博碩士論文 109223037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.223.241.5
姓名 蔣泓璟(Hung-Ching Chiang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新穎光聚合及熱聚合黏著劑應用於鋰離子 電池三元系正極材料性能探討
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 傳統鋰電池的製備常使用Poly(vinylidene difluoride) (PVDF)當作黏著劑以固定活性材料與導電物質。並以N-Methyl-2-pyrrolidone (NMP)做為溶劑,與活性物質及導電粒子混和,將漿料塗佈於鋁片上。含NMP的極板在烘箱經過長時間(10-24小時)高溫烘烤,去除溶劑以完成成極片。由於NMP有毒,所以回收過程必須有額外的溶劑回收系統,並且需要大量的烘烤設備,以及烘烤過程中需消耗大量的電力、時間成本,不符合環境友善及節能減碳的環保概念。
因此也有越來越多人朝著綠色環保這方面去改善鋰電池的製作過程,像是水性黏著劑黏著劑的開發,以減少現有溶劑NMP的使用,但使用水性黏著劑還是有遇到幾個問題像是去除水分的烘乾過程過長以及電容量、壽命低下等問題。
有鑑於此,本論文主要是使用光聚合高分子、熱聚合高分子取代傳統的電極黏著劑(PVDF)以解決傳統鋰電池,極片烘乾時間過長、使用有毒溶劑、耗時耗能的問題。
首先黏著劑方面,分成光聚合黏著劑以及熱聚合黏著劑。光聚合黏著劑將DE單體與G3E單體進行光聚合反應、熱聚合反應則是將DP單體與G3E單體進行熱聚合反應。組成Li[Ni1/3Mn1/3Co1/3]O2/Li半電池測試,利用電子掃描顯微鏡(SEM)、X-射線光電子光譜(XPS)、循環伏安法(CV)及電化學阻抗頻譜(EIS)進行探討。實驗數據證實此兩款黏著劑確實參與SEI的形成且能夠減少電解液以及鋰鹽的消耗還有分解,我們認為此兩款黏著劑可以緊密包覆電極,避免正極持續與電解液反應,讓電池能夠長圈數循環後仍能繼續維持良好的電量。光聚合黏著劑、熱聚合黏著劑,與傳統黏著劑相比,電池電容量在經過100圈充放電後,分別是、104.6(mAh/g)、120.1(mAh/g)、107.9(mAh/g),電容保持率分別是76.6%、81.9%、64.3%,光聚合以及熱聚合黏著劑在電容量、高倍率充放電、壽命的表現都優於傳統鋰電池。
摘要(英) In the preparation of traditional lithium batteries, Poly (vinylidene difluoride) (PVDF) is often used as binder to fix active materials and conductive substances. And N-Methyl-2-pyrrolidone (NMP) is used as a solvent, mixed with active material and conductive particles, and the slurry is coated on the aluminum foil. The battery plate that containing NMP is baked at high temperature for a long time (10-24 hours) in an oven to remove solvent. However, NMP is toxic, the recycling process must have an additional solvent recovery system, and a large number of baking equipment is required, and the baking process consumes a lot of electricity and time costs, which does not correspond to the environmental protection concept of environmental friendliness and energy saving and carbon reduction.
In view of this, this thesis mainly uses photo-curing polymer and thermal-curing polymer to replace the traditional electrode binder (PVDF) to solve the problem of traditional lithium battery manufacturing.
First of all, in terms of adhesives, it is divided into photo-curing binder and thermal-curing binder. In the photo-curing binder, the DE monomer and the G3E monomer are subjected to photopolymerization reaction. In the thermal-curing binder, the DP monomer and the G3E monomer are subjected to thermalpolymerization reaction. Composition Li[Ni1/3Mn1/3Co1/3]O2/Li half-cell test using scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) discuss. The experimental data confirm that the two binders are indeed involved in the formation of SEI and can reduce the consumption and decomposition of electrolyte and lithium salts. Compared with traditional binder, photopolymerized binder and thermally polymerized binder have a battery capacity of 104.6(mAh/g), 120.1(mAh/g), 107.9(mAh/g) after 100 cycles of charge and discharge, respectively. ), the capacitance retention is 76.6%, 81.9%, 64.3%, photopolymerized and thermally polymerized binder have enough performance to match or even surpass traditional lithium batteries.
