博碩士論文 109223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.222.164.228
姓名 許宏誠(Hung-Cheng Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備酸性官能基中孔洞矽材與鈀鐵奈米雙金屬中孔洞/石墨烯碳複合材應用在有機催化反應
(Sulfonic/Carboxylic Acid Functionalized Mesoporous Silica and Palladium Nanoparticles Embedded in the Carbon Composite for the Catalytic Organic Reaction)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本研究分為兩大部分。在第一部分研究中,利用直接合成法,將具有磺酸官能基與羧酸官能基團修飾在中孔洞矽材表面,合成出O-K6SXCY系列之酸性催化劑。此系列催化劑具有高比表面積、孔洞一致性和富有酸性位點之官能基,期望能夠應用在催化1, 6-己二醇為丙烯酸酯。本部分將製備好的O-K6SXCY經過一系列的儀器鑑定後,確認催化劑的結構與穩定性後,進行己二醇酯化反應,分別探討了反應時間、酸性雙官能基催化劑比例、不同丙烯酸當量、不同聚合抑制劑量、不同催化劑量以及不同溫度對轉化率與產率之影響。經過一系列的實驗優化,最後以O-K6S20作為本部分的最佳催化劑,其HDDA在20小時的產率為72.8%,HDA在10小時的產率為50.4%。在此部分研究中,O-K6S20展現了其應用性與高催化活性。
第二部分研究中,主要是利用奈米雙金屬還原在中孔洞碳材 (CMK-9) 與還原氧化石墨烯 (rGO) 之碳複合材料上,利用化學還原法可有效地將PdNPs還原在碳複合材中,並藉由CMK-9具有高比表面積及rGO具有快速電子傳輸效率,能夠快速將電子提供給PdNPs,增加PdNPs的電子密度,進而提升催化活性。本部分將合成出來的Pd(x)/Y%Fe3O4@rGOC9系列經過儀器鑑定後,應用在鈴木偶聯反應中,並分別探討了不同比例的碳複合材 (rGOC9)、不同Fe3O4含浸量、不同PdNPs含浸量、不同催化材料、不同溶劑、不同鹼、不同芳基鹵化物、不同芳基硼酸和不同溫度對催化反應之影響。經過一系列的實驗優化,Pd(0.75)/10%Fe3O4@rGOC9展現了優異的催化活性,其轉化率與產率分別達99.0%與94.8%,周轉頻率 (TOF) 高達7920.0 h-1。
摘要(英) This thesis consists of two parts, In the first part, we successfully synthesized the sulfonic acid and carboxylic acid functionalized mesoporous silicas (O-K6SXCY series) by direct synthesis using TEOS as silicon source, MPTMS or CES as functional group precursor, P123 as a soft template and hydrogen peroxide as an oxidant in an acidic environment. Among all the as-prepared catalysts, O-K6S20 has the best catalytic activity. According to the BET result, The synthesized O-K6S20 was confirmed about 679 m2/g. It has high surface area, good pore volume and high acid sites. It can increase the rate of acrylic acid and hexanediol to produce acrylate with 50.4% HDA yield and 72.8% HDDA yield at 90℃.
In the second part, the aim of this work is to synthesize bimetallic PdFe nanoparticles within the pores of mesoporous carbon (CMK-9) and reduced graphene oxide (rGO) composite support, and use them as the catalysts for the Suzuki-Miyaura cross-coupling reaction between iodobenzene and phenylboronic acid. The metal nanoparticles are immobilized within the support by double agent chemical reduction method which uses NaBH4 and NH3BH3 as the reducing agents. Due to high surface area of CMK-9 and fast electron efficiency of rGO, PdFe nanoparticles are dispersed homogenously within the rGOC9 composite support. The metal (Pd:Fe) contents are varied to explore its effect on the performance of the catalyst which showed that Pd(0.75)/10%Fe3O4@rGO C9 exhibited excellent catalytic activity with 97% conversion and turnover frequency up to 7760 h-1. The utilization of Fe3O4 as one of the components has not only reduced the production cost of the catalyst but also allowed its efficient recovery and reuse.
