博碩士論文 109324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:216 、訪客IP:18.191.215.154
姓名 吳蓁蓁(Chen-Chen Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討 PC-SAFT狀態方程式應用在預測藥物於超臨界二氧化碳流體中的溶解度
(Prediction of Drug Solubility in Supercritical Carbon Dioxide by PC-SAFT EOS)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本研究探討PC-SAFT狀態方程式於預測藥物分子在超臨界二氧化碳中的溶解度,並與PR狀態方程式進行比較。在PC-SAFT狀態方程式對於無氫鍵的系統需要三個純物質參數m、σ、ϵ,而有氫鍵的系統則需要五個純物質參數m、σ、ϵ、ϵAB、кAB,這些參數只需從純物質蒸氣壓或是液體密度回歸而得,相較於臨界性質取得較容易。因PR狀態方程式計算過程中需純物質的臨界性質,故在研究中也比較了使用官能基貢獻法NRR以及PR-COSMOSAC(PRCS)來計算之。
本研究一共探討了60個固體溶質,並以其分子結構中有無氫鍵為基準,將分子分成22個不含締合貢獻(無氫鍵)的系統與38個含締合貢獻(有氫鍵)的系統。在22個不含氫鍵系統中,有13個有蒸氣壓與9個無蒸氣壓的系統,在蒸氣壓計算中PC-SAFT的誤差(AARD-P)為2.53%,PR-NRR與PR-PRCS的誤差為48.66%與60.83%;在溶解度的計算中,PC-SAFT使用的參數為蒸氣壓回歸而得,在有二元相互作用參數kij的條件下,PC-SAFT的誤差(ALD-x)為0.29,PR-NRR與PR-PRCS為0.52與0.31,若使用溶解度回歸PC-SAFT純物質參數,得到的溶解度誤差(ALD-x)為0.22。在38個含有氫鍵的系統中,亦探討PC-SAFT純物質參數кAB=0.01與кAB=0.02的計算差異,18個有蒸氣壓的系統中,PC-SAFT蒸氣壓的計算誤差(AARD-P)為8.56% ( кAB=0.01)與10.78% ( кAB=0.02),PR-NRR與PR-PRCS的誤差為88.46%與189.14%;在溶解度的計算中,PC-SAFT在使用蒸氣壓回歸而得的參數並搭配kij的條件下,誤差(ALD-x)為0.49 ( кAB=0.01)與0.58( кAB=0.02),而PR-NRR與PR-PRCS的誤差(ALD-x)為0.64與0.71,若使用溶解度回歸PC-SAFT純物質參數,得到的溶解度誤差(ALD-x)為0.28。在蒸氣壓的計算中,使用PC-SAFT會有更好的準確度;在溶解度計算中,針對二元系統,若是在有二元相互作用參數的條件下,PC-SAFT能提供優異的計算能力,而三元系統則是PR-NRR有更好的預估能力。
摘要(英) This study aims to understand the accuracy of the Perturbed Chain-Statistical Association Fluid Theory (PC-SAFT) EOS in predicting solubility of drug-like molecules in supercritical carbon dioxide (ScCO2) and compares it with the PR EOS. In PC-SAFT EOS, three pure-component parameters m, σ, ϵ are required for non-associating components, while five pure-component parameters m, σ, ϵ, ϵAB, кAB are required for associating components. These parameters can be regressed by fitting pure-component data such as vapor pressure or liquid density, which is easier to obtain than critical properties. The required critical properties and acentric factor od pure solid solute for PR EOS are determined from group contribution method NRR and PR-COSMOSAC (PRCS) EOS.