Finally, we also used XPS, CV, and EIS to confirm that these two binder can tightly coat the electrodes to prevent the positive electrode from continuously reacting with the electrolyte, so that the battery can continue to maintain a good power after a long cycle.
關鍵字(中) ★ 鋰電池
★ 黏著劑
★ 光聚合高分子
★ 熱聚合高分子
關鍵字(英) ★ lithium batteries
★ binder
★ photo-curing polymer
★ thermal-curing polymer
論文目次 目錄

摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池基本原理 3
1-3 光聚合、熱聚合之介紹 4
1-4 研究動機 5
第二章 文獻回顧 7
2-1 黏著劑簡介 7
2-2 黏著劑種類與材料特性 8
2-2-1 羧甲基纖維素(Carboxymethylcellulose,CMC) 12
2-2-2 丁苯橡膠(Styrene-Butadiene Rubber,SBR) 18
2-2-3 聚四氟乙烯(Polytetrafluoroethylene,PTFE) 20
2-3 光聚合、熱聚合高分子材料簡介 23
2-4 固態鈍化層介面簡介 31
2-4-1 Solid Electrolyte Interphase (SEI)固態鈍化層介面介紹 31
2-4-2 Cathode Electrolyte Interphase(CEI) 正極電解質界面介紹 35
2-5 層狀氧化物(正極材料)電容量損失成因 38
2-6 研究動機與設計 41
第三章 實驗 43
3-1 實驗藥品、器材與儀器設備 43
3-1-1 實驗藥品 43
3-1-2 實驗器材 45
3-1-3 實驗儀器設備 45
3-2 實驗方法 46
3-2-1 黏著劑聚合方式 46
3-2-2 正極極片製備 47
3-2-3 鈕扣型半電池製備 49
3-3 實驗儀器原理及介紹 50
3-3-1 超高解析場發射掃描式電子顯微鏡(CFE-SEM) 50
3-3-2 超高解析穿透式電子顯微鏡(TEM) 51
3-3-3 X-光光電子能譜儀(XPS) 52
3-4 鋰電池效能及電化學特性分析 53
3-4-1 電池充放電測試 53
3-4-2 循環伏安法分析(CV) 53
3-4-3 交流阻抗分析儀(AC Impedance) 54
第四章 結果與討論 57
4-0 寡聚物以及單體的選用 57
4-0-1 變速率充放電 57
4-1 光聚合黏著劑應用於鋰離子電池 60
4-1-1 光聚合黏著劑之反應鑑定 60
4-1-2 光聚合黏著劑之變速率測試圖 61
4-1-3 光聚合黏著劑之循環壽命測試 62
4-1-4 循環伏安法測試 64
4-1-5 掃描式電子顯微鏡(SEM)之電極表面型態分析 65
4-1-6 穿透式電子顯微鏡(TEM)之電極型態分析 67
4-1-7 交流阻抗測試 69
4-1-8 半電池極化分析 72
4-2 熱聚合黏著劑應用於鋰離子電池 74
4-2-1 熱聚合黏著劑之變速率測試圖 74
4-2-2 熱聚合黏著劑之循環壽命 75
4-2-3 循環伏安法測試 76
4-2-4 掃描式電子顯微鏡(SEM)之電極表面型態分析 78
4-2-5 穿透式電子顯微鏡(TEM)之電極型態分析 79
4-2-6 交流阻抗測試 81
4-2-7 半電池極化分析 83
4-3 光聚合以及熱聚合黏著劑比較 85
4-3-1 製備方式 85
4-3-2 黏度差異 87
4-3-3 變速率以及循環壽命的表現 87
4-3-4 循環伏安法測試 90
4-3-5 掃描式電子顯微鏡(SEM)之電極表面型態分析 92
4-3-6 穿透式電子顯微鏡(TEM)之電極型態分析 94
4-3-7 交流阻抗測試 96
4-3-8 電池極化分析 99
4-3-9 X-光光電子能譜儀(XPS)之鈍化層探討 100
4-3-10 示意圖 108
4-3-11 成本及能量消耗評估 109
第五章 結論與未來展望 114
參考文獻 116


圖目錄
圖 1- 1鋰電池近年成本變化[4] 2
圖 1- 2環境友善的鋰電池 [8] 2
圖 1- 3鋰離子電池放電時的工作原理圖[15] 3

圖 2- 1黏著劑的未來研究方向以及理想條件[19] 9
圖 2- 2黏著劑的種類 10
圖 2- 3黏著劑與活性材料間的作用示意圖(a)黏彈體(b) PVDF[20] 13