關鍵字(中) ★ 中孔洞矽材
★ 中孔洞碳材
★ 還原氧化石墨烯
★ 異相催化劑
★ 有機催化反應
關鍵字(英) ★ Mesoporous carbon materials
★ Mesoporous silica materials
★ Reduced graphene oxide
★ Heterogeneous catalysts
★ Organic reaction
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xv
表目錄 xxvi
第一章 緒論 1
第壹部分 具酸性官能基中孔洞矽材催化己二醇為丙烯酸酯 1
1-1中孔洞矽材 (Mesoporous Silica Materials, MSMs) 1
1-1-1中孔洞矽材之簡介 1
1-1-2中孔洞矽材的定義 2
1-1-3中孔洞矽材的合成方式 3
1-1-4微胞形成的方式與種類 5
1-1-5微胞與矽源的作用力 8
1-2具官能基化之中孔洞矽材 10
1-2-1中孔洞矽材表面修飾法 10
1-2-2具羧酸官能基之中孔洞矽材 13
1-2-3具磺酸官能基之中孔洞矽材 16
1-3己二醇酯化反應 20
1-3-1丙烯酸酯介紹 20
1-3-2具磺酸官能基之中孔洞矽材酯化反應文獻回顧 21
第貳部分 鈀鐵奈米雙金屬催化鈴木偶聯反應 24
1-4中孔洞碳材 (Mesoporous Carbon Materials, MCMs) 24
1-4-1中孔洞碳材之簡介 24
1-4-2奈米鑄模法合成中孔洞碳材 26
1-4-3奈米鑄模法合成中孔洞碳材之發展 27
1-5二維石墨材料 31
1-5-1石墨材料之簡介 31
1-5-2氧化石墨烯之合成 32
1-5-3還原氧化石墨烯之合成 34
1-6鈀鐵奈米雙金屬催化鈴木偶聯反應 36
1-6-1偶聯反應介紹 36
1-6-2鈀金屬催化鈴木偶聯反應機制介紹 37
1-6-3鈀金屬催化鈴木偶聯反應文獻回顧 38
1-7研究目的與動機 42
第二章 實驗部分 43
2-1實驗藥品 43
2-1-1第一部份所使用之藥品 43
2-1-2第二部份所使用之藥品 44
2-2實驗步驟 45
第壹部分 具磺酸官能基中孔洞矽材催化己二醇為丙烯酸酯 45
2-2-1合成具酸性官能基之O-K6SXCY 45
2-2-2以硫酸溶液裂解孔洞中模板 46
2-2-3催化己二醇為丙烯酸酯實驗 46
2-2-4催化己二醇為丙烯酸酯重複使用實驗 47
第貳部分 鈀鐵奈米雙金屬催化鈴木偶聯反應 48
2-2-5合成還原氧化石墨烯 rGO 48
2-2-6合成中孔洞碳材CMK-9 48
2-2-7合成具有磁性材料之Y%Fe3O4@rGOC9 49
2-2-8合成鈀奈米金屬於磁性材料中Pd(x)/10%Fe3O4@rGOC9 49
2-2-9催化鈴木偶聯反應 51
2-2-10催化鈴木偶聯反應重複使用實驗 51
2-3 實驗儀器 52
2-3-1實驗合成所需之儀器 52
2-3-2實驗鑑定儀器 53
2-4鑑定儀器之原理 55
2-4-1同步輻射中心光束線 (NSRRC) 55
2-4-2氮氣吸附脫附儀 (ASAP) 57
2-4-3穿透式電子顯微鏡 (TEM) 61
2-4-4掃描式電子顯微鏡 (SEM) 62
2-4-5高解析感應耦合電漿質譜分析儀 (ICP-MS) 63
2-4-6光電子能譜 (XPS) 64
2-4-7粉末X光繞射儀(PXRD) 65
2-4-8傅立葉紅外線吸收光譜儀(FTIR) 66
2-4-9固態核磁共振(Solid State NMR) 67
2-4-10超導量子干涉磁化儀 (SQUID) 72
2-4-11元素分析儀 (EA) 73
2-4-12高效能液相層析儀 (HPLC) 74
2-4-13氣相層析儀 (GC) 76
2-4-14熱重分析儀 (TGA) 78
2-4-15拉曼光譜儀 (Raman) 79
第三章 結果與討論 80
第壹部分 具磺酸官能基中孔洞矽材催化己二醇為丙烯酸酯 80
3-1材料基本性質鑑定 80
3-1-1小角度X光繞射圖 (SAXRD) 80
3-1-2氮氣吸脫附鑑定 (BET) 83
3-1-3傅立葉轉換紅外線光譜圖 (FT-IR) 86
