18(27): p. 18145-60.
52. Stefanovic, R., et al., Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys Chem Chem Phys, 2017. 19(4): p. 3297-3306.
53. Abbott, A.P., et al., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 2004.
54. Rimsza, J.M.a.C., L. R., Adsorption complexes of copper and copper oxide in the deep eutectic solvent 2: 1 urea–choline chloride. Computational and Theoretical Chemistry, 2012.
55. Gomez, E., et al., Electrodeposition of SmCo Nanostructures in Deep Eutectic Solvent. ECS Transactions, 2012.
56. Wagle, D.V., et al., Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res, 2014. 47(8): p. 2299-308.
57. Ge, X., et al., Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 2017. 5(18): p. 8209-8229.
58. Gong, M., et al., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2015. 9(1): p. 28-46.
59. Ahn, S.H., et al., Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012. 22(30).
60. Zheng, Y., et al., Three-dimensional NiCu layered double hydroxide nanosheets array on carbon cloth for enhanced oxygen evolution. Electrochimica Acta, 2018. 282: p. 735-742.
61. Long, X., et al., Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials Today, 2016. 19(4): p. 213-226.
62. Stern, L.A. and X. Hu, Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss, 2014. 176: p. 363-79.
63. Cai, G., et al., Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting. Chem, 2017. 2(6): p. 791-802.
64. Xiong, D., et al., Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Long-Term Oxygen Evolution Performance. Chem Asian J, 2017. 12(5): p. 543-551.
65. Zhou, X., et al., One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J. Mater. Chem. A, 2014. 2(30): p. 11799-11806.
66. Wu, J., et al., Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2018. 731: p. 766-773.
67. Cao, L.M., et al., Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution. Inorg Chem, 2021. 60(5): p. 3365-3374.
68. Raj, I.A.a.V., K. I. , Transition metal-based hydrogen electrodes in alkaline solution—Electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem., 1990.
69. McKone, J.R., et al., Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catalysis, 2013. 3(2): p. 166-169.
70. Subbaraman, R., et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science, 2011.
71. Danilovic, N., et al., Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed Engl, 2012. 51(50): p. 12495-8.
72. Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chemical communications, 2003.
73. Lu, Y., et al., Electrodeposition of Ni Mo Cu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(12): p. 5704-5716.
74. Yang, W.Q., et al., Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting. Electrochimica Acta, 2018. 273: p. 71-79.
75. Edison, T.N.J.I., et al., Deep eutectic solvent assisted electrosynthesis of ruthenium nanoparticles on stainless steel mesh for electrocatalytic hydrogen evolution reaction. Fuel, 2021. 297.
76. Protsenko, V.S., et al., Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(45): p. 24604-24616.
77. Gao, M.Y., et al., Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2017. 5(12): p. 5797-5805.
78. Gao, M.Y., et al., Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochimica Acta, 2016. 215: p. 609-616.
79. Mou, H., et al., A facile and controllable, deep eutectic solvent aided strategy for the synthesis of graphene encapsulated metal phosphides for enhanced electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2019. 7(22): p. 13455-13459.
80. Kopczyński, K. and G. Lota, Electrocatalytic properties of a cerium/nickel coating deposited using a deep eutectic solvent. Electrochemistry Communications, 2019. 107.
81. Du, C., et al., Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci Rep, 2016. 6: p. 29225.
82. Cammarata, L., et al., Molecular states of water in room temperature ionic liquids. Phys. Chem., 2001.
83. Li, R., et al., Electrodeposition of composition controllable Zn Ni coating from water modified deep eutectic solvent. Surface and Coatings Technology, 2019. 366: p. 138-145.
84. Hammond, O.S., et al., The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew Chem Int Ed Engl, 2017. 56(33): p. 9782-9785.
85. Sapir, L. and D. Harries, Restructuring a Deep Eutectic Solvent by Water: The Nanostructure of Hydrated Choline Chloride/Urea. J Chem Theory Comput, 2020. 16(5): p. 3335-3342.
86. Al-Murshedi, A.Y.M., et al., Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the IMF, 2019. 97(6): p. 321-329.
87. Lukaczynska, M., et al., Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochimica Acta, 2019. 319: p. 690-704.
88. Mernissi Cherigui, E.A., et al., Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water. The Journal of Physical Chemistry C, 2017. 121(17): p. 9337-9347.
89. Gao, Q., et al., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv Mater, 2019. 31(2): p. e1802880.
90. Zhao, J., et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019. 57: p. 625-634.
91. Ge, X., et al., A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. Journal of Materials Chemistry A, 2013. 1(43).
92. Xing, Z., et al., Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 2017. 5(17): p. 7744-7748.
93. Valverde, P.E., T.A. Green, and S. Roy, Effect of water on the electrodeposition of copper from a deep eutectic solvent. Journal of Applied Electrochemistry, 2020. 50(6): p. 699-712.
94. Guo, L.a.S.P.C., On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta, 2010.
95. Ding, Y., et al., Atomically thick Ni(OH)2 nanomeshes for urea electrooxidation. Nanoscale, 2019. 11(3): p. 1058-1064.
96. Zhang, X., et al., Ni(OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem Commun (Camb), 2018. 54(10): p. 1201-1204.
97. Lin, C., et al., In situ growth of single-layered α-Ni (OH) 2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. Journal of Materials Chemistry A, 2018.
98. Liu, S., et al., Effects of boric acid and water on the deposition of Ni/TiO2 composite coatings from deep eutectic solvent. Surface and Coatings Technology, 2021. 409.
99. Nakayama, M., K. Suzuki, and K. Fujii, Single-ion catalyst of Ni2+ anchored in the interlayer space of layered MnO2 for electro-oxidation of ethanol in alkaline electrolyte. Electrochemistry Communications, 2019. 105.
100. Li, X., et al., Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv Mater, 2020. 32(39): p. e2003414.
101. Zhang, J.-Y., et al., Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy, 2019. 60: p. 894-902. |