圖 2- 4顯示了具有 LiFePO4陰極和 PVDF 和水性粘合劑電池的第一個循環[20] 14
圖 2- 5用LiFePO4/graphite製備的全電池在 60 °C 下,高倍率充放電的表現[20] 14
圖 2- 6 LiNi0.4Mn1.6O4的XRD (a)無浸泡水中 (b)浸泡於水中[21] 16
圖 2- 7具有CMC黏著劑或是PVDF黏著劑的LiNi0.4Mn1.6O4電極,在不同速率下充放電的電容比較[21] 17
圖 2- 8用(a)CMC/CB 和 (b)PVdF/CB/碳纖維的SEM[21] 17
圖 2- 9 CuO負極使用不同黏著劑的充放電曲線 (a)PVDF (b) SBR+CMC,(d)兩者長圈數循環壽命[22] 19
圖 2- 10充放電前後的電極完整程度,充放電前(左),充放電後(右) [22] 20
圖 2- 11兩種黏著劑 (a)室溫下(20°C)的醬料黏度 (b) 溫度範圍從20 °C 至 90 °C的黏度變化 [23] 22
圖 2- 12使用(a)PTFE (b)PVDF 製備的 LiFePO4/C電極的SEM圖,以及(c)PTFE (d)PVDF製備電極的示意圖 [23] 22
圖 2- 13由PVDF和PTFE製備的正極在(c)變速率充放電的穩定性(b)0.2C下,長圈數的循環穩定性 [23] 23
圖 2- 14PAA-BP之光交聯機制反應[28] 26
圖 2- 15充放電60圈極片厚度比較,(a)未經光交聯與(b)經光交聯之極片斷面SEM圖[28] 27
圖 2- 16壽命表現比較圖[28] 27
圖 2- 17 (a) PAA+CMC,熱聚合前 (b) PAA+CMC,熱聚合後(c) PAA 與-Si-OH 在加熱後,形成共價鍵[52] 29
圖 2- 18(a) PVDF與矽顆粒的相互作用示意圖 (b) c-PAA-CMC 與矽顆粒的相互作用示意圖[52] 29
圖 2- 19對於不同類型黏著劑,以0.1C的速率,充放電100圈,的電容表現[52] 30
圖 2- 20常見的電解液添加劑[35] 34
圖 2- 21 SEI沉積在電極表面機制圖[34] 35
圖 2- 22電池經過充放電後,Cathode-Electrolyte Interphase(CEI)形成示意圖[44] 37
圖 2- 23循環前、浸泡電解液24hr、100圈循環後 (a) C1s (b) O2p 的XPS圖[44] 37
圖 2- 24高解析度的cryo-EM (a)充放電前 (b)100圈充放電後,NMC電極表面沒有明顯的鈍化層形成[44] 38
圖 2- 25NMC811 與鋰金屬組成的半電池,的第一個循環[50] 40
圖 2- 26 Li x Ni0.8Mn0.1Co0.1O2中的鋰擴散係數與鋰含量的關係[50] 40
圖 2- 27光固化示意圖 41

圖 3- 2(a)光聚合反應式 (b)熱聚合反應式 46
圖 3- 3光聚合極片製備 48
圖 3- 4熱聚合極片製備 49
圖 3- 5鈕扣型半電池組裝順序[53] 50
圖 3- 6循環伏安法分析圖[54] 54
圖 3- 7鋰離子電池等校電路模組示意圖 56

圖 4- 1不同年黏著劑比例的變速率充放電 58
圖 4- 2不同比例黏著劑的電性表現 59
圖 4- 3光聚合黏著劑共聚反應之ATR-IR圖譜光聚合黏著劑共聚反應之ATR-IR圖譜 61
圖 4- 4不同比例光聚合黏著劑之變速率充放電圖 62
圖 4- 5不同比例光聚合黏著劑之循環壽命圖 63
圖 4- 6 (左)PVDF(右)光聚合黏著劑之循環伏安圖 64
圖 4- 7左半部分為PVDF,右半部分為DE:G3E (8:2),在充放電前(0 圈)與充放電後(125 圈)的SEM 66
圖 4- 8以PVDF黏著劑製備的電極的TEM,及元素分析(Ni、Mn、Co、F、C) 67
圖 4- 9光聚合黏著劑(DE+G3E)製備的電極TEM以及元素分析(Ni、Mn、Co、C) 68
圖 4- 10等效電路圖 69
圖 4- 11四種不同黏著劑比例經過 (a) 0圈 (b) 3圈 (c) 125圈充放電後之交流阻抗圖譜 70
圖 4- 12不同組成之充放電曲線圖(a)PVDF (b)DE:G3E(3:7) (c)DE:G3E(4:6) (d)DE:G3E(5:5) (e)DE:G3E(8:2) 73
圖 4- 13不同比例熱聚合黏著劑之變速率充放電圖 74
圖 4- 14不同比例熱聚合黏著劑之循環壽命圖 75
圖 4- 15(左)PVDF(右)熱聚合黏著劑之循環伏安圖 77
圖 4- 16左半部分為PVDF,右半部分為DP:G3E(10:0),在充放電前(0 cycle)與充放電後(125 cycle)的SEM 78
