博碩士論文 109223059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.219.158.84
姓名 潘俊瑝(Chun-Huang Pan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 N-型可溶性七併環戊二烯併二噻吩有機光電材料之開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本研究主要以DCDTT (dicyclopentadithienothiophene)為新核心開發數種有機光電材料。透過於結構末端上修飾不同的拉電子分子團, 如二氰乙烯基(dicyanovinyl) 與異位溴化之茚酮(brominated indanone),以調控材料能階,製備出4 種小分子材料:INBr2-DCDTT(1)、Gamma-INBr-DCDTT(2)、Delta-INBr-DCDTT(3)與 DCV-DCDTT(4)。
  本研究所開發之材料主要作為非富勒烯受體(non-fullerene acceptors, NFAs)應用於有機太陽能電池的主要吸光層,亦將應用於鈣鈦礦太陽能電池(perovskite solar cells, PSCs)作為添加劑使用。目前INBr2-DCDTT 作為鈣鈦礦太陽能電池製程中反溶劑之添加劑,能有效提升電池元件效能從原先17 %提升至20.59 %,相關成果已於2022 年4 月發表至Journal of Materials Chemistry A。
  由於Gamma-INBr-DCDTT(2)、Delta-INBr-DCDTT(3)兩材料末端具單溴基,恰可作為高分子的其中一個單體單元。此兩材料除探討溴代位置對材料性能的影響,更能做為未來開發高分子光電材料的新單體。這些新材料皆完成NMR 與質譜之結構鑒定,利用UV-Vis 及DPV 測量其光學及電化學性質如HOMO、LUMO 與Eg,再以 DSC及 TGA 證實此材料的高熱穩定性。這些新開發的有機光電材料正進行相關元件測試,期望有良好的效能表現。
摘要(英) A series of new organic optoelectronic materials based on dicyclopentadithienothiophene (DCDTT) were developed and characterized for the applications in organic photovoltaics (OPVs).
Highly fused thiophene-based seven-ring core (DCDTT) was end-capped with various electron-withdrawing groups, such as brominated dicyanomethylene indanones (INBr2, -INBr, and -INBr) and dicyanovinyl (DCV), via Knoevenagel condensation to obtain new final compounds, INBr2-DCDTT (1), -INBr-DCDTT (2), -INBr-DCDTT (3), and DCV-DCDTT (4), respectively.
These newly developed compounds are expected to perform well as non-fullerene acceptors in OPVs as well as in perovskite solar cells (PSCs). The power conversion efficiency of the reported INBr2-DCDTT-based perovskite film has been raised from 17% to 21.39% in PSCs. The presence of carbonyl (C=O) and cyano (C≡N) groups have a good interaction with undercoordinated Pb2 ions and passivate the trap states in the perovskite films; thus, it enhances charge transport at the device interface. The related study has been published on Journal of Materials Chemistry A in April, 2022.
The chemical structures of these newly developed materials were characterized by NMR spectroscopy and mass spectrometry. Further, the optical properties of these compounds were investigated by UV-Vis spectroscopy, electrochemical analyses were analyzed by DPV, and the thermal stabilities were determined by DSC and TGA. Optoelectronic devices made from these newly developed small molecules are under optimization.
