參考文獻 |
1. Tan, S. S.; Zou, L.; Hu, E., Photocatalytic Reduction of Carbon Dioxide into Gaseous Hydrocarbon Using TiO2 Pellets. Catalysis today 2006, 115, 269-273.
2. Jafarzadeh, A.; Bal, K.; Bogaerts, A.; Neyts, E., CO2 Activation on TiO2-Supported Cu5 and Ni5 Nanoclusters: Effect of Plasma-Induced Surface Charging. The Journal of Physical Chemistry C 2019, 123, 6516-6525.
3. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by Uv-Irradiated Titania. Applied Catalysis B: Environmental 2002, 39, 75-90.
4. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical reviews 1995, 95, 69-96.
5. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium Dioxide Photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews 2000, 1, 1-21.
6. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. nature 1972, 238, 37-38.
7. Chen, T.; Feng, Z.; Wu, G.; Shi, J.; Ma, G.; Ying, P.; Li, C., Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in Situ Fourier Transform Ir and Time-Resolved Ir Spectroscopy. The Journal of Physical Chemistry C 2007, 111, 8005-8014.
8. Wu, N.-L.; Lee, M.-S., Enhanced TiO2Photocatalysis by Cu in Hydrogen Production from Aqueous Methanol Solution. International Journal of Hydrogen Energy 2004, 29, 1601-1605.
9. Kawai, T.; Sakata, T., Photocatalytic Hydrogen Production from Liquid Methanol and Water. Journal of the Chemical Society, Chemical Communications 1980, 694-695.
10. Sakata, T.; Kawai, T., Heterogeneous Photocatalytic Production of Hydrogen and Methane from Ethanol and Water. Chemical Physics Letters 1981, 80, 341-344.
11. Ghamsari, Z. S.; Bashiri, H., Hydrogen Production through Photoreforming of Methanol by Cu (S)/ TiO2 Nanocatalyst: Optimization and Simulation. Surfaces and Interfaces 2020, 21, 100709.
12. Chiarello, G. L.; Aguirre, M. H.; Selli, E., Hydrogen Production by Photocatalytic Steam Reforming of Methanol on Noble Metal-Modified TiO2. Journal of Catalysis 2010, 273, 182-190.
13. Chiarello, G. L.; Forni, L.; Selli, E., Photocatalytic Hydrogen Production by Liquid-and Gas-Phase Reforming of Ch3oh over Flame-Made TiO2 and Au/TiO2. Catalysis Today 2009, 144, 69-74.
14. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-Tio(2)(101). J Am Chem Soc 2014, 136, 602-5.
15. Kavan, L.; Grätzel, M.; Gilbert, S.; Klemenz, C.; Scheel, H., Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. Journal of the American Chemical Society 1996, 118, 6716-6723.
16. Shankar, R.; Shim, W. J.; An, J. G.; Yim, U. H., A Practical Review on Photooxidation of Crude Oil: Laboratory Lamp Setup and Factors Affecting It. Water Research 2015, 68, 304-315.
17. He, H.; Zapol, P.; Curtiss, L. A., Computational Screening of Dopants for Photocatalytic Two-Electron Reduction of CO2 on Anatase (101) Surfaces. Energy & Environmental Science 2012, 5, 6196-6205.
18. Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J.-G.; Lewis, J. P.; Liu, X.; Leonard, S. S.; Manivannan, A., Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society 2010, 132, 6679-6685.
19. Haa, M.-A.; Alexandrova, A. N., Oxygen Vacancies of Anatase (101): Extreme Sensitivity to the Density Functional Theory Method. Journal of chemical theory and computation 2016, 12, 2889-2895.
20. Setvín, M.; Aschauer, U.; Scheiber, P.; Li, Y.-F.; Hou, W.; Schmid, M.; Selloni, A.; Diebold, U., Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101). Science 2013, 341, 988-991.