In this study, a total of 60 drug-like solid solutes were investigated, and the molecules were divided into 22 non-associating solutes and 38 associating based on whether there were hydrogen bonding functional groups, such as hydroxyl or amino groups, in their molecular structures. For the 22 non-associating systems, there are 13 solutes with vapor pressure experimental data, the average absolute relative deviation (AARD-P) in vapor pressure is 2.53% from PCSAFT, and 48.66% and 60.83% from PR-NRR and PR-PRCS. The overall average logarithmic deviation (ALD-x) in solubility for these 13 solid solutes is 0.29 from PCSAFT and 0.52 and 0.31 from PR-NRR and PR-PRCS, and if the PC-SAFT pure-component parameters were regressed by solubility, the overall average logarithmic deviation (ALD-x) in solubility for 22 solid solutes is 0.22. For the 38 associating systems, the difference of PC-SAFT pure-component parameters кAB=0.01 and кAB=0.02 was also discussed. For 18 solid solutes with vapor pressure, the average absolute relative deviation (AARD-P) in vapor pressure is 8.56% (кAB= 0.01) and 10.78% ( кAB= 0.02) from PC-SAFT, and 88.46% and 189.14% from PR-NRR and PR-PRCS; The overall average logarithmic deviation (ALD-x) in solubility for these 18 solid solutes is 0.49 ( кAB =0.01) and 0.58 ( кAB =0.02) from PC-SAFT and 0.64 and 0.71 from PR-NRR and PR-PRCS, and if the PC-SAFT pure-component parameters were regressed by solubility, the overall average logarithmic deviation (ALD-x) in solubility for 38 solid solutes further reduces to 0.28. In the calculation of vapor pressure, PC-SAFT will have better accuracy; in solubility calculation, for binary systems, if there are binary interaction parameter, PC-SAFT can provide excellent prediction ability, and the ternary system is that PR-NRR has better prediction ability.
關鍵字(中) ★ 超臨界二氧化碳
★ 藥物溶解度
★ PCSAFT狀態方程式
關鍵字(英) ★ PC-SAFT EOS
★ supercritical carbon dioxide
★ drug solubility
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 超臨界流體簡介 1
1-2 回顧固體溶質溶解度之計算方法 3
1-3 PC-SAFT發展回顧 6
1-4 研究動機 10
第二章 計算原理與細節 11
2-1 溶解度計算細節 11
2-2 PR狀態方程式 13
2-3 PC-SAFT狀態方程式 15
2-4 蒸氣壓計算細節 21
2-4-1 PR EOS 蒸氣壓計算 21
2-4-2 PC-SAFT EOS 蒸氣壓計算 22
第三章 結果與討論 23
3-1 不含締合貢獻(無氫鍵)系統 24
3-1-1 蒸氣壓計算結果 24
3-1-2 二元系統溶解度計算結果 25
3-1-3 三元系統溶解度計算結果 32
3-2 含締合貢獻(有氫鍵)系統 37
3-2-1 蒸氣壓計算結果 37
3-2-2 溶解度計算結果 41
第四章 結論 51
參考文獻 52
附錄(ㄧ) 藥物溶質的性質資訊和溶解度實驗數據 60
附錄(二) 三元系統的資訊及溶解度實驗值 62
附錄(三) NRR method臨界性質計算結果 63
附錄(四) PR+COSMOSAC method臨界性值計算結果 65
附錄(五) 含有蒸氣壓實驗數據分子 67
附錄(六) PC-SAFT純物質參數 68
附錄(七) 三元系統PCSAFT參數 75
附錄(八) 藥物溶質的分子結構 78
參考文獻 1. Weibel, G. L.; Ober, C. K., An Overview of Supercritical Co2 Applications in Microelectronics Processing. Microelectronic Engineering 2003, 65, 145-152.
2. Esfandiari, N., Production of Micro and Nano Particles of Pharmaceutical by Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2015, 100, 129-141.
3. Teoh, W. H.; Mammucari, R.; Foster, N. R., Solubility of Organometallic Complexes in Supercritical Carbon Dioxide: A Review. Journal of Organometallic Chemistry 2013, 724, 102-116.
4. Tabernero, A.; del Valle, E. M. M.; Galán, M. Á., A Comparison between Semiempirical Equations to Predict the Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2010, 52, 161-174.
5. Chrastil, J., Solubility of Solids and Liquids in Supercritical Gases. The Journal of Physical Chemistry 1982, 86, 3016-3021.
6. Adachi, Y.; Lu, B. C.-Y., Supercritical Fluid Extraction with Carbon Dioxide and Ethylene. Fluid Phase Equilibria 1983, 14, 147-156.
