博碩士論文 109223050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.191.189.110
姓名 曹昀翔(CAO,YUN-XIANG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 2-丙烯醯胺基-2-甲基丙磺酸共聚之離子高分子之製備
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-19以後開放)
摘要(中) 本論文提供一快速、低成本、高離子含量、高吸水性並可使用常用溶劑即可進行溶解之兩性離子聚合物之合成策略。首先使用2-丙烯醯胺基-2-甲基丙磺酸 (2-acrylamido-2-methylpropane sulfonic acid, AMPS ) 與1-乙烯基-3-己基咪唑溴鹽(1-hexyl-3-vinylimidazolium bromide, Vim6C) 為陰、陽離子單體,製備第一系列兩性離子聚合物-PAMPSIm。藉由調控陰、陽離子單體莫耳比,可開發出不同離子比例之離子高分子。目前PAMPSIm已成功分別合成出AMPS莫耳百分比為 30%、50%、70% 之比例。此系列高分子具有極高之離子交換容量最高可達4.49 meq/g,同時此新開發之離子高分子皆能溶於甲醇,成膜後展現極高之吸水膨潤比 (356%)。
另以2-丙烯醯胺基-2-甲基丙磺酸( AMPS )與丙烯酸羥乙酯( HEA )及乙氧基乙氧基乙基丙烯酸酯( Agisyn™ 2880 )開發第二系列共聚物PAMPSEO,目前鋰化後所得含鋰離子之PAMPSEOLi系列高分子,可作為鋰離子電池之固態電解質。此系列高分子已送往合作實驗室進行摻雜製備電池元件,等待後續電池效能檢測。
摘要(英) This study provides a new strategy for the synthesis of a cost-effective, highly ionic, and highly water uptake ampholytic polymer that is soluble in common organic solvents. The first series of ampholytic polymer, PAMPSIm, was prepared by UV-initiated free-radical polymerization of anionic monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and cationic monomer 1-hexyl-3-methyl imidazolium (Vim6C). Via modulation of the ratio of anion and cation monomers, PAMPSIm has been successfully synthesized with the molar ratios of 30%, 50% and 70% of AMPS monomers. The theoretical ion exchange capacity (IEC) has been calculated and reached up to 4.49 meq/g with a greater water uptake of 356%. All PAMPSIm series polymers are soluble and good film-forming in methanol
The second two series of copolymer, PAMPSEO and PAMPSEO3, were prepared by polymerization of AMPS with hydroxyl ethyl acrylate (HEA) and ethoxyethoxy ethyl acrylate (Agisyn™ 2880), respectively. Further, these copolymers were lithiated to obtain their corresponding lithium salts, PAMPSEOLi and PAMPSEO3Li, to serve as solid electrolytes for lithium ion batteries. Currently, the lithium ion battery performance testing of these lithiated copolymers are in progress.
關鍵字(中) ★ 離子聚合物
★ 聚合物電解質
★ 電解水產氫
★ 鋰電池固態電解質
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
謝誌 iii
目錄 iv
表目錄 ix
圖目錄 x
Scheme xv
Equation xvi
附錄目錄 xviii
重要名詞縮寫對照表 xix
第一章 緒論 1
1-1 前言--離子交換高分子化合物(Ion-exchange Polymer) 2
1-2 再生能源-氫能簡介 4
1-3 氫氣製造技術--水電解法 (Water Splitting by Electrolysis) 8
1-4 鋰離子電池運作原理 15
1-4-1 液態電解質 17
1-4-2 聚合物固態電解質 19
第二章 文獻回顧 21
2-1 離子交換膜簡介 22
2-2 陰離子交換膜 23
2-3 陽離子交換膜 23
2-4 雙極離子交換膜 31
2-5 兩性離子交換膜 35
2-6 鋰離子電池固態電解質 38
第三章 研究動機與目的 44
3-1 研究動機 44
3-2 陰離子交換基團的穩定性 47
3-3 陽離子交換基團的穩定性 54
3-4 實驗室聚合經驗彙整 56
3-5陰離子基團單體選擇 57
3-6陽離子基團單體選擇 62
第四章 實驗與儀器 65
4-1 實驗藥品 66
4-1-1 實驗所使用之化學藥品 66
4-1-2 實驗所使用之溶劑 67
4-2 實驗儀器及技術原理 68
4-2-0 Brightek UV面光源機 68
