博碩士論文 109324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.149.247.106
姓名 鄒昊倫(Hao-Lun Tsou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Agaricus blazei Murrill與Lactobacillus buchneri發酵Camellia oleifera及穀物並產高GABA之飲品
(Developing a high GABA tea beverage of Camellia oleifera by a two-stage fermentation of Agaricus blazei Murrill and Lactobacillus buchneri)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 近年來,部分學者對油茶進行研究。經過分析發現,雖然油茶含有兒茶素等具有抗氧化能力的物質,但其咖啡因含量卻遠低於茶葉,且還含有谷氨酸,是合成GABA的原料。不過, GABA茶主要是透過發酵一般茶葉,較少人討論用油茶葉進行發酵。在這項研究中,將以Agaricus blazei Murill TITC1與Lactobacillus buchneri BCE119151作為發酵菌株,並使用油茶葉和穀物作為培養基,進行二階段的發酵。首先,將Agaricus blazei Murill TITC1接種到培養基中以產生高含量的麩氨酸。其次,將Lactobacillus buchneri BCE119151接種到我們用Agaricus blazei Murill TITC1發酵的培養基中,以產生高含量的GABA,藉此評估油茶穀物是否可作為發酵培養基之潛力。
在第一階段探討Agaricus blazei Murill TITC1有搖瓶培養基對黃豆進行發酵可產生更佳的結果,使產物麩胺酸產量達到1.59 g/L,並嘗試加入油茶粉,但卻因油茶中的多酚類物質具抗菌能力,導致發酵效果不盡理想,因此嘗試添加其他種穀物,如大麥與小麥。最終找出最適發酵比例為黃豆粉(4.7 g/L):油茶葉粉(2 g/L):大麥粉(1 g/L):小麥粉(1 g/L),其麩胺酸產量為3.38 g/L。在第二階段探討Lactobacillus buchneri BCE119151可否成功利用Agaricus blazei Murill TITC1發酵培養基,將MSG轉化成GABA,並依序將發酵培養基從豆漿培養基調整至最終的油茶穀物培養基。從最初豆漿培養基中Lactobacillus buchneri BCE119151進行發酵可產GABA含量為25.8 g/L,再來是豆漿穀物培養基可產出GABA含量為34.7 g/L,與最終的油茶穀物培養基則可產出最高62.7 g/L。綜合以上結果,可利用Agaricus blazei Murill TITC1與Lactobacillus buchneri BCE119151進行二階段發酵,將油茶穀物發酵成具高GABA之飲品。
摘要(英) In recent years, some scholars have conducted research about Camellia oleifera. It contains glutamic acid which is a raw material for synthesizing γ-Aminobutyric acid(GABA). However, most of the fermentation of GABA tea focuses on tea leaves, and few people have discussed the oil tea leaves. The aim of this work was to evaluate the potential of C. oleifera as a fermented medium for high GABA beverage. In this study, Agaricus blazei Murill TITC1 and Lactobacillus buchneri BCE119151 will be used as fermentation strains, and oil tea leaves and grains will be used as medium for two-stage fermentation.
In the first stage, A. blazei Murill TITC1 fermented soybean with shaking seed culture can produce better results, so that the glutamic acid yield reached 1.59 g/L. Then, adding C. oleifera powder, but C. oleifera contains the polyphenols that has antibacterial property, so using other grains such as barley and wheat. Then, the optimum fermentation ratio was found as soybean flour (4.7 g/L): C. oleifera flour (2 g/L): Barley flour (1 g/L): Wheat flour (1 g/L), and its glutamic acid yield was 3.38 g/L. In the second stage, it was investigated whether L. buchneri BCE119151 could successfully use A. blazei Murill TITC1 fermentation medium to convert MSG into GABA, and sequentially adjust the fermentation medium from soybean milk medium to the final C. oleifera grain medium. Fermentation of L. buchneri BCE119151 in the initial soymilk medium can yield a GABA content of 25.8 g/L, then the soymilk grain medium can yield a GABA content of 34.7 g/L, and the final C. oleifera grain medium can yield a maximum of 62.7 g /L. Based on the above results, A. blazei Murill TITC1 and L. buchneri BCE119151 can be used for two-stage fermentation to ferment C. oleifera grains into beverages with high GABA.