關鍵字(中) ★ 有機光伏打電池
★ 鈣鈦礦太陽能電池
★ 添加劑
關鍵字(英) ★ Organic Photovoltaics
★ Perovskite Solar Cells
論文目次 摘 要 i
Abstract ii
謝 誌 iii
目 錄 iv
List of Figures viii
List of Schemes ix
List of Tables x
第一章 緒論 1
1-1 太陽能電池之前言 2
1-2 太陽能電池之概論 3
1-2-1 矽基太陽能電池 5
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 有機太陽能電池 6
1-3 太陽能電池之基本元件與組成 7
1-4 太陽能電池之運作原理(光伏效應) 8
1-4-1 光子吸收(Photon absorption) 9
1-4-2 激子分離與擴散(Exciton dissociation and diffusion) 9
1-4-3 電荷傳輸(Charge-carrier transportation) 10
1-4-4 電荷收集(Charge-carrier collection) 10
1-5 有機光伏打太陽能電池之元件 11
1-6 太陽能電池之元件參數介紹 12
1-6-1 J-V 曲線 (JV Curve) 13
1-6-2 短路電流密度 (Short circuit current density, JSC) 14
1-6-3 開路電壓 (Open circuit voltage, VOC) 14
1-6-4 外部量子效率 (Eternal quantum efficiency, EQE) 15
1-6-5 填充因子 (Fill factor, FF) 15
1-6-6 光電轉換效率(Power conversion efficiency, η, PCE) 15
1-7 有機光伏打太陽能電池材料沿革 16
1-7-1 N型有機光伏打材料(N-type, Acceptor) 16
1-7-2 P型有機光伏打材料(P-type, Donor) 24
1-7-3 有機光伏打材料應用於鈣鈦礦太陽能電池 27
1-8 研究動機與目的 31
第二章 實驗部分 34
2-1 化合物名稱對照 35
2-2 實驗藥品 37
2-2-1實驗所用之化學藥品 37
2-2-2實驗所用之溶劑除水方式 38
2-3 實驗儀器 39
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 39
2-3-2 高解析質譜儀(High Resolution Mass Spectrometer, HRMS);JMS-700 HRMS 40
2-3-3 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 40
2-3-4 紫外光 / 可見光吸收光譜 (Ultraviolet / Visible Spectro -Photometer);HITACHI U-3900 型 41
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA); Perkin Elmer TGA 41
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 41
2-4 合成步驟 42
2-4-1 Dithieno[3,2-b:2′,3′-d]thiophene(6)之一鍋化合成 42
2-4-2 2,6-Bis(tributylstannyl)dithieno[3,2-b:2′,3′-d] thiophene(7)之合成 44
2-4-3 Ethyl 2-bromothiophene-3-carboxylate(10)之合成 45
2-4-4 Diethyl 2,2′-(dithieno[3,2-b:2’,3’-d]thiophene-2,6-diyl)-bis-(thiophene-3-carboxylate) (11) 之合成 47
2-4-5. 1-Bromo-4-((2-hexyldecyl)oxy)benzene(13)之合成 48
2-4-6 4,5-Dibromophthalic anhydride(16) 之合成 49
2-4-7 2-(5,6-dibromo-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (19)之合成 50
2-4-8 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile 之5/6號位單溴化異構物(22)之合成 52
2-4-9 diCHO-DCDTT(23) 之合成 54
2-4-10 INBr2-DCDTT (1) 之合成 57
2-4-11 -IN1BrDCDTT (2) 之合成 58
2-4-12 -IN1Br-DCDTT (3) 之合成 59
2-4-13 DCV-DCDTT (4) 之合成 61
第三章 結果與討論 62
3-1 有機光電材料之光學性質探討 63
3-2 有機光電材料之電化學性質探討 66
3-3 有機光電材料之熱穩定性質分析 69
3-4 有機光電材料之密度泛函理論計算 71
第四章 結論 73
參考文獻 75
附錄 83
參考文獻 Best Research-Cell Efficiency Chart- NREL https://www.nrel.gov/pv/cell-efficiency.html
Advances in crystalline silicon solar cell technology for industrial mass production – npg asia materials https://www.nature.com/articles/am201082
Renewable and Environmentally Sustainable Energy Sources. The Role of Chemistry and New Technological Developments Athanasios Valavanidis
https://www.solarquotes.com.au/panels/photovoltaic/dye-sensitised-cells/
Solution-processed organic solar modules with 10% power conversion efficiency -Yi-Ming Chang
Record Conversion for Perovskite Solar Cells - https://www.printedelectronicsworld.com/articles/21247/record-conversion-for-perovskite-solar-cells
https://www.ossila.com/pages/organic-photovoltaics-introduction
Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474-1476.