圖 4- 17以PVDF黏著劑製備的電極的TEM,及元素分析(Ni、Mn、Co、F、C) 80
圖 4- 18熱聚合黏著劑DP:G3E (10:0)的TEM以及元素分析(Ni、Mn、Co、C) 80
圖 4- 19等效電路圖 81
圖 4- 20圖 4- 11四種不同黏著劑比例經過 (a) 0圈 (b) 3圈 (c) 125圈充放電後之交流阻抗圖譜 82
圖 4- 21不同組成之充放電曲線圖(a)PVDF (b)DP:G3E(3:7) (c) DP:G3E (5:5) (d) DP:G3E (8:2) (e) DP:G3E(9:1) (f) DP:G3E (10:0) 84
圖 4- 22傳統電極製備 86
圖 4- 23熱聚合電極製備 86
圖 4- 24光聚合電極製備 86
圖 4- 25光聚合黏著劑(粉)、熱聚合黏著劑(藍)、傳統黏著劑(綠),變速率充放電 88
圖 4- 26光聚合黏著劑(粉)、熱聚合黏著劑(藍)、傳統黏著劑(綠),循環壽命測試 88
圖 4- 27 PVDF、光聚合黏著劑、熱聚合黏著劑之循環伏安圖 90
圖 4- 28三種黏著劑在充放電前(0 cycle)、充放電後(125 cycle),的SEM比較 93
圖 4- 29 PVDF黏著劑製備的電極TEM,及元素分析(Ni、Mn、Co、F、C) 94
圖 4- 30 光聚合黏著劑(DE+G3E)製備的電極TEM以及元素分析(Ni、Mn、Co、C) 95
圖 4- 31 熱聚合黏著劑DP:G3E(10:0)的TEM以及元素分析(Ni、Mn、Co、C) 95
圖 4- 32光聚合、熱聚合、傳統黏著劑經過0圈、3圈、125圈後的交流阻抗圖譜 97
圖 4- 33不同組成之充放電曲線圖 100
圖 4- 34含有高濃度水溶性電解質的石墨電極,經過循環後SEI層的高解析O 1s, F 1s 的XPS縱深分析 102
圖 4- 35經過3圈充放電跟125圈充放電的電極XPS比較圖(O1s) 102
圖 4- 36經過3圈充放電跟125圈充放電的電極XPS比較圖(P2p) 103
圖 4- 37 LiPF6的水解機制 104
圖 4- 38 經過3圈充放電跟125圈充放電的電極XPS比較圖(F1s) 105
圖 4- 39 經過3圈充放電跟125圈充放電的電極XPS比較圖(C1s) 106
圖 4- 40(a)光聚合黏著劑(b)熱聚合黏著劑(c)傳統黏著劑與活性材料表面作用力示意圖 108


表目錄
表 1- 1水性黏著劑的優點[18] 11
表 1- 2各種黏著劑的優缺點 12
表 1- 3 LiNi0.4Mn1.6O4 (立方晶系Fd-3m)有無浸泡於水的晶格常數、晶體尺寸[21] 16

表 2- 1各極片組成比例 48

表 3- 1不同比例光聚合黏著劑之循環壽命統計表 63
表 3- 2不同黏著劑三圈氧化峰位置 65
表 3- 3四種不同比例的黏著劑,在經過0圈、3圈、125圈後測量之阻抗值 71
表 3- 4不同比例熱聚合黏著劑之循環壽命統計表 76
表 3- 5不同黏著劑三圈氧化峰位置 77
表 3- 6五種不同比例的黏著劑,在經過0圈、3圈、125圈後測量之阻抗值 83
表 3- 7不同黏著劑的黏度測試 87
表 3- 8不同黏著劑之電容保持率 89
表 3- 9不同黏著劑三圈氧化峰位置 91
表 3- 10光聚合、熱聚合、傳統黏著劑經過0圈、3圈、125圈後的Rs、Rct值 97
表 3- 11 不同黏著劑的原料成本、溶劑成本 110
表 3- 12 每顆電池的黏著劑、溶劑成本 110
表 3- 13 不同溶劑的比熱容、汽化熱、分子量以及每片極片所使用的溶劑莫爾數 111
表 3- 14 烘乾不同溶劑的時間、耗電量 112
表 3- 15 不同黏著劑之比較 112
參考文獻 [1] Naoki Nitta, Feixiang Wu, Jung Tae Lee, Gleb Yushin, “Li-ion battery materials: present and future.”, matreialstoday, vol. 18, pp.252-264, 2015.
[2] H. Vikström, et al. “Lithium availability and future production outlooks.”, Applied Energy, vol. 110, pp. 252-266, 2013.
[3] David L. Chandler : Study reveals plunge in lithium-ion battery costs. 2021年3月23日,取自https://news.mit.edu/2021/lithium-ion-battery-costs-0323.