關鍵字(中) ★ 巴西蘑菇
★ GABA
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 巴西蘑菇(Agaricus blazei Murill) 3
2-1-1 巴西蘑菇基本介紹 3
2-1-2 巴西蘑菇的營養成分組成 3
2-1-3 巴西蘑菇的抗氧化活性物質 4
2-1-4 巴西蘑菇的藥理研究 9
2-2 乳酸菌(Lactic acid bacteria) 11
2-2-1 乳酸菌的基本介紹 11
2-2-2 益生菌的基本介紹 15
2-2-3 乳酸菌發酵飲品 16
2-2-4 Lactobacillus Buchneri介紹 18
2-2-5 乳酸菌的生物活性物質 18
2-3 油茶(Camellia oleifera) 24
2-3-1 油茶基本介紹 24
2-3-2 油茶籽成分介紹 24
2-3-3 油茶葉成分介紹 26
三、 材料與方法實驗架構 28
3-1 實驗架構 28
3-2 實驗材料 29
3-2-1 實驗菌株 29
3-2-2 實驗樣品 30
3-2-3 實驗藥品 30
3-2-4 實驗儀器與設備 32
3-3 實驗方法 34
3-3-1 Lactobacillus buchneri BCE119151菌株保存與活化 34
3-3-2 Lactobacillus buchneri BCE119151液態種瓶培養 34
3-3-3 巴西蘑菇菌株保存及活化甘油保存 35
3-3-4 巴西蘑菇菌株液態搖瓶發酵 35
3-3-5 巴西蘑菇菌絲體發酵−第一階段搖瓶發酵 37
3-3-6 巴西蘑菇菌絲體發酵−第二階段乳酸菌厭氧發酵 38
3-4 分析方法 39
3-4-1 還原糖分析 39
3-4-2 總可溶性糖濃度分析 40
3-4-3 DPPH自由基清除能力(DPPH free radical scavenging activity) 41
3-4-4 GAB及MSG含量分析 42
四、 結果與討論 46
4-1 巴西蘑菇菌絲體發酵最適化條件探討-第一階段發酵 46
4-1-1 TITC1菌種搖瓶種瓶的必須性 46
4-1-2 TITC1菌種之豆漿培養基額外營養源添加條件 48
4-1-3 TITC1菌種之豆漿穀物與油茶培養基發酵動力圖 50
4-2 巴西蘑菇菌絲體與乳酸菌厭氧發酵發酵-第二階段發酵 52
4-2-1 豆漿培養基額外添加成份條件探討 52
4-2-2 油茶豆漿穀物培養基進行乳酸菌發酵 54
4-2-3 2%油茶培養基之乳酸菌發酵 59
五、 結論 61
參考文獻 62
參考文獻 [1] E. J. L. B. M. A. T. G. G. Hetland, “Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer,” Scandinavian Journal of Immunology, p. 363–370, 5 9 2008.
[2] e. a. Masahiro Endo, “Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against,” Biochimica et Biophysica Acta, pp. 669-673, 27 3 2010.
[3] C. U. L. F. G. G. Karnikowski, “Antimicrobial properties of the mushroom Agaricus blazei – integrative review,” Brazilian Journal of Pharmacognosy, pp. 780-786, 3 5 2016.
[4] Y. Z. C. X. F. R. Qi Wei, “Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts,” Food Science & Nutrition, pp. 332-339, 4 11 2019.
[5] K.-Y. J. H. J. P. &. J.-S. P. Soo-Muk Cho, “Analysis of the Chemical Constituents of Agaricus,” Mycobiology, pp. 50-54, 18 3 2008.
[6] Y. Z. &. X. B. Liping Sun, “Effects of boiling and microwaving treatments on nutritionalcharacteristics and antioxidant activities ofAgaricus blazeiMurril,” International Journal of Food Science and Technology, pp. 1209-1215, 10 2 2011.
[7] M. L. L. F. R.-R. J.-M. S. Carlos R Llarena-Hern ́andez, “Optimization of the cultivation conditions formushroom production with European wildstrains ofAgaricus subrufescensand Braziliancultivars,” Journal of Science of Food and Agriculture, pp. 77-84, 24 6 2013.
[8] S. C. K. ,. N. T. R. Z. C. S. M. Komsit Wisitrassameewong, “Agaricus subrufescens: A review,” Saudi Journal of Biological Sciences, pp. 131-146, 14 1 2012.
[9] T. H. T. N. T Mizuno, “Antitumor Activity and Some Properties of Water-soluble Polysaccharides from “Himematsutake,” the Fruiting Body of Agavicus blazei Murill,” Agricultural Biology and Chemistry, pp. 2889-2896, 9 5 1990.
[10] M. F. N. M. Y. A. N Ohno, “Antitumor β-glucan from the cultured fruit body of Agaricus blazei,” Biological and Pharmaceutical Bulletin, pp. 820-828, 12 3 2001.