3-1-4 Solid NMR 87
3-1-4.1 13C CP/MAS 87
3-1-4.2 29Si MAS 90
3-1-5元素分析 (EA) 93
3-1-6掃描式電子顯微鏡 (SEM) 95
3-1-7穿透式電子顯微鏡 (TEM) 98
3-1-8光電子能譜 (XPS) 100
3-1-9熱重分析 (TGA) 103
3-2催化己二醇為丙烯酸酯實驗 104
3-2-1 O-K6SXCY催化己二醇為1,6-己二醇二丙烯酸酯 104
3-2-2 O-K6SXCY催化己二醇反應 106
3-2-3不同比例丙烯酸對HDDA產率之影響 107
3-2-4不同比例抑制劑對HDDA產率之影響 108
3-2-5不同比例催化劑對HDDA產率之影響 110
3-2-6不同溶劑對HDDA產率之影響 111
3-2-7不同溫度對HDDA產率之影響 112
3-2-8 O-K6S20催化己二醇為1-己二醇丙烯酸酯 115
3-2-9不同比例丙烯酸對HDA產率之影響 116
3-2-10不同比例抑制劑對HDA產率之影響 117
3-2-11不同比例催化劑對HDA產率之影響 118
3-2-12不同溶劑對HDA產率之影響 119
3-2-13不同溫度對HDA產率之影響 120
3-2-14 O-K6S20催化己二醇為丙烯酸酯重複利用之實驗 123
3-2-14.1 O-K6S20 5th 回收利用 123
3-2-14.2 O-K6S20 5th SEM 圖譜 124
3-2-14.3 O-K6S20 5th TEM 圖譜 124
3-2-14.4 O-K6S20 5th EA 126
3-2-14.5 O-K6S20 5th TGA 圖譜 127
第貳部分 鈀鐵奈米雙金屬催化鈴木偶聯反應 128
3-3 材料基本性質鑑定 128
3-3-1小角度X光繞射圖 (SAXRD) 128
3-3-2大角度X光繞射圖 (WAXRD) 131
3-3-3等溫氮氣吸脫附鑑定 (BET) 134
3-3-4掃描式電子顯微鏡 (SEM) 140
3-3-5穿透式電子顯微鏡 (TEM) 144
3-3-6拉曼光譜 (Raman) 149
3-3-7光電子能譜 (XPS) 152
3-3-8熱重分析 (TGA) 155
3-3-9感應耦合電漿質譜儀 (ICP-MS) 156
3-3-10磁性鑑定 (SQUID) 158
3-4鈀鐵奈米雙金屬催化鈴木偶聯反應實驗 159
3-4-1碳複合材的探討與選用 159
3-4-1.1 Pd(1)@CMK-X 催化鈴木偶聯反應 159
3-4-1.2 Pd(1)@G/GO/rGO 催化鈴木偶聯反應 161
3-4-1.3 Pd(1)@rGOC9 催化鈴木偶聯反應 163
3-4-2 Pd(1)/Y%Fe3O4@rGOC9催化鈴木偶聯反應 164
3-4-3 Pd(x)/10%Fe3O4@rGOC9 催化鈴木偶聯反應 166
3-4-4不同材料催化鈴木偶聯反應之比較 168
3-4-5不同溶劑催化鈴木偶聯反應之比較 170
3-4-6不同鹼催化鈴木偶聯反應之比較 171
3-4-7不同芳基鹵化物催化鈴木偶聯反應之比較 173
3-4-8不同溫度催化鈴木偶聯反應之比較 175
3-4-9 Pd(0.75)/10%Fe3O4@rGOC9催化鈴木偶聯反應重複利用之實驗 179
3-4-9.1 Pd(0.75)/10%Fe3O4@rGOC9 10th 回收利用 179
3-4-9.2 Pd(0.75)/10%Fe3O4@rGOC9 10th SEM 圖譜 180
3-4-9.3 Pd(0.75)/10%Fe3O4@rGOC9 10th TEM 圖譜 180
3-4-9.4 Pd(0.75)/10%Fe3O4@rGOC9 10th SQUID 182
第四章 結論 183
第五章 參考資料 184
參考文獻 第五章 參考資料
1. Setya, C.; Deka, J.; Saikia, D.; Kao, H.-M.; Yang, Y.-C., Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of Hazardous Materials 2019, 384, 121270.