7. Kumar, S. K.; Johnston, K. P., Modelling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. The Journal of Supercritical Fluids 1988, 1, 15-22.
8. Méndez-Santiago, J.; Teja, A. S., The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria 1999, 158, 501-510.
9. Mehdizadeh, B.; Movagharnejad, K., A Comparison between Neural Network Method and Semi Empirical Equations to Predict the Solubility of Different Compounds in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2011, 303, 40-44.
10. Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. R., Comparison the Capability of Artificial Neural Network (Ann) and Eos for Prediction of Solid Solubilities in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2011, 308, 35-43.
11. Moussaoui, M.; Laidi, M.; Hanini, S.; Hentabli, M., Artificial Neural Network and Support Vector Regression Applied in Quantitative Structure-Property Relationship Modelling of Solubility of Solid Solutes in Supercritical Co 2. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske 2020, 69, 611-630.
12. Abdi-Khanghah, M.; Bemani, A.; Naserzadeh, Z.; Zhang, Z., Prediction of Solubility of N-Alkanes in Supercritical Co2 Using Rbf-Ann and Mlp-Ann. Journal of CO2 Utilization 2018, 25, 108-119.
13. Van Der Waals, J. D.; Rowlinson, J. S., On the Continuity of the Gaseous and Liquid States; Courier Corporation, 2004.
14. Redlich, O.; Kwong, J. N., On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical reviews 1949, 44, 233-244.
15. Soave, G., Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical engineering science 1972, 27, 1197-1203.
16. Peng, D.-Y.; Robinson, D. B., A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals 1976, 15, 59-64.
17. Huron, M.-J.; Vidal, J., New Mixing Rules in Simple Equations of State for Representing Vapour-Liquid Equilibria of Strongly Non-Ideal Mixtures. Fluid Phase Equilibria 1979, 3, 255-271.
18. Michelsen, M. L., A Modified Huron-Vidal Mixing Rule for Cubic Equations of State. Fluid Phase Equilibria 1990, 60, 213-219.
19. Kwak, T.; Mansoori, G., Van Der Waals Mixing Rules for Cubic Equations of State. Applications for Supercritical Fluid Extraction Modelling. Chemical engineering science 1986, 41, 1303-1309.
20. Wong, D. S. H.; Sandler, S. I., A Theoretically Correct Mixing Rule for Cubic Equations of State. AIChE Journal 1992, 38, 671-680.
21. Chapman, W. G.; Jackson, G.; Gubbins, K. E., Phase Equilibria of Associating Fluids: Chain Molecules with Multiple Bonding Sites. Molecular Physics 1988, 65, 1057-1079.
22. Jackson, G.; Chapman, W. G.; Gubbins, K. E., Phase Equilibria of Associating Fluids: Spherical Molecules with Multiple Bonding Sites. Molecular Physics 1988, 65, 1-31.
23. Chapman, W. G.; Gubbins, K. E.; Jackson, G.; Radosz, M., New Reference Equation of State for Associating Liquids. Industrial & engineering chemistry research 1990, 29, 1709-1721.
24. Kraska, T.; Gubbins, K. E., Phase Equilibria Calculations with a Modified Saft Equation of State. 2. Binary Mixtures of N-Alkanes, 1-Alkanols, and Water. Industrial & engineering chemistry research 1996, 35, 4738-4746.
25. Kraska, T.; Gubbins, K. E., Phase Equilibria Calculations with a Modified Saft Equation of State. 1. Pure Alkanes, Alkanols, and Water. Industrial & engineering chemistry research 1996, 35, 4727-4737.
26. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules. Industrial & Engineering Chemistry Research 1990, 29, 2284-2294.
27. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures. Industrial & Engineering Chemistry Research 1991, 30, 1994-2005.
28. Gil-Villegas, A.; Galindo, A.; Whitehead, P. J.; Mills, S. J.; Jackson, G.; Burgess, A. N., Statistical Associating Fluid Theory for Chain Molecules with Attractive Potentials of Variable Range. The Journal of chemical physics 1997, 106, 4168-4186.