[11] Z. F. a. C. H. Hang Wang, “The Medicinal Values of Culinary-Medicinal Royal Sun,” Evidence-Based Complementary and Alternative Medicine, 31 10 2013.
[12] B. H. L. M. Y. S. Y. N. &. B. Z. Zhihong Hu, “Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae,” Indian Journal of Microbiology, pp. 270-277, 4 7 2017.
[13] Y. K. Takeshi Takaku, “Isolation of an Antitumor Compound from Agaricus blazei Murill and Its Mechanism of Action,” The Journal of Nutrition, pp. 1409-1413, 1 5 2001.
[14] Z.-Y. S. e. al., “Blazeispirol A from Agaricus blazei Fermentation Product Induces Cell Death in Human Hepatoma Hep 3B Cells through Caspase-Dependent and Caspase-Independent Pathways,” JOURNAL of ARGRICULTURAL AND FOOD CHEMISTRY, pp. 5019-5016, 18 3 2011.
[15] B. W. e. al., “A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells,” International Journal of Biological Macromolecules, pp. 1116-1120, 27 2 2012.
[16] G.-Q. L. &. X.-L. Wang, “Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei,” Applied Microbiology and Biotechnology, pp. 78-83, 1 2 2007.
[17] X. C. Q. W. Z. C. Z. C. Z Xiong, “An overview of the bioactivity of monacolin K / lovastatin,” Food and Chemical Toxicology, 15 6 2019.
[18] R. M. A Upadrasta, “Probiotics and blood pressure: current insights,” Integr Blood Press Control, pp. 33-42, 25 2 2016.
[19] K.-J. H. Y.-J. H. L.-T. W. J.-L. M. Shin-Yu Chen, “Contents of lovastatin, g-aminobutyric acid and ergothioneine in mushroom,” LWT - Food Science and Technology, pp. 274-278, 17 1 2012.
[20] K. e. a. Yoshiyuki, “Isolation of an anti-angiogenic substance from Agaricus blazei Murill: Its antitumor and antimetastatic actions,” Cancer Science, pp. 758-764, 19 8 2005.
[21] e. a. Masahiro Endo, “Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against,” Biochimica et Biophysica Acta, pp. 669-673, 27 4 2010.
[22] P. L. I. e. al., “Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities,” Regulatory Toxicology and Pharmacology, pp. 412-422, 3 2 2011.
[23] B. R. e. al., “Agaricus blazei Murill - immunomodulatory properties and health benefits,” Functional Foods in Health and Disease, pp. 428-447, 17 11 2012.
[24] Q. W. e. al., “Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts,” Food Science & Nutrition, pp. 332-339, 4 11 2019.
[25] M. V. e. al, “Dietary Supplementation With Agaricus Blazei Murill Extract Prevents Diet-Induced Obesity and Insulin Resistance in Rats,” Obesity Biology and Integrated Physiology, 17 4 2013.
[26] F. L. a. L. D. Vuyst, “Lactic acid bacteria as functional starter cultures for the food fermentation industry,” Trends in Food Science & Technology, pp. 67-78, 2004.
[27] F. C. M. e. al., “Lactic acid properties, applications and production: A review,” Trends in Food Science & Technology, pp. 70-83, 2013.
[28] C. R. S. e. al., “The Potential of Probiotics: A Review,” Food Technology and Biotechnology, pp. 413-434, 2010.
[29] P. D. C. a. P. W. O. Conor Slattery, “Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir,” Nutrients, 1 6 2019.
[30] V. O. a. J. L. M. Pariya Darvishzadeh, “Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia),” Food and Bioprocess Technology, pp. 248-260, 23 1 2021.
[31] Y. T. e. al., “Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage,” INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTONARY MICROBIOLOGY, pp. 3111-3116, 6 4 2020.
[32] R. G. Stefan Heinl, “Systems biology of robustness and flexibility: Lactobacillus buchneri—A show case,” Journal of Biotechnology, pp. 61-69, 25 1 2017.
[33] V. K. B. ,. K.-H. B. Radhika Dhakal, “PRODUCTION OF GABA (γ - AMINOBUTYRIC ACID) BY MICROORGANISMS: A REVIEW,” Brazilian Journal of Microbiology, pp. 1230-1241, 7 7 2012.
[34] L. J. REED, “THE OCCURRENCE OF -r-AMINOBUTYRIC ACID IN YEAST EXTRACT; ITS ISOLATION AND IDENTIFICATION,” JOURNAL OF BIOLOGICAL CHEMISTRY, pp. 451-458, 1 8 1949.