21. Iyemperumal, S. K.; Deskins, N. A., Activation of Co 2 by Supported Cu Clusters. Physical Chemistry Chemical Physics 2017, 19, 28788-28807.
22. Colón, G.; Maicu, M.; Hidalgo, M. s.; Navío, J., Cu-Doped TiO2 Systems with Improved Photocatalytic Activity. Applied Catalysis B: Environmental 2006, 67, 41-51.
23. Selloni, A., Anatase Shows Its Reactive Side. Nature Materials 2008, 7, 613-615.
24. Lazzeri, M.; Vittadini, A.; Selloni, A., Structure and Energetics of Stoichiometric Tio 2 Anatase Surfaces. Physical Review B 2001, 63, 155409.
25. Sharma, P. K.; Cortes, M. A. L.; Hamilton, J. W.; Han, Y.; Byrne, J. A.; Nolan, M., Surface Modification of TiO2 with Copper Clusters for Band Gap Narrowing. Catalysis Today 2019, 321, 9-17.
26. Yan, Y.; Yu, Y.; Huang, S.; Yang, Y.; Yang, X.; Yin, S.; Cao, Y., Adjustment and Matching of Energy Band of TiO2-Based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of Co2 into Ch4. The Journal of Physical Chemistry C 2017, 121, 1089-1098.
27. Mancuso, A.; Sacco, O.; Sannino, D.; Pragliola, S.; Vaiano, V., Enhanced Visible-Light-Driven Photodegradation of Acid Orange 7 Azo Dye in Aqueous Solution Using Fe-N Co-Doped TiO2. Arabian Journal of Chemistry 2020, 13, 8347-8360.
28. Kaur, N.; Shahi, S. K.; Shahi, J. S.; Sandhu, S.; Sharma, R.; Singh, V., Comprehensive Review and Future Perspectives of Efficient N-Doped, Fe-Doped and (N,Fe)-Co-Doped Titania as Visible Light Active Photocatalysts. Vacuum 2020, 178.
29. Lin, Y.; Jiang, Z.; Zhu, C.; Zhang, R.; Hu, X.; Zhang, X.; Zhu, H.; Lin, S. H., The Electronic Structure, Optical Absorption and Photocatalytic Water Splitting of (Fe + ni)-Codoped TiO2: A Dft +U Study. International Journal of Hydrogen Energy 2017, 42, 4966-4976.
30. Chen, B.-R.; Nguyen, V.-H.; Wu, J. C.; Martin, R.; Kočí, K., Production of Renewable Fuels by the Photohydrogenation of CO2: Effect of the Cu Species Loaded onto TiO2 Photocatalysts. Physical Chemistry Chemical Physics 2016, 18, 4942-4951.
31. Yoong, L.; Chong, F. K.; Dutta, B. K., Development of Copper-Doped TiO2 Photocatalyst for Hydrogen Production under Visible Light. Energy 2009, 34, 1652-1661.
32. López, R.; Gómez, R.; Llanos, M. E., Photophysical and Photocatalytic Properties of Nanosized Copper-Doped Titania Sol–Gel Catalysts. Catalysis Today 2009, 148, 103-108.
33. Amorós-Pérez, A.; Cano-Casanova, L.; Lillo-Ródenas, M. Á.; Román-Martínez, M. C., Cu/ TiO2 Photocatalysts for the Conversion of Acetic Acid into Biogas and Hydrogen. Catalysis Today 2017, 287, 78-84.
34. Seriani, N.; Pinilla, C.; Crespo, Y., Presence of Gap States at Cu/TiO2 Anatase Surfaces: Consequences for the Photocatalytic Activity. The Journal of Physical Chemistry C 2015, 119, 6696-6702.
35. Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Minton, T. K.; Yang, X., Stepwise Photocatalytic Dissociation of Methanol and Water on TiO2 (110). Journal of the American Chemical Society 2012, 134, 13366-13373.
36. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO2 (110). Journal of the American Chemical Society 2013, 135, 10206-10209.
37. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO2 (101). Journal of the American Chemical Society 2014, 136, 602-605.
38. Setvin, M.; Shi, X.; Hulva, J.; Simschitz, T.; Parkinson, G. S.; Schmid, M.; Di Valentin, C.; Selloni, A.; Diebold, U., Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS catalysis 2017, 7, 7081-7091.
39. Lang, X.; Liang, Y.; Sun, L.; Zhou, S.; Lau, W.-M., Interplay between Methanol and Anatase TiO2 (101) Surface: The Effect of Subsurface Oxygen Vacancy. The Journal of Physical Chemistry C 2017, 121, 6072-6080.
40. Zhang, Z.; Bondarchuk, O.; White, J.; Kay, B. D.; Dohnálek, Z., Imaging Adsorbate O− H Bond Cleavage: Methanol on TiO2 (110). Journal of the American Chemical Society 2006, 128, 4198-4199.
41. Shen, M.; Henderson, M. A., Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2. The Journal of Physical Chemistry Letters 2011, 2, 2707-2710.
42. Li, G.; Huang, J.; Chen, J.; Deng, Z.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R., Highly Active Photocatalyst of Cu2O/TiO2 Octahedron for Hydrogen Generation. ACS Omega 2019, 4, 3392-3397.
43. Li, G.; Huang, J.; Deng, Z.; Chen, J.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R., Highly Active Photocatalyst of CuOx Modified TiO2 Arrays for Hydrogen Generation. Crystal Growth & Design 2019, 19, 5784-5790.
44. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical review 1964, 136, B864.
45. Kohn, W.; Sham, L., Quantum Density Oscillations in an Inhomogeneous Electron Gas. Physical Review 1965, 137, A1697.
46. Kohn, W., Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functionals. Reviews of Modern Physics 1999, 71, 1253.
47. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A., First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: The Lda+ U Method. Journal of Physics: Condensed Matter 1997, 9, 767.
48. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, a. J., Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of modern physics 1992, 64, 1045.
49. Alarco, J.; Talbot, P.; Mackinnon, I., Comparison of Functionals for Metal Hexaboride Band Structure Calculations. Modeling and Numerical Simulation of Material Science 2014, 4, 53-69.
50. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J., A Generalized Synchronous Transit Method for Transition State Location. Computational materials science 2003, 28, 250-258.
51. Schlegel, H. B., Geometry Optimization on Potential Energy Surfaces. In Modern Electronic Structure Theory: Part I, World Scientific: 1995; pp 459-500.
52. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical review B 1976, 13, 5188.
53. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical review letters 1996, 77, 3865.
54. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical review B 1990, 41, 7892.
55. Li, R.-Q.; Li, D.-X.; Zhou, D.-T.; Qin, X.-M.; Yan, W.-J., Theoretical Studies on the Electronic Structures and Optical Properties of (Cu, C)-Codoped Rutile TiO2 from Gga+ U Calculations. Journal of Molecular Graphics and Modelling 2019, 90, 104-108.
56. Nolan, M.; Elliott, S. D., The P-Type Conduction Mechanism in Cu 2 O: A First Principles Study. Physical Chemistry Chemical Physics 2006, 8, 5350-5358.
57. Wu, D.; Zhang, Q.; Tao, M., Lsda+ U Study of Cupric Oxide: Electronic Structure and Native Point Defects. Physical Review B 2006, 73, 235206.
58. Carey, J. J.; Nolan, M., Dissociative Adsorption of Methane on the Cu and Zn Doped (111) Surface of CeO2. Applied Catalysis B: Environmental 2016, 197, 324-336.
59. Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S. J.; Bartlett, J.; Nolan, M.; Pillai, S. C., Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences 2018, 8, 2067.
60. Yeh, H.-L.; Tai, S.-H.; Hsieh, C.-M.; Chang, B. K., First-Principles Study of Lithium Intercalation and Diffusion in Oxygen-Defective Titanium Dioxide. The Journal of Physical Chemistry C 2018, 122, 19447-19454.