4-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance);Bruker AVANCE 300 / 500MHz 68
4-2-2 熱重分析儀 (Thermal Gravimetric Analysis, TGA); Mettler Toledo TGA/SDTA 851 69
4-2-3 交流阻抗儀 (Alternating Current Impedance);Autolab Pgstat 30 AUT system 71
4-2-4 吸水膨潤比 (Water Uptake) 與尺寸變化率 (Swelling Ratio) 72
4-2-5 離子交換容量 (Ion Exchange Capacity, IEC) 73
4-2-6 化學穩定性 (Chemical stability) 75
4-3 高分子合成後處理 75
4-3-1 高分子薄膜的製備 75
4-3-2 高分子薄膜的鹼化 75
4-3-3 高分子薄膜的酸化 76
4-4 合成步驟 76
4-4-1 1-hexyl-3-vinylimidazolium bromide (Vim6C) 的合成 76
4-4-2 PAMPS 的合成 78
4-4-3 PNIm 的合成 79
4-4-4 PAMPSNIm 30/70/50的合成 79
4-4-5 PAMPSEO 70/50 的合成 81
4-4-6 PAMPSEOLi 70/50 的合成 82
4-4-7 PAMPSEO3 70/50 的合成 83
4-4-8 PAMPSEO3Li 70/50的合成 84
4-4-9 PAMPSNImH 30/50/70的合成 85
第五章 結果與討論 88
5-1 PAMPSNIm 系列之合成及討論 88
5-1-1 PAMPSNIm 30/70/50 的 1H 核磁共振光譜結構探討 93
5-1-2 PAMPSNIm 傅立葉變換紅外光譜(FTIR )光譜探討 94
5-1-3 熱穩定性 (Thermal Stability) 95
5-1-4 離子交換容量 (Ion Exchange Capacity, IEC) 96
5-1-5 尺寸變化率 (S.R.) 與吸水膨潤比 (W.U.) 97
5-1-6 化學穩定性 (Chemical Stability) 98
5-1-7 離子導電度 (Ion Conductivity) 101
5-3 PAMPSEOLi 系列之合成及討論 101
5-3-1 PAMPSEO 的 1H 核磁共振光譜結構探討 104
5-3-2 熱穩定性 (Thermal Stability) 104
5-3-3 電池元件測試 105
第六章 結論 106
補充資料 109
電解水產氫 109
其他電池 112
阻垢劑 115
參考文獻 116
附錄 123
參考文獻 參考文獻
資料來源NSF Consumer Information Home Water Treatment Devices https://www.nsf.org/knowledge-library/topic/consumer resources/drinking-water
B.A. Adams, E.L. Holmes, J. Sot. Chem. Ind. London , 1935, 54, 1
B.A. Adams, E.L. Holmes, British Patents , 1936, 450, 308-309.
H. L. Wagner and F. A. Long. J. Phys. Chem. 1951, 55, 1512–1527.
資料來源:工研院產科國際所ITIS研究團隊整理(2021/05)
https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=364
圖片來源:金華圖書-燃料電池。
圖片來源:https://www.carbonbrief.org/
圖片來源:日本新能源與產業技術綜合開發機構(NEDO)提出“NEDO 氫能源白皮書”。
Hohenadel, A.; Powers, D.; Wycisk, R.; Adamski, M.; Pintauro, P.; Holdcroft, S. ACS Applied Energy Materials, 2019, 2, 6817-6824.
Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc., 2013, 135, 1167-76.
圖片來源:https://teaching.ch.ntu.edu.tw/nobel/2019
Gadjourova, Z., Andreev, Y., Tunstall, D. et al. I. Nature, 2001, 412, 520–523.
Gadjourova, Z., Andreev, Y., Tunstall, D. et al. I. Nature, 2001, 412, 520–523.
Walther G. Grot, Charles J. Molnar, Paul R. Resnick, US Pat., 1968, US4544458A, No. 3718627.
K. A. Mauritz; R. B. Moore , Chem. Rev., 2004, 104 , 4535-4586.
C. Stone, A. R. Steck and R. D. Lousenberg, US Pat., 1997, No. 5602185.
P. Zschocke; D. Quellmalz, J. Membr. Sci. 1985, 22, 325-332.
Chalida, K.; Bradley, P. L.; Lu, G. Q. M.; Wang, L. Z. J. Membr. Sci. 1985, 22, 325-332.
Wang, F.; Michael, H.; Kim, Y. S.; Thomas, A. Z.; James, E. M. J. Membr. Sci. 2002, 197, 231-242.
Y. Woo.et al. J. Membr. Sci., 2003, 220, 31-45.
Li, L.; Zhang, J.; Wang, Y. X. J. Membr. Sci. 2003, 226, 159-167.