29. Gross, J.; Sadowski, G., Perturbed-Chain Saft: An Equation of State Based on a Perturbation Theory for Chain Molecules. Industrial & engineering chemistry research 2001, 40, 1244-1260.
30. Gross, J.; Sadowski, G., Application of the Perturbed-Chain Saft Equation of State to Associating Systems. Industrial & engineering chemistry research 2002, 41, 5510-5515.
31. Senol, I. In Ilke Senol Perturbed-Chain Statistical Association Fluid Theory ( Pc-Saft ) Parameters for Propane , Ethylene , and Hydrogen under Supercritical Conditions, 2011.
32. Wolbach, J. P.; Sandler, S. I., Using Molecular Orbital Calculations to Describe the Phase Behavior of Cross-Associating Mixtures. Industrial & engineering chemistry research 1998, 37, 2917-2928.
33. Justo-García, D. N.; García-Sánchez, F.; Díaz-Ramírez, N. L.; Romero-Martínez, A., Calculation of Critical Points for Multicomponent Mixtures Containing Hydrocarbon and Nonhydrocarbon Components with the Pc-Saft Equation of State. Fluid phase equilibria 2008, 265, 192-204.
34. Diamantonis, N. I.; Boulougouris, G. C.; Mansoor, E.; Tsangaris, D. M.; Economou, I. G., Evaluation of Cubic, Saft, and Pc-Saft Equations of State for the Vapor–Liquid Equilibrium Modeling of Co2 Mixtures with Other Gases. Industrial & Engineering Chemistry Research 2013, 52, 3933-3942.
35. Ruether, F.; Sadowski, G., Modeling the Solubility of Pharmaceuticals in Pure Solvents and Solvent Mixtures for Drug Process Design. J. Pharm. Sci. 2009, 98, 4205.
36. Baird, Z. S.; Uusi-Kyyny, P.; Pokki, J.-P.; Pedegert, E.; Alopaeus, V., Vapor Pressures, Densities, and Pc-Saft Parameters for 11 Bio-Compounds. International Journal of Thermophysics 2019, 40, 1-36.
37. Mahmoudabadi, S. Z.; Pazuki, G., A Predictive Pc-Saft Eos Based on Cosmo for Pharmaceutical Compounds. Scientific reports 2021, 11, 1-18.
38. Hustad, O. S.; Jia, N.; Pedersen, K. S.; Memon, A.; Leekumjorn, S., High-Pressure Data and Modeling Results for Phase Behavior and Asphaltene Onsets of Gulf of Mexico Oil Mixed with Nitrogen. SPE Reservoir Evaluation & Engineering 2014, 17, 384-395.
39. Ebrahimi, M.; Mousavi-Dehghani, S.; Dabir, B.; Shahrabadi, A., The Effect of Aromatic Solvents on the Onset and Amount of Asphaltene Precipitation at Reservoir Conditions: Experimental and Modeling Studies. Journal of Molecular Liquids 2016, 223, 119-127.
40. Kikic, I.; Lora, M.; Bertucco, A., A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (Ress), Particles from Gas-Saturated Solutions (Pgss), and Supercritical Antisolvent (Sas). Industrial & engineering chemistry research 1997, 36, 5507-5515.
41. Gross, J.; Sadowski, G., Perturbed-Chain Saft: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244.
42. Ruether, F.; Sadowski, G., Modeling the Solubility of Pharmaceuticals in Pure Solvents and Solvent Mixtures for Drug Process Design. Journal of Pharmaceutical Sciences 2009, 98, 4205-4215.
43. Wang, S.-W.; Chang, S.-Y.; Hsieh, C.-M., Measurement and Modeling of Solubility of Gliclazide (Hypoglycemic Drug) and Captopril (Antihypertension Drug) in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2021, 174, 105244.
44. Sodeifian, G.; Hsieh, C.-M.; Derakhsheshpour, R.; Chen, Y.-M.; Razmimanesh, F., Measurement and Modeling of Metoclopramide Hydrochloride (Anti-Emetic Drug) Solubility in Supercritical Carbon Dioxide. Arabian Journal of Chemistry 2022, 15, 103876.