[4] Marco Stecca, et al. “A Comprehensive Review of the Integration of Battery Energy Storage Systems Into Distribution Networks.”, Institute of Electrical and Electronics Engineers, pp.46-65, 2020.
[5] Micah S. Ziegler, Jessika E. Trancik, “Re-examining rates of lithium-ion battery technology improvement and cost decline. ”, Energy & Environmental Science , issue. 4, pp.1635-1651, 2021.
[6] Micah S. Ziegler, Juhyun Song, Jessika E. Trancik, “Determinants of lithium-ion battery technology cost decline.”, Energy & Environmental Science , issue 12, pp. 6074-6098, 2021.
[7] A. Weidenkaff, et al. “DeLithium-ion batteries need to be greener and more ethical.”, Nature , vol. 595, pp.7, 2021.
[8] Pratima Meshram, Abhilash Mishra, Abhilash, Rina Sahu, “Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review. ”, Chemosphere , vol. 242, 125291, 2020.
[9] G.Ceder, G. Hautier, A. Jain, S.P. Ong, “Recharging Lithium Battery Research with Fi Rst-Principles Methods.”, Materials Research Society, vol. 36, pp. 185–191, 2011.
[10] Malay K. Das, Partha P. Mukherjee, K. Muralidhar, Modeling Transport Phenomena in Porous Media with Applications., Springer International Publishing., Delhi, 2018.
[11] Mizushima.K, Jones P.C, Wiseman P.J, Goodenough J.B, “LixCoO2 (0<x<-1): A New Cathode Material for Batteries of High Energy Density.”, Materials Research Bulletin, pp.783-789, 1980.
[12] Melisaris, et al. “LIQUID, RADIATION-CURABLE COMPOSITION, ESPECIALLY FOR PRODUCING FLEXBLE CURED ARTICLES BY STEREOLITHOGRAPHY.”, Patent Application Publication , US 2002/0177073 A1, 2002.
[13] James V. Crivello, “UV and electron beam-induced cationic polymerization.”, ELSEVIER ,vol. 151, pp.8-12, 1999.
[14] James Murray : Is the Nobel Prize-winning lithium-ion battery really having a positive impact on the environment ? 2019年10月14號。取自 https://www.nsenergybusiness.com/features/lithium-ion-battery-environmental-impact/.
[15] B. Dunn, H. Kamath, J.-.M. Tarascon, “Electrical Energy Storagefor the Grid: A Battery of Choices.”, SCIENCE, vol. 334, pp.928-935, 2011.