2. Weckhuysen, B. M.; Yu, J., Recent advances in zeolite chemistry and catalysis. Chem Soc Rev 2015, 44 (20), 7022-7024.
3. Wei, J.; Sun, Z.; Luo, W.; Li, Y.; Elzatahry, A. A.; Al-Enizi, A. M.; Deng, Y.; Zhao, D., New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society 2017, 139 (5), 1706-1713.
4. Xie, Z.; Su, B.-L., Crystalline porous materials: from zeolites to metal-organic frameworks (MOFs). Frontiers of Chemical Science and Engineering 2020, 14.
5. He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y., Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact Mater 2021, 8, 109-123.
6. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
7. Deka, J. R.; Saikia, D.; Chen, P. H.; Chen, K. T.; Kao, H. M.; Yang, Y. C., N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J. Ind. Eng. Chem. 2021, 104, 529-543.
8. Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J., CO2 Adsorption by Amine-Functionalized MCM-41: A Comparison between Impregnation and Grafting Modification Methods. Energy & Fuels 2018, 32 (1), 670-677.
9. Gao, M.; Zeng, J.; Liang, K.; Zhao, D.; Kong, B., Interfacial Assembly of Mesoporous Silica‐Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials 2020, 30.
10. Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B.; Yamauchi, Y., Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage. Advanced materials (Deerfield Beach, Fla.) 2020, 32, e2004654.
11. Chen, W.; Glackin, C. A.; Horwitz, M. A.; Zink, J. I., Nanomachines and Other Caps on Mesoporous Silica Nanoparticles for Drug Delivery. Accounts of Chemical Research 2019, 52 (6), 1531-1542.
12. Yang, B.; Chen, Y.; Shi, J., Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews 2019, 119 (8), 4881-4985.
13. Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D., Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews 2021, 121 (23), 14349-14429.
14. Ghaedi, H.; Zhao, M., Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy & Fuels 2022, 36 (5), 2424-2446.
15. Zhao, X. S.; Lu, G. Q.; Millar, G. J., Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
16. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
17. Hao, N.; Li, L.; Tang, F., Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews 2017, 62 (2), 57-77.
18. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
19. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
20. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie (International ed. in English) 2006, 45 (20), 3216-51.
21. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
22. Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical communications (Cambridge, England) 2012, 49.
23. Tarek A. Fayed, M. H. S., Marwa N. El‑Nahass, Fathy M. Hassan, Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. Chemical and Applied Biological Sciences 2014, 1 (2), 1-74.
24. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013, 42 (9), 3862-3875.
25. Soler-Illia, G.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies of Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchichal Structures. ChemInform 2003, 34.
26. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.
27. Burkett, S. L.; Sims, S. D.; Mann, S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications 1996, (11), 1367-1368.
28. Macquarrie, D. J., Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chemical Communications 1996, (16), 1961-1962.
29. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A., Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials 1999, 11 (11), 3302-3308.
30. Mercier, L.; Pinnavaia, T. J., Direct Synthesis of Hybrid Organic−Inorganic Nanoporous Silica by a Neutral Amine Assembly Route:  Structure−Function Control by Stoichiometric Incorporation of Organosiloxane Molecules. Chemistry of Materials 2000, 12 (1), 188-196.