45. Liang, H.-H.; Li, J.-Y.; Wang, L.-H.; Lin, S.-T.; Hsieh, C.-M., Improvement to Pr+ Cosmosac Eos for Predicting the Vapor Pressure of Nonelectrolyte Organic Solids and Liquids. Industrial & Engineering Chemistry Research 2019, 58, 5030-5040.
46. Johnston, K. P.; Ziger, D. H.; Eckert, C. A., Solubilities of Hydrocarbon Solids in Supercritical Fluids. The Augmented Van Der Waals Treatment. Industrial & Engineering Chemistry Fundamentals 1982, 21, 191-197.
47. McHugh, M.; Paulaitis, M. E., Solid Solubilities of Naphthalene and Biphenyl in Supercritical Carbon Dioxide. Journal of chemical and engineering data 1980, 25, 326-329.
48. Barna, L.; Blanchard, J.-M.; Rauzy, E.; Berro, C., Solubility of Flouranthene, Chrysene, and Triphenylene in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1996, 41, 1466-1469.
49. Miller, D. J.; Hawthorne, S. B.; Clifford, A. A.; Zhu, S., Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide from 313 K to 523 K and Pressures from 100 Bar to 450 Bar. Journal of Chemical & Engineering Data 1996, 41, 779-786.
50. Coutsikos, P.; Magoulas, K.; Tassios, D., Solubilities of P-Quinone and 9,10-Anthraquinone in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1997, 42, 463-466.
51. Pérez, E.; Cabañas, A.; Sánchez-Vicente, Y.; Renuncio, J. A.; Pando, C., High-Pressure Phase Equilibria for the Binary System Carbon Dioxide+ Dibenzofuran. The Journal of Supercritical Fluids 2008, 46, 238-244.
52. Macnaughton, S. J.; Foster, N. R., Solubility of Ddt and 2, 4-D in Supercritical Carbon Dioxide and Supercritical Carbon Dioxide Saturated with Water. Industrial & engineering chemistry research 1994, 33, 2757-2763.
53. Huang, Z.; Kawi, S.; Chiew, Y., Solubility of Cholesterol and Its Esters in Supercritical Carbon Dioxide with and without Cosolvents. The Journal of supercritical fluids 2004, 30, 25-39.
54. Liu, T.; Li, S.; Zhou, R.; Jia, D.; Tian, S., Solubility of Triphenylmethyl Chloride and Triphenyltin Chloride in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2009, 54, 1913-1915.
55. Schmitt, W. J.; Reid, R. C., Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids. Journal of Chemical and Engineering Data 1986, 31, 204-212.
56. Reveco-Chilla, A. G.; Cabrera, A. L.; Juan, C.; Zacconi, F. C.; del Valle, J. M.; Valenzuela, L. M., Solubility of Menadione and Dichlone in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2016, 423, 84-92.
57. Huang, Z.; Yang, X.-W.; Sun, G.-B.; Song, S.-W.; Kawi, S., The Solubilities of Xanthone and Xanthene in Supercritical Carbon Dioxide: Structure Effect. The Journal of supercritical fluids 2005, 36, 91-97.
58. Rodrigues, R. F.; Tashima, A. K.; Pereira, R. M.; Mohamed, R. S.; Cabral, F. A., Coumarin Solubility and Extraction from Emburana (Torresea Cearensis) Seeds with Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2008, 43, 375-382.
59. Yau, J.-S.; Tsai, F.-N., Solubilities of 1-Eicosanol and Eicosanoic Acid in Supercritical Carbon Dioxide from 308.2 to 328.2 K at Pressures to 21.26 Mpa. Journal of Chemical and Engineering Data 1994, 39, 827-829.
60. Yamini, Y.; Fat′hi, M. R.; Alizadeh, N.; Shamsipur, M., Solubility of Dihydroxybenzene Isomers in Supercritical Carbon Dioxide. Fluid Phase Equilibria 1998, 152, 299-305.
61. García-González, J.; Molina, M. J.; Rodríguez, F.; Mirada, F., Solubilities of Phenol and Pyrocatechol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2001, 46, 918-921.