Xing, P. X.; Gilles, P. R.; Michael, D. G.; Serguei, D. M.; Wang, K.; Serge, K. J. Membr. Sci. 2004, 229, 95-106.
Yang, S.; Gong, C.; Guan, R.; Zou, H.; Dai, H. Polym. Adv. Technol. 2006, 17, 360–365.
Wang, K. L.; Yang, L.; Wei, W. X.; Zhang, L.; Chang, G. J. J. Membr. Sci. 2018, 549, 23-27..
Xavier, G.; Mustapha, E. H.; Deborah, J. J.; Jacques, R. Solid State Ionics, 1997, 97, 323-331.
Pietro. S.; Francesco, L.; Antonino, S. A.; Enza, P.; Vincenzo, A. J. Membr. Sci. 2001, 188, 71-78.
Yoshitsugu, S.; Per, E.; Daniel, S. J. Electrochem. Soc. 1996, 143, 1254-1259
Michael R., H.; Cy H., F.; Christopher J., C. Macromolecules 2009, 42, 8316.
(a) Surya Prakash, G. K.; Krause, F. C.; Viva, F. A.; Narayanan, S. R.; Olah, G. A. J. Power Sources, 2011, 196, 7967.
(b) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. R. J. Power Sources 2005, 150, 27.
(c) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem., Int. Ed. 2007, 46, 8024.
(d) Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa,H.; Tanaka, H.; Oguro, K. J. Electrochem. Soc. 2009, 156, B509.
(e) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. J. Power Sources 2005, 150, 27.
(f) Yu, E. H.; Scott, K.; J. Power Sources 2004, 137, 248.
Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H.; Poynton, S. D.; Driscoll, D. J.; Apperley, D. C. Chem. Mater. 2007, 19, 2686.
Hibbs, M. R.; Fujimoto, C. H.; Cornelius ,C. J. Macromolecules 2009, 42, 8316.
Wanga, G.; Wenga, Y.; Chu, D.; Xie, D.; Chen, R. J. Membr. Sci. 2009, 326, 4.
Zhao, Z.; Wang, J.; Li, S.; Zhang, S. J. Power Sources 2011, 196, 4445.
. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 10646.
Li, N.; Zhang, Q.; Wang, C.; Lee, Y. M.; Guiver, M. D. Macromolecules 2012, 45, 2411.
Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
Zhang, F.; Zhang, H.; Qu, C. J. Mater. Chem., 2011, 21, 12744.
Cao, Y.-C.; Wang, X.; Mamlouk, M.; Scott, K. J. Mater. Chem. 2011, 21, 12910.
Li, W.; Fang, J.; Lv, M.; Chen, C.; Chi, X.; Yang, Y.; Zhang, Y. J. Mater. Chem., 2011, 21, 11340.
Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
Clark, T. J.; Roberton, N. J.; Kostalik IV, H. A.; Lobkovsky, E. B.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2009, 131, 12888.
Roberton, N. J.; Kostalik IV, H. A.; Clark, T. J.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2010, 132, 3400.
Noonan, K. J. T.; Hugar, K. M.; Kostalik IV, H. A.; Lobkovsky, E. B.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2012, 134, 18161.
Clark, T. J.; Robertson, N. J.; Kostalik IV, H. A.; Lobkovsky, E. B.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2009, 131, 1288.
Zhao, Y. Feng. L, Gao.J. Zhao, Y. Wang, S. Xie, X. International journal of Hydrogen Energy 2016, 41, 16264-16274.
Jin Ran, Liang Ding. J.Mater.Chem.A, 2018, 6, 17101–17110.
Li, D., Park, E.J., Zhu, W. et al. Nat Energy, 2020, 5, 378–385.
Shen, C.; Wycisk, R.; Pintauro, P. N. Energy & Environmental Science 2017, 10, 1435-1442.
Chabi, S.; Wright, A. G.; Holdcroft, S.; Freund, M. S. ACS Appl Mater. Interfaces, 2017, 9, 26749-26755.
Lee, L.; Kim, D. Journal of Materials Chemistry A, 2021, 9, 5485-5496.
P. P. Sharma, A. Paul, D. N. Srivastava, V. Kulshrestha, ACS Omega, 2018, 3, 9872.
X. Yan, C. Zhang, Z. Dong, B. Jiang, Y. Dai, X. Wu, G. He, ACS Applied Materials & Interfaces, 2018, 10, 32247.
Z. Dong, M. Di, L. Hu, L. Gao, X. Yan, X. Ruan, X. Wu, G. He, Journal of Membrane Science, 2020, 608, 118179.
J., Rolland; E., Poggi; A., Vlad; J.-F., Gohy Polymer, 2015, 68, 344-352.
Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. ACS Appl Mater Interfaces, 2020, 12, 7249-7256.
Wang, G.; Zhu, X.; Rashid, A.; Hu, Z.; Sun, P.; Zhang, Q.; Zhang, L. Journal of Materials Chemistry A 2020, 8, 13351-13363.
Tseng, Y. C.; Hsiang, S. H.; Tsao, C. H.; Teng, Hsisheng; Hou, S. S.; Jan, J. S. Journal of Materials Chemistry A 2021, 9, 5796-5806.
J. Mater. Chem. A, 2021, 9, 4758–4769.
Kim, Yu Seung; Pivovar, Bryan S. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 123–148.
Thomas Weissbach, Renate Hiesgen, Dario R. Dekel. Macromolecules 2018, 51 , 3264-3278.
Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
Cope, A. C.; Mehta, A. S. J. Am. Chem. Soc. 1963, 85, 1949.
(a) Chempath, S.; Boncella. J. M.; Pratt, L.R.; Henson, N.; Pivovar, B.S. J. Phys. Chem. C. 2010, 114, 11977.
(b) Chempath. S.; Einsla, B.R.; Pratt, L.R.; Macomber, C.S.; Boncella, J. M.; Rau, J.A.; Pivovar, B.S. J. Phys. Chem. C. 2008, 112, 3179.
Lin, B.; Dong, H.; Li, Y.; Si, Z.; Gu, F.; Yan, F. Chem. Mater. 2013, 25, 1858.
Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
Cheng, X.; Zhang, J.; Tang, Y.; Song, C.; Shen, J.; Song, D.; Zhang, J. J. Power Sources 2007, 167, 25-31.
Gittlemen, C. S.; Coms, F. D.; Lai, Y. H. Polymer electrolyte fuel cell degrad. 2011, 2, 15-88.
Gubler, L.; Scherer, G. G. Polymer electrolyte fuel cell durability 2009, 6, 133-155.
Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Electrochim. Acta 2006, 51, 5746-5753.
Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells 2010, 6, 973-982.
Okada, T.; Xie, G.; Meeg, M. Electrochim. Acta, 1998, 43, 2141-2155.
Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells, 2010, 6, 973-982.
Chang, Z. H.; Pu, H. T.; Wan, D. C.; Liu, L.; Yuan, J. J.; Yang, Z. L. Polym. Degrad. Stab. 2009, 94, 1206-1212.
C.W. Walker Jr. / Journal of Power Sources. 2002, 110, 144–151.
Y. Shen et al. / Electrochimica Acta. 2007, 52, 6956–6961.
Z. Jiang et al. Journal of Power Sources 2008, 180, 143–153.
Feng Yan, Songmin Shang, Macromolecules 2010, 43, 6398–6405.
Santanakrishnan,Sandhya;Hutchinson, Robin A. Macromolecular Chemistry and Physics, 2013, 214, 1140–1146.
Nurse1 Peke1. Polymer Bulletin. 2004, 51, 307-314.
Jiefeng Pan, Yanyao Tao, Lei Zhao, Xiaohong Yu, Xueting Zhao, Tao Wu, Lifen Liu, Separation and Purification Technology, 2021, 276, 119220,
1383-5866.
Jitkanya Wong, Amrita Basu, Maximilian Wende, Nicholas Boechler, and Alshakim Nelson. ACS Applied Polymer Materials, 2020, 2, 2504-2508.
Wei-Wei Cui, Dong-Yan Tang, Journal of Applied Polymer Science, 2012, 126, 510-518.
M., Carmo; D., L., Fritz; J., Mergel; D., Stolten International Journal of Hydrogen Energy, 2013, 38, 4901-4934.
Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Progress in Natural Science: Materials International 2018, 28, 653-666.
Li, D.; Park, E.J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E. D.; Fujimoto, C.; Chung, H., T.; Kim, Y. S. Nature Energy, 2020, 5, 378-385.
Fu, Q.; Mabilat, C.; Zahid, M.; Brisse, A.; Gautier, L. Energy Environ. Sci., 2010, 3, 1382-1397.
John McMurry, Robert C. Fay, Chemistry, 4th Edition ,Chapter18.
Chem. Soc. Rev., 2021, 50, 10486–10566
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明