31. Walcarius, A.; Delacôte, C., Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co-Condensation Route. Chemistry of Materials 2003, 15 (22), 4181-4192.
32. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
33. Trébosc, J.; Wiench, J. W.; Huh, S.; Lin, V. S. Y.; Pruski, M., Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society 2005, 127 (9), 3057-3068.
34. Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y., Synthesis of Pd/SBA-15 catalyst employing surface-bonded vinyl as a reductant and its application in the hydrogenation of nitroarenes. RSC Advances 2017, 7 (6), 3443-3449.
35. Mercier, L.; Pinnavaia, T. J., Heavy Metal Ion Adsorbents Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves:  Factors Affecting Hg(II) Uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
36. Ho, K. Y.; McKay, G.; Yeung, K. L., Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19 (7), 3019-3024.
37. Chircov, C.; Spoială, A.; Păun, C.; Crăciun, L.; Ficai, D.; Ficai, A.; Andronescu, E.; Turculeƫ, Ș. C., Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules 2020, 25 (17), 3814.
38. Brunelli, N. A.; Venkatasubbaiah, K.; Jones, C. W., Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials 2012, 24 (13), 2433-2442.
39. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
40. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
41. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
42. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.
43. Tsai, C. H.; Chang, W. C.; Saikia, D.; Wu, C. E.; Kao, H. M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. J Hazard Mater 2016, 309, 236-48.
44. Abedi, M.; Abolmaali, S. S.; Abedanzadeh, M.; Borandeh, S.; Samani, S. M.; Tamaddon, A. M., Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe(3)O(4)/carboxyl functionalized mesoporous SiO(2) hybrid nanoparticles: A-synthesis, physicochemical and biological characterization. Materials science & engineering. C, Materials for biological applications 2019, 104, 109922.
45. Deka, J. R.; Saikia, D.; Lu, N.-F.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Applied Surface Science 2021, 538, 148091.
46. Harmer, M.; Farneth, W.; Sun, Q., High Surface Area Nafion† Resin/Silica Nanocomposites:  A New Class of Solid Acid Catalyst. Journal of The American Chemical Society - J AM CHEM SOC 1996, 118.
47. M. Van Rhijn, W.; E. De Vos, D.; F. Sels, B.; D. Bossaert, W., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications 1998, (3), 317-318.
48. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
49. Melero, J. A.; van Grieken, R.; Morales, G., Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews 2006, 106 (9), 3790-3812.
50. Das, D.; Lee, J.-F.; Cheng, S., Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for Bisphenol-A synthesis. Chemical Communications 2001, (21), 2178-2179.
51. Sasidharan, M.; Bhaumik, A., Novel and Mild Synthetic Strategy for the Sulfonic Acid Functionalization in Periodic Mesoporous Ethenylene-Silica. ACS Applied Materials & Interfaces 2013, 5 (7), 2618-2625.
52. Paniagua, M.; Cuevas, F.; Morales, G.; Melero, J. A., Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 5952-5962.
53. Tahk, D.; Bang, S.; Hyung, S.; Lim, J.; Yu, J.; Kim, J.; Jeon, N. L.; Kim, H. N., Self-detachable UV-curable polymers for open-access microfluidic platforms. Lab on a chip 2020, 20 (22), 4215-4224.
54. Pirez, C.; Caderon, J.-M.; Dacquin, J.-P.; Lee, A. F.; Wilson, K., Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification. ACS Catalysis 2012, 2 (8), 1607-1614.
55. Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M., Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Applied Materials & Interfaces 2015, 7 (48), 26767-26775.
56. Trejda, M.; Kaszuba, A.; Nurwita, A.; Ziolek, M., Towards Efficient Acidic Catalysts via Optimization of SO(3)H-Organosilane Immobilization on SBA-15 under Increased Pressure: Potential Applications in Gas and Liquid Phase Reactions. Materials (Basel) 2021, 14 (23), 7226.
57. Yu, D.; Bai, J.; Wang, J.; Liang, H.; Li, C., Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction. Applied Surface Science 2017, 399, 185-191.