[35] S. M. a. D. H. Ida Bagus Agung Yogeswara, “Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis,” Microorganisms, 3 12 2020.
[36] N. T. e. al., “Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees,” Molecules, pp. 6654-6669, 15 4 2015.
[37] J.-H. Y. e. al., “Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria,” Food Chemistry, pp. 616-623, 14 2 2019.
[38] M. S. A. e. al., “Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts,” Food Chemistry, 20 5 2020.
[39] J. e. al, “Isothiocyanates Induce Cell Cycle Arrest, Apoptosis and Mitochondrial Potential Depolarization in HL-60 and Multidrug-resistant Cell Lines,” ANTICANCER RESEARCH, pp. 3375-3386, 30 5 2005.
[40] X. S. e. al., “Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway,” Hindawi, 6 6 2018.
[41] B. Y. e. al., “Review of the roles of conjugated linoleic acid in health and disease,” Journal of Functional Foods, pp. 314-325, 27 3 2015.
[42] S. K. e. al., “Conjugated Linoleic Acid Production from Linoleic Acid by Lactic Acid Bacteria,” Journal of the American Oil Chemists′ Society, pp. 159-163, 1 2 2002.
[43] 楊正釧, “油茶主題館-農業知識入口,” 林業試驗所植物園組, 17 7 2013. [線上]. Available: https://kmweb.coa.gov.tw/subject/subject.php?id=35139. [存取日期: 17 7 2013].
[44] F. L. e. al., “Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications,” Journal of Functional Foods, 7 10 2020.
[45] G.-C. Y. CHIA-PU LEE, “Antioxidant Activity and Bioactive Compounds of Tea Seed (Camellia oleifera Abel.) Oil,” Journal of Agricultural and Food Chemistry, pp. 779-784, 2006.
[46] D. W. e. al., “Anticancer activity and mechanism of total saponins from the residual seed cake of Camellia oleifera Abel. in hepatoma-22 tumor-bearing mice,” Food & Function, pp. 2480-2490, 26 3 2019.
[47] J.-L. H. e. al., “Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity,” International Journal of Food Science and Technology, 10 5 2012.
[48] J. M. e. al., “Fatty acid composition of Camellia oleifera oil,” Journal für Verbraucherschutz und Lebensmittelsicherheit, pp. 9-12, 9 3 2010.
[49] W. X.-h. LAN Wu-tao, “Optimization of purification process of polyphenols from Camellia oleifera Abel leaves and its antioxidant activity in oils,” Journal of Southern Agriculture, pp. 2058-2064, 2019.
[50] S. F. e. al., “Ultrasonic-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves,” International Journal of Biological Macromolecules, pp. 7-12, 22 4 2014.
[51] Y. T. e. al., “Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera),” BMC Plant Biology, 7 8 2015.
[52] L. Z. e. al., “Increased antioxidant activity and improved structural characterization of sulfuric acid-treated stepwise degraded polysaccharides from Pholiota nameko PN-01,” International Journal of Biological Macromolecules, 1 11 2020.
[53] W.-Y. G. Hong Gao, “Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process,” Biochemical Engineering Journal, pp. 202-210, 21 10 2006.
[54] M. B. e. al., “INFLUENCE OF PHYSIOLOGICAL STATE OF INOCULUM ON VOLATILE ACIDITY PRODUCTION BY SACCHAROMYCES CEREVISIAE DURING HIGH SUGAR FERMENTATION,” Journal international des sciences de la vigne et du vin, pp. 191-197, 31 12 2005.
[55] M. A. e. al., “Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharifcation and fermentation,” Biotechnology for Biofuels, 28 2 2019.
[56] A. P.-G. e. al., “Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens,” Scientific Reports - Nature, 18 5 2020.
[57] J. L. e. al., “Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources,” Applied Biochemistry and Biotechnology, pp. 979-990, 19 2 2011.
[58] Y. K. Takeshi Takaku, “Isolation of an Antitumor Compound from Agaricus blazei Murill and Its Mechanism of Action,” The Journal of nutrition, pp. 1409-1413, 1 5 2001.
[59] X. C. e. al., “New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA,” Arabian Journal of Chemistry, pp. 815-826, 28 12 2017.
[60] X. X. e. al., “Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components,” Future Medicinal Chemistry, 10 8 2017.
[61] A. P. V. e. al., “Bio-protective effects of glucosinolates – A review,” LWT - Food Science and Technology, pp. 1561-1