62. Garlapati, C.; Madras, G., Solubilities of Dodecanoic and Tetradecanoic Acids in Supercritical Co2 with and without Entrainers. Journal of Chemical & Engineering Data 2008, 53, 2637-2641.
63. Garlapati, C.; Madras, G., Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical Co2 with and without Cosolvents. Journal of Chemical & Engineering Data 2008, 53, 2913-2917.
64. Kramer, A.; Thodos, G., Solubility of 1-Octadecanol and Stearic Acid in Supercritical Carbon Dioxide. Journal of Chemical and Engineering Data 1989, 34, 184-187.
65. Stassi, A.; Bettini, R.; Gazzaniga, A.; Giordano, F.; Schiraldi, A., Assessment of Solubility of Ketoprofen and Vanillic Acid in Supercritical Co2 under Dynamic Conditions. Journal of Chemical & Engineering Data 2000, 45, 161-165.
66. Yun, S. J.; Liong, K. K.; Gurdial, G. S.; Foster, N. R., Solubility of Cholesterol in Supercritical Carbon Dioxide. Industrial & engineering chemistry research 1991, 30, 2476-2482.
67. Sparks, D. L.; Hernandez, R.; Estévez, L. A.; Meyer, N.; French, T., Solubility of Azelaic Acid in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2007, 52, 1246-1249.
68. Chen, Y.-P.; Chen, Y.-M.; Tang, M., Solubilities of Cinnamic Acid, Phenoxyacetic Acid and 4-Methoxyphenylacetic Acid in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2009, 275, 33-38.
69. Charoenchaitrakool, M.; Dehghani, F.; Foster, N.; Chan, H., Micronization by Rapid Expansion of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals. Industrial & engineering chemistry research 2000, 39, 4794-4802.
70. Huang, Z.; Lu, W. D.; Kawi, S.; Chiew, Y. C., Solubility of Aspirin in Supercritical Carbon Dioxide with and without Acetone. Journal of Chemical & Engineering Data 2004, 49, 1323-1327.
71. Kotnik, P.; Škerget, M.; Knez, Z. e., Solubility of Nicotinic Acid and Nicotinamide in Carbon Dioxide at T=(313.15 to 373.15) K and P=(5 to 30) Mpa: Experimental Data and Correlation. Journal of Chemical & Engineering Data 2011, 56, 338-343.
72. Cortesi, A.; Kikic, I.; Alessi, P.; Turtoi, G.; Garnier, S., Effect of Chemical Structure on the Solubility of Antioxidants in Supercritical Carbon Dioxide: Experimental Data and Correlation. The Journal of Supercritical Fluids 1999, 14, 139-144.
73. Burgos-Solórzano, G.; Brennecke, J.; Stadtherr, M., Solubility Measurements and Modeling of Molecules of Biological and Pharmaceutical Interest with Supercritical Co2. Fluid Phase Equilibria 2004, 220, 57-69.
74. Li, W.; Jin, J.; Tian, G.; Zhang, Z., Single-Component and Mixture Solubilities of Ethyl P-Hydroxybenzoate and Ethyl P-Aminobenzoate in Supercritical Co2. Fluid phase equilibria 2008, 264, 93-98.
75. Asghari-Khiavi, M.; Yamini, Y., Solubility of the Drugs Bisacodyl, Methimazole, Methylparaben, and Iodoquinol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48, 61-65.
76. Lucien, F. P.; Foster, N. R., Influence of Matrix Composition on the Solubility of Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Industrial & engineering chemistry research 1996, 35, 4686-4699.
77. Cheng, K.-W.; Tang, M.; Chen, Y.-P., Solubilities of Benzoin, Propyl 4-Hydroxybenzoate and Mandelic Acid in Supercritical Carbon Dioxide. Fluid phase equilibria 2002, 201, 79-96.
78. Johannsen, M.; Brunner, G., Solubilities of the Xanthines Caffeine, Theophylline and Theobromine in Supercritical Carbon Dioxide. Fluid Phase Equilibria 1994, 95, 215-226.
79. Lucien, F. P.; Foster, N. R., Solubilities of Mixed Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1998, 43, 726-731.