61. Chen, Q. L.; Li, B.; Zheng, G.; He, K. H.; Zheng, A. S., First-Principles Calculations on Electronic Structures of Fe-Vacancy-Codoped TiO2 Anatase (1 0 1) Surface. Physica B: Condensed Matter 2011, 406, 3841-3846.
62. Wu, H.-C.; Li, S.-H.; Lin, S.-W., Effect of Fe Concentration on Fe-Doped Anatase TiO2 from Gga+ U Calculations. International Journal of Photoenergy 2012, 2012.
63. Zhang, L.; Cole, J. M., Adsorption Properties of P-Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO2 Photoanode Interfaces for Dye-Sensitized Solar Cells. ACS applied materials & interfaces 2014, 6, 15760-15766.
64. Gesesse, G. D.; Wang, C.; Chang, B. K.; Tai, S.-H.; Beaunier, P.; Wojcieszak, R.; Remita, H.; Colbeau-Justin, C.; Ghazzal, M. N., A Soft-Chemistry Assisted Strong Metal–Support Interaction on a Designed Plasmonic Core–Shell Photocatalyst for Enhanced Photocatalytic Hydrogen Production. Nanoscale 2020, 12, 7011-7023.
65. Gao, P.; Yang, L.; Xiao, S.; Wang, L.; Guo, W.; Lu, J., Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2 (101): A Dft Investigation. Materials 2019, 12, 814.
66. Yang, L.; Gao, P.; Lu, J.; Guo, W.; Zhuang, Z.; Wang, Q.; Li, W.; Feng, Z., Mechanism Analysis of Au, Ru Noble Metal Clusters Modified on TiO2 (101) to Intensify Overall Photocatalytic Water Splitting. RSC advances 2020, 10, 20654-20664.
67. Halgren, T. A.; Lipscomb, W. N., The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chemical Physics Letters 1977, 49, 225-232.
68. Segall, M.; Lindan, P. J.; Probert, M. a.; Pickard, C. J.; Hasnip, P. J.; Clark, S.; Payne, M., First-Principles Simulation: Ideas, Illustrations and the Castep Code. Journal of physics: condensed matter 2002, 14, 2717.
69. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson Jr, J. W.; Smith, J. V., Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. Journal of the American Chemical Society 1987, 109, 3639-3646.
70. Hashimoto, K.; Irie, H.; Fujishima, A., TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese journal of applied physics 2005, 44, 8269.
71. Henderson, M. A., A Surface Science Perspective on TiO2 Photocatalysis. Surface Science Reports 2011, 66, 185-297.
72. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical reviews 2014, 114, 9987-10043.
73. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638-641.
74. Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M., On the True Photoreactivity Order of {001},{010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie International Edition 2011, 50, 2133-2137.
75. Concepción, P.; Boronat, M.; García-García, S.; Fernández, E.; Corma, A., Enhanced Stability of Cu Clusters of Low Atomicity against Oxidation. Effect on the Catalytic Redox Process. ACS Catalysis 2017, 7, 3560-3568.
76. de Lara-Castells, M. P.; Hauser, A. W.; Ramallo-López, J. M.; Buceta, D.; Giovanetti, L. J.; López-Quintela, M. A.; Requejo, F. G., Increasing the Optical Response of TiO2 and Extending It into the Visible Region through Surface Activation with Highly Stable Cu5 Clusters. Journal of Materials Chemistry A 2019, 7, 7489-7500.
77. Calaminici, P.; Köster, A. M.; Russo, N.; Salahub, D. R., A Density Functional Study of Small Copper Clusters: Cun (N⩽5). The Journal of Chemical Physics 1996, 105, 9546-9556.