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
Li, Y.; Huang,W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.;Wang, P.; Sun, M.; Yuan, G. Molecules. 2022, 27, 1800.
Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.
Sariciftci, N. S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Science. 1992, 258, 1474.
Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841–843
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma,W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293.
Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403-4406.
Singh, R.; Aluicio-Sarduy, E.; Kan, Z.; Ye, T.; MacKenzie, R. C. I.; Keivanidis, P. E. J. Mater. Chem. A 2014, 2, 14348-14353.
Cnops, K., Rand, B., Cheyns, D. et al. Nat Commun 5, 3406 (2014).
Cnops, K., Zango, G., Genoe, J., Heremans, P., Martinez-Diaz, M. V., Torres, T.,and Cheyns, D. J. Am. Chem. Soc. 2015, 137, 8991−8997
Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447–3507.
Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.; Shu, Y.; Singh, T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. Chem. Commun. 2013, 49, 6307-6309.
Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Röhr, J. A.; Tan, C. H.; Collado-Fregoso, E.; Knall. A. C.; Durrant, J. R.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 898-904.
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170-1174.
Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423–9429
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148-7151.
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Joule 2019, 3, 1140–1151.
Li, S.; Zhan, L.; Jin, Y.; Zhou, G.; Lau, T. K.; Qin, R.; Shi, M.; Li, C. Z.; Zhu, H.; Lu, X.; Zhang, F.; Chen, H. Adv. Mater. 2020, 2001160.
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. Sci. Bull. 2020, 65, 272-275.
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. H. Adv. Mater. 2021, 2102420.
Zheng, Z., Wang, J.-Q., Bi, P.-Q., Liu, X.-Y., Zhang, S.-Q., Hou, J.-H. et al., Joule 6, 171–184
Genene, Z.; Mammo, W.;Wang, E.; Andersson, M.R. Recent advances in n-type polymers for all-polymer solar cells. Adv. Mater. 2019, 31, e1807275.
Guo, Y.; Li, Y.; Awartani, O.; Zhao, J.; Han, H.; Ade, H.; Zhao, D.; Yan, H. Adv. Mater. 2016, 28, 8483–8489.
Shi, Y.; Guo, H.; Huang, J.; Zhang, X.; Wu, Z.; Yang, K.; Zhang, Y.; Feng, K.; Woo, H. Y.; Ortiz, R. P.; Zhou, M.; Guo, X. Angew. Chem. Int. Ed. 2020, 132, 14557.
Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Chem. Mater. 2020, 32, 1308–1314.
Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; et al. Adv. Mater. 2020, 32, 2005942.
Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Science. 1995, 270, 1789.
Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22, 4355–4358.
Mühlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884–2889.
Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649–653.
He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics 2012, 6, 591-595.
Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z.A.; Hou, J. Macromolecules 2012, 45, 9611–9617.
Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734–4739.
Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018, 30, 1800868.
Xiong, J.; Jin, K.; Jiang, Y.; Qin, J.; Wang, T.; Liu, J.; Liu, Q.; Peng, H.; Li, X.; Sun, A.; et al. Sci. Bull. 2019, 64, 1573–1576.
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65, 272–275.
Jin, K.; Xiao, Z.; Ding, L. J. Semicond. 2021, 42, 010502.
NREL, Best Research-Cell Efficiencies, 2022, accessed February.
Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong and
J. Huang, Energy Environ. Sci., 2017, 10, 516–522.
H. Choi, X. Liu, H. I. Kim, D. Kim, T. Park and S. Song, Adv. Energy Mater., 2021, 11, 2003829.
Yutian Lei, Youkui Xu, Meng Wang, Ge Zhu, Zhiwen Jin. Small. 2021, 2005495
J.-Y. Seo, T. Matsui, J. Luo, J.-P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, A. Hagfeldt, S. M. Zakeeruddin, U. Steiner, M. Gr¨atzel and A. Abate, Adv. Energy Mater., 2016, 6, 1600767.