80. Murga, R.; Sanz, M. a. T.; Beltrán, S.; Cabezas, J. L., Solubility of Three Hydroxycinnamic Acids in Supercritical Carbon Dioxide. The Journal of supercritical fluids 2003, 27, 239-245.
81. Murga, R.; Sanz, M. a. T.; Beltrán, S.; Cabezas, J. L., Solubility of Some Phenolic Compounds Contained in Grape Seeds, in Supercritical Carbon Dioxide. The journal of supercritical fluids 2002, 23, 113-121.
82. Murga, R.; Sanz, M. T.; Beltrán, S.; Cabezas, J. L., Solubility of Syringic and Vanillic Acids in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2004, 49, 779-782.
83. Van Leer, R. A.; Paulaitis, M. E., Solubilities of Phenol and Chlorinated Phenols in Supercritical Carbon Dioxide. Journal of Chemical and Engineering Data 1980, 25, 257-259.
84. Weijun, H.; Suming, C.; Fu, T.; Zhenxiang, Y., Study on Thermodynamic Characteristics of Cinnamic Acid Derivatives. ACTA PHYSICO-CHIMICA SINICA 1994, 10, 151-153.
85. Hojjati, M.; Yamini, Y.; Khajeh, M.; Vatanara, A., Solubility of Some Statin Drugs in Supercritical Carbon Dioxide and Representing the Solute Solubility Data with Several Density-Based Correlations. The Journal of supercritical fluids 2007, 41, 187-194.
86. Chen, J.-W.; Tsai, F.-N., Solubilities of Methoxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Fluid phase equilibria 1995, 107, 189-200.
87. Li, Q.; Zhang, Z.; Zhong, C.; Liu, Y.; Zhou, Q., Solubility of Solid Solutes in Supercritical Carbon Dioxide with and without Cosolvents. Fluid Phase Equilibria 2003, 207, 183-192.
88. Dobbs, J. M.; Wong, J. M.; Johnston, K. P., Nonpolar Co-Solvents for Solubility Enhancement in Supercritical Fluid Carbon Dioxide. Journal of Chemical and Engineering Data 1986, 31, 303-308.
89. Hollar Jr, W. E.; Ehrlich, P., Solubility of Naphthalene in Mixtures of Carbon Dioxide and Ethane. Journal of Chemical and Engineering Data 1990, 35, 271-275.
90. Smith, G.; Wormald, C., Solubilities of Naphthalene in (Co2+ C2h6) and (Co2+ C3h8) up to 333 K and 17.7 Mpa. Fluid phase equilibria 1990, 57, 205-222.
91. Lemert, R. M.; Johnston, K. P., Solubilities and Selectivities in Supercritical Fluid Mixtures near Critical End Points. Fluid Phase Equilibria 1990, 59, 31-55.
92. Dixon, D. J.; Johnston, K. P., Molecular Thermodynamics of Solubilities in Gas Antisolvent Crystallization. AIChE Journal 1991, 37, 1441-1449.
93. Van Alsten, J. G.; Eckert, C. A., Effect of Entrainers and of Solute Size and Polarity in Supercritical Fluid Solutions. Journal of Chemical and Engineering Data 1993, 38, 605-610.
94. Anitescu, G.; Tavlarides, L., Solubilities of Solids in Supercritical Fluids—Ii. Polycyclic Aromatic Hydrocarbons (Pahs)+ Co2/Cosolvent. The Journal of Supercritical Fluids 1997, 11, 37-51.
95. Pérez, E.; Cabañas, A.; Renuncio, J. A. R.; Sánchez-Vicente, Y.; Pando, C., Cosolvent Effect of Methanol and Acetic Acid on Dibenzofuran Solubility in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2008, 53, 2649-2653.
96. Ramírez-Vélez, N.; Piña-Martinez, A.; Jaubert, J.-N.; Privat, R., Parameterization of Saft Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of Pc-Saft Molecular Parameters. Journal of Chemical & Engineering Data 2020, 65, 5920-5932.
97. Gross, J.; Sadowski, G., Application of the Perturbed-Chain Saft Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002, 41, 5510.
98. Aspen Polymer Plus V7.1 Database.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明