[16] Mohammad Mohsen Loghavi, Saeed Bahadorikhalili, Najme Lari, Mohammad Hadi Moghim, Mohsen Babaiee and Rahim Eqra, “The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode.”, DE Gruyter , vol. 234, Issue 3, 2020.
[17] Ramin Amin-Sanayei, Wensheng He, Advanced Fluoride-Based Materials for Energy Conversion, Elsevier., PA, 2015.
[18] Patteth S. Salini, Sumol V. Gopinadh, Athira Kalpakasseri, Bibin John,* and Mercy Thelakkattu Devassy, “Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems.”, ACS Sustainable Chem. Eng. , pp.4003-4025, 2020.
[19] Ye Shi, Xingyi Zhou, Guihua Yu, “Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.”, Acc. Chem. Res., pp. 2642–2652, 2017.
[20] A.Guerfi, M.Kanekob, M.Petitclerc, M.Mori, K.Zaghib, “LiFePO4 water-soluble binder electrode for Li-ion batteries.”, Journal of Power Sources , vol. 162, Issue 2, pp.1047-1052, 2007
[21] Zhongli Wang, Nicolas Dupré, Anne-Claire, Gaillot, Bernard Lestriez, Jean-Frédéric Martin, Lise Daniel, Sébastien Patoux, Dominique Guyomard, “CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries.”, Electrochimica Acta , vol. 62, pp.77-83, 2012
[22] Rui Wang, Lili Feng, Wenrong Yang, Yinyin Zhang, Yanli Zhang, Wei Bai, Bo Liu, Wei Zhang, Yongming Chuan, Ziguang Zheng, Hongjin Guan, “Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries.”, Nanoscale Research Letters , vol. 12, article number. 575, 2017.
[23] Shiyan Gao, Yuefeng Su, Liying Bao, Ning Li, Lai Chen, Yu Zheng,
Jun Tian, Jian Li, Shi Chen, Feng Wu, “High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder.”, Journal of Power Sources , vol. 298, pp.292-298, 2015.
[24] Herman F.Mark, “Enocyclopedia of polymer science and technology.”, Wiley Online Library , vol. 10, 2004.
[25] Manmeet Kaur, A. K. Srivastava, “PHOTOPOLYMERIZATION: A REVIEW.”, Journal of Macromolecular Science , vol. 42, pp.481-512, 2002.
[26] Katharina Hunger, Laura Buschhaus, Nadine Schmeling, Claudia Staudt, Anna Pfeifera, Karl Kleinermanns, “Characterization of maleimide dimers in photo-cross-linked copolyimide films.”, Phys. Chem. Chem. Phys., issue. 13 , pp.4538-4547, 2012.
[27] Yuanmei Cao, Xiaofeng Ren, Hamideh Shokouhi Mehr, Mark D.Soucek, “UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics.”, Progress in Organic Coatings , vol. 100, pp.118-128, 2016.
[28] Yuwon Park, Sueun Lee, Si-Hoon Kim, Bo Yun Jang, Joon Soo Kim, Seung M. Oh, Ju-Young Kim, Nam-Soon Choi, Kyu Tae Lee, Byeong-Su Kim, “A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries.”, RSC Adv , Issue. 31, pp.12625–12630, 2013.
[29] N. L. Hamidah, F. M. Wang, G. Nugroho “The Understanding of Solid Electrolyte Interface (SEI) Formation and Mechanism as the Effect of Flouro‐o-Phenylenedimaleimaide (F‐MI) Additive on Lithium‐ion Battery.”, Surf Interface Anal., vol. 51, pp. 345–352, 2018.
[30] L. Wang, B. W. Eichhorn, “Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes.”, Chem. Mater., vol. 32,pp. 3765−3775, 2020.
[31] P. Verma, P. Maire, P. Novak, “A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries.”, Electrochimica Acta, vol. 55, pp. 6332–6341, 2010.
[32] 陳佑頎;吳昱賢;張家欽, “鋰離子電解質-鋰離子傳遞的橋樑”, 科學發展, 第564期, pp. 16-20, 2019.

[33] J. B. Goodenough, Y. Kim, “Challenges for Rechargeable Li Batteries.”, Chem. Mater., vol. 22, pp. 587–603, 2010.
[34] V. A. Agubra, J. W. Fergus, “The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode.”, Journal of Power Sources, vol. 268, pp. 153–162, 2014.