W. Zhao, Z. Yao, F. Yu, D. Yang and S. Liu, Adv. Sci., 2018, 5, 1700131.
J. T.-W. Wang, Z. Wang, S. Pathak, W. Zhang, D. W. deQuilettes, F. Wisnivesky-Rocca-Rivarola, J. Huang, P. K. Nayak, J. B. Patel, H. A. Mohd Yusof, Y. Vaynzof, R. Zhu, I. Ramirez, J. Zhang, C. Ducati, C. Grovenor, M. B. Johnston, D. S. Ginger, R. J. Nicholas and H. J. Snaith, Energy Environ. Sci., 2016, 9, 2892–2901.
S. Masi, A. Rizzo, R. Munir, A. Listorti, A. Giuri, C. Esposito Corcione, N. D. Treat, G. Gigli, A. Amassian, N. Stingelin and S. Colella, Adv. Energy Mater., 2017, 7, 1602600.
J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent, Nat. Commun., 2015, 6, 7081.
L. Qin, L. Wu, B. Kattel, C. Li, Y. Zhang, Y. Hou, J. Wu and W.-L. Chan, Adv. Funct. Mater., 2017, 27, 1704173.
M. Qin, J. Cao, T. Zhang, J. Mai, T.-K. Lau, S. Zhou, Y. Zhou, J. Wang, Y.-J. Hsu, N. Zhao, J. Xu, X. Zhan and X. Lu, Adv. Energy Mater., 2018, 8, 1703399.
M. Zhang, S. Dai, S. Chandrabose, K. Chen, K. Liu, M. Qin, X. Lu, J. M. Hodgkiss, H. Zhou and X. Zhan, J. Am. Chem. Soc., 2018, 140, 14938–14944.
C. Song, X. Li, Y. Wang, S. Fu, L. Wan, S. Liu, W. Zhang, W. Song and J. Fang, J. Mater. Chem. A, 2019, 7, 19881–19888.
Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W. W. Yu,
X. Bai, Y. Zhang and Q. Dai, Nanoscale Horiz., 2020, 5, 1574–1585.
S.-Y. Wang, C.-P. Chen, C.-L. Chung, C.-W. Hsu, H.-L. Hsu, T.-H. Wu, J.-Y. Zhuang, C.-J. Chang, H. M. Chen and Y. J. Chang, ACS Appl. Mater. Interfaces, 2019, 11, 40050–40061.
C. Lu, M. Paramasivam, K. Park, C. H. Kim and H. K. Kim, ACS Appl. Mater. Interfaces, 2019, 11, 14011–14022.
Lee, J.; Ko, S. J.; Lee H.; Huang, J.; Zhu, Z.; Seifrid, M.; Vollbrecht, J.; Brus, V. V.; Karki, A.; Wang, H.; Cho, K.; Nguyen, T. Q.; Bazan G. C. ACS Energy Lett. 2019, 4, 1401-1409
Shitong Li, Yanna Sun, Bailin Zhou, Qiang Fu, Lingxian Meng, Yang Yang, Jian Wang, Zhaoyang Yao, Xiangjian Wan, and Yongsheng Chen
ACS Applied Materials & Interfaces. 2021, 13, (34), 40766-40777
Luo, Z.-H.; Liu, T.; Ma, R.-J.; Xiao, Y.-Q.; Zhan, L.-L.; Zhang, G.-Y.; Sun, H.-L.; Ni, F.; Chai, G.-D.; Wang, J.-W.; Zhong, C.; Zou, Y.; Guo, X.-G.; Lu, X.-H.; Chen, H.-Z.; Yan, H.; Yang, C.-L. Adv. Mater. 2020, 2005942
柏際軟體代理公司-Gaussian 03 計算化學軟體使用手冊封面頁。https://www.bockytech.com.tw/products/Gaussian.htm
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明