58. Ruiz, O. N.; Fernando, K. A. S.; Wang, B.; Brown, N. A.; Luo, P. G.; McNamara, N. D.; Vangsness, M.; Sun, Y.-P.; Bunker, C. E., Graphene Oxide: A Nonspecific Enhancer of Cellular Growth. ACS Nano 2011, 5 (10), 8100-8107.
59. Eftekhari, A.; Fan, Z., Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers 2017, 1 (6), 1001-1027.
60. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO 2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23.
61. Li, Z.; Guo, K.; Chen, X., Controllable synthesis of nitrogen-doped mesoporous carbons for supercapacitor applications. RSC Advances 2017, 7 (49), 30521-30532.
62. Saikia, D.; Deka, J. R.; Lin, C.-W.; Zeng, Y.-H.; Lu, B.-J.; Kao, H.-M.; Yang, Y.-C., Ordered mesoporous carbon with tubular framework supported SnO2 nanoparticles intertwined in MoS2 nanosheets as an anode for advanced lithium-ion batteries with outstanding performances. Electrochimica Acta 2021, 380, 138195.
63. Deka, J. R.; Saikia, D.; Chen, P.-H.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J. Ind. Eng. Chem. 2021, 104, 529-543.
64. Bergna, D.; Varila, T.; Romar, H.; Lassi, U., Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes. C 2018, 4 (3), 41.
65. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
66. Yasuda, H.; Tamai, H.; Ikeuchi, M.; Kojima, S., Extremely large mesoporous carbon fibers synthesized by the addition of rare earth metal complexes and their unique adsorption behaviors. Advanced Materials 1997, 9 (1), 55-58.
67. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
68. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
69. Serrà, A.; Vallés, E., Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts 2018, 8 (9), 395.
70. Ding, Q.; Hu, X., Mesoporous Materials as Catalyst support for Wastewater Treatment. Madridge Journal of Nanotechnology & Nanoscience 2019, 4 (2).
71. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
72. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
73. Wang, J.; Liu, Q., An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon. The Journal of Physical Chemistry C 2007, 111 (20), 7266-7272.
74. Wu, Z.; Yang, Y.; Gu, D.; Li, Q.; Feng, D.; Chen, Z.; Tu, B.; Webley, P. A.; Zhao, D., Silica-Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperature-Programmed Carburization Route. Small 2009, 5 (23), 2738-2749.
75. Wu, Z.; Pang, J.; Lu, Y., Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenyl-bridged organosiloxane. Nanoscale 2009, 1 (2), 245-249.
76. Xing, Y.; Wang, Y.; Zhou, C.; Zhang, S.; Fang, B., Simple Synthesis of Mesoporous Carbon Nanofibers with Hierarchical Nanostructure for Ultrahigh Lithium Storage. ACS Applied Materials & Interfaces 2014, 6 (4), 2561-2567.
77. Wang, X.; Qiu, M.; Smith, R. L.; Yang, J.; Shen, F.; Qi, X., Ferromagnetic Lignin-Derived Ordered Mesoporous Carbon for Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry & Engineering 2020, 8 (49), 18157-18166.
78. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
79. Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J.-H.; Yu, Y.-J.; Shin, T. J.; Kwak, S. K.; Kang, S. J.; Park, C., Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters 2016, 16 (1), 334-340.
80. Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y., Copper Nanowire–Graphene Core–Shell Nanostructure for Highly Stable Transparent Conducting Electrodes. ACS Nano 2015, 9 (3), 3125-3133.
81. Furue, R.; Koveke, E. P.; Sugimoto, S.; Shudo, Y.; Hayami, S.; Ohira, S.-I.; Toda, K., Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors and Actuators B: Chemical 2017, 240, 657-663.
82. Tavakoli, M. M.; Tavakoli, R.; Hasanzadeh, S.; Mirfasih, M. H., Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold. The Journal of Physical Chemistry C 2016, 120 (35), 19531-19536.