[35] Paul G. Kitz, Matthew J. Lacey, Petr Nov´ak, Erik J. Berg, “Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate.”, Journal of Power Sources., vol. 477, 228567, 2020.
[36] B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H.A. Gasteiger, A. Garsuch, B.L. Lucht, “Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation.”, J. Phys. Chem. C , vol. 119, pp.11337-11348, 2015.
[37] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, “Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-ion batteries.”, J. Electrochem. Soc., vol.162, pp. A7008-A7014, 2015.
[38] J.C. Burns, R. Petibon, K.J. Nelson, N.N. Sinha, A. Kassam, B.M. Way, J.R. Dahn, “Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance.”, J. Electrochem. Soc., vol. 160, pp.A1668-A1674, 2013.
[39] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, “Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation.”, Chem. Mater., vol. 28, pp.8149-8159, 2016.
[40] Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwe J, Xu W, Xiao J, Zhang J-G, “New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM.”, Nano Lett., vol. 17, pp.7606-7612, 2017.
[41] Jiao S, Ren X, Cao R, Engelhard M.H, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, “Stable cycling of high-voltage lithium metal batteries in ether electrolytes.”, Nat. Energy , vol. 3, pp.739-746, 2018.
[42] Li J, Li W, You Y, and Manthiram A, “Extending the service life of high-Ni layered oxides by tuning the electrodeelectrolyte interphase.”, Adv. Energy Mater., vol. 8, 1801957, 2018.
[43] Cabana J, Kwon B.J, Hu L, “Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries.”, Acc. Chem. Res. , vol. 51, pp.299-308, 2018.
[44] Zewen Zhang, Jinlong Yang, William Huang, Hansen Wang, Weijiang Zhou, Yanbin Li, Yuzhang Li, Jinwei Xu, Wenxiao Huang, Wah Chiu, Yi Cui, “Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy.”, Sciencedirect matter , vol. 4, pp.302-312, 2021.
[45] J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, R. Klöpsch, B. Vortmann, H. Hahn, S. Nowak, M. Amereller, A.-C. Gentschev, P. Lamp, M. Winter, “The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.”, Phys. Chem. Chem. Phys., vol. 18, pp.3956-3965, 2016.
[46] Choi J, Manthiram A, “Investigation of the Irreversible Capacity Loss in the Layered LiNi1/3Mn1/3Co1/3O2 Cathodes.”, Electrochem. Solid-State Lett., vol. 8, C102-105, 2005.
[47] Zhang S.S, Xu K, Jow T.R, “Formation of Solid Electrolyte Interface in Lithium Nickel Mixed Oxide Electrodes during the First Cycling.”, Electrochem. Solid-State Lett., vol. 5, A92-94, 2002.
[48] Lee K.-K, Kim K.-B,“Electrochemical and Structural Characterization of LiNi1–2yCoyO2 (0 ≤ y ≤ 0.2) Positive Electrodes during Initial Cycling.”, J. Electrochem. Soc., vol. 147, pp. 1709– 1717, 2000.
[49] Arai H, Okada S, Sakurai Y, Yamaki J.-I, “Reversibility of LiNiO2 cathode.”, Solid State Ionics., vol. 95, pp.275-282, 1997.
[50] Hui Zhou, Fengxia Xin, Ben Pei, M. Stanley Whittingham,“What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? ”, ACS Energy Lett. , vol. 4, pp.1902-1906, 2019.
[51] MoneyDJ : 車用加持,鋰電池關鍵材料需求夯!25 年估跳增逾 1 倍。2021年06月18日。取自https://technews.tw/2021/06/18/lithium-battery-key-material-demand/.
[52] Bonjae Koo, Hyunjung Kim, Younghyun Cho, Prof. Kyu Tae Lee, “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries.”, Angewandte Communications., vol. 51, pp.8762-8767, 2012.
[53] 江恆瑋, “提升矽陽極鋰離子電池之循環穩定性之研究,”國立臺灣師範大學化學系碩士論文, 2013.
[54] PharmacyBrighton, Cyclic Voltammogram。 2010年12月1日。取自https://www.youtube.com/watch?v=1f92vGOridg.
[55] H aitao Zhang, Deyu Wang, Cai Shen, “In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries.”, Applied Surface Science., vol. 503, 145059, 2020.
指導教授 諸柏仁(Po-Jen-Chu) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明