78. Cao, Z.; Wang, Y.; Zhu, J.; Wu, W.; Zhang, Q., Static Polarizabilities of Copper Cluster Monocarbonyls Cu N Co (N= 2− 13) and Selectivity of Co Adsorption on Copper Clusters. The Journal of Physical Chemistry B 2002, 106, 9649-9654.
79. Yang, M.; Jackson, K. A., First-Principles Investigations of the Polarizability of Small-Sized and Intermediate-Sized Copper Clusters. The Journal of chemical physics 2005, 122, 184317.
80. Jafarzadeh, A.; Bal, K. M.; Bogaerts, A.; Neyts, E. C., CO2 Activation on TiO2-Supported Cu5 and Ni5 Nanoclusters: Effect of Plasma-Induced Surface Charging. The Journal of Physical Chemistry C 2019, 123, 6516-6525.
81. Ling, W.; Dong, D.; Shi-Jian, W.; Zheng-Quan, Z., Geometrical, Electronic, and Magnetic Properties of Cunfe (N= 1–12) Clusters: A Density Functional Study. Journal of Physics and Chemistry of Solids 2015, 76, 10-16.
82. Deskins, N. A.; Dupuis, M., Electron Transport Via Polaron Hopping in Bulk TiO2: A Density Functional Theory Characterization. Physical Review B 2007, 75, 195212.
83. Assadi, M. H. N.; Hanaor, D. A., Theoretical Study on Copper′s Energetics and Magnetism in TiO2 Polymorphs. Journal of Applied Physics 2013, 113, 233913.
84. Dharmale, N.; Chaudhury, S.; Mahamune, R.; Dash, D., Comparative Study on Structural, Electronic, Optical and Mechanical Properties of Normal and High Pressure Phases Titanium Dioxide Using Dft. Materials Research Express 2020, 7, 054004.
85. Assadi, M. H. N.; Hanaor, D. A., The Effects of Copper Doping on Photocatalytic Activity at (101) Planes of Anatase TiO2: A Theoretical Study. Applied Surface Science 2016, 387, 682-689.
86. Guo, M.; Du, J., First-Principles Study of Electronic Structures and Optical Properties of Cu, Ag, and Au-Doped Anatase TiO2. Physica B: Condensed Matter 2012, 407, 1003-1007.
87. Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A., Copper and Nitrogen Co-Doped TiO2 Photocatalyst with Enhanced Optical Absorption and Catalytic Activity. Applied Catalysis B: Environmental 2015, 168-169, 333-341.
88. Dashora, A.; Patel, N.; Kothari, D. C.; Ahuja, B. L.; Miotello, A., Formation of an Intermediate Band in the Energy Gap of TiO2 by Cu–N-Codoping: First Principles Study and Experimental Evidence. Solar Energy Materials and Solar Cells 2014, 125, 120-126.
89. Belošević-Čavor, J.; Batalović, K.; Koteski, V.; Radaković, J.; Rangel, C. M., Enhancing Photocatalytic Properties of Rutile TiO2 by Codoping with N and Metals – Ab Initio Study. International Journal of Hydrogen Energy 2015, 40, 9696-9703.
90. Setvin, M.; Shi, X.; Hulva, J.; Simschitz, T.; Parkinson, G. S.; Schmid, M.; Di Valentin, C.; Selloni, A.; Diebold, U., Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS Catal 2017, 7, 7081-7091.
91. Lang, X.; Liang, Y.; Sun, L.; Zhou, S.; Lau, W.-M., Interplay between Methanol and Anatase TiO2 (101) Surface: The Effect of Subsurface Oxygen Vacancy. The Journal of Physical Chemistry C 2017, 121, 6072-6080.
92. Guo, Q.; Zhou, C.; Ma, Z.; Yang, X., Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials 2019, 31, 1901997.
93. Zhang, J.; Peng, C.; Wang, H.; Hu, P., Identifying the Role of Photogenerated Holes in Photocatalytic Methanol Dissociation on Rutile TiO2 (110). ACS Catalysis 2017, 7, 2374-2380. |