83. Liu, L.; Niu, Z.; Chen, J., Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 2016, 45 (15), 4340-4363.
84. Wu, S.; Xu, R.; Lu, M.; Ge, R.; Iocozzia, J.; Han, C.; Jiang, B.; Lin, Z., Lithium-Ion Batteries: Graphene-Containing Nanomaterials for Lithium-Ion Batteries (Adv. Energy Mater. 21/2015). Advanced Energy Materials 2015, 5 (21).
85. Hu, M.; Yao, Z.; Hui, K. N.; Hui, K. S., Novel mechanistic view of catalytic ozonation of gaseous toluene by dual-site kinetic modelling. Chemical Engineering Journal 2017, 308, 710-718.
86. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
87. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806-4814.
88. Gopal, A., A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. Journal of Nanomedicine & Nanotechnology 2015, 6, 1000253.
89. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H., Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 2015, 5, 10160-10160.
90. Li, J.; Song, Y.; Wang, Y.; Zhang, H., Ultrafine PdCu Nanoclusters by Ultrasonic-Assisted Reduction on the LDHs/rGO Hybrid with Significantly Enhanced Heck Reactivity. ACS Applied Materials & Interfaces 2020, 12 (45), 50365-50376.
91. Pei, X.; Li, Y.; Lu, L.; Jiao, H.; Gong, W.; Zhang, L., Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS Applied Materials & Interfaces 2021, 13 (37), 44418-44426.
92. Li, B.; Zeng, H. C., Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Applied Materials & Interfaces 2020, 12 (30), 33827-33837.
93. Wang, S.-B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y.-W., Pd–Rh Nanocrystals with Tunable Morphologies and Compositions as Efficient Catalysts toward Suzuki Cross-Coupling Reactions. ACS Catalysis 2014, 4 (7), 2298-2306.
94. Fu, Q.; Meng, Y.; Fang, Z.; Hu, Q.; Xu, L.; Gao, W.; Huang, X.; Xue, Q.; Sun, Y.-P.; Lu, F., Boron Nitride Nanosheet-Anchored Pd–Fe Core–Shell Nanoparticles as Highly Efficient Catalysts for Suzuki–Miyaura Coupling Reactions. ACS Applied Materials & Interfaces 2017, 9 (3), 2469-2476.
95. Fu, W.; Zhang, Z.; Zhuang, P.; Shen, J.; Ye, M., One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. Journal of Colloid and Interface Science 2017, 497, 83-92.
96. Lu, Y.; Ye, T.-N.; Park, S.-W.; Li, J.; Sasase, M.; Abe, H.; Niwa, Y.; Kitano, M.; Hosono, H., Intermetallic ZrPd3-Embedded Nanoporous ZrC as an Efficient and Stable Catalyst of the Suzuki Cross-Coupling Reaction. ACS Catalysis 2020, 10 (24), 14366-14374.
97. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
98. Zhang, Y.; Nishi, N.; Koya, I.; Sakka, T., Simultaneous Synthesis of One-and Two-Dimensional Gold Nanostructures/Reduced Graphene Oxide Composites in the Redox-Active Ionic Liquid/Water Interfacial System. Chemistry of Materials 2020, 32 (15), 6374-6383.
99. Aceto, M., 8 - The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies, Espiñeira, M.; Santaclara, F. J., Eds. Woodhead Publishing: 2016; pp 137-164.
100. Kim, S.; Varga, G.; Seo, M.; Sápi, A.; Rácz, V.; Gómez-Pérez, J. F.; Sebők, D.; Lee, J.; Kukovecz, Á.; Kónya, Z., Nesting Well-Defined Pt Nanoparticles within a Hierarchically Porous Polymer as a Heterogeneous Suzuki–Miyaura Catalyst. ACS Applied Nano Materials 2021, 4 (4), 4070-4076.
101. Narkhede, N.; Uttam, B.; Rao, C. P., Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C–C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4 (3), 4908-4917.
102. Fu, W.; Zhang, Z.; Zhuang, P.; Shen, J.; Ye, M., One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. J Colloid Interface Sci 2017, 497, 83-92.
103. Li, B.; Zeng, H. C., Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Appl Mater Interfaces 2020, 12 (30), 33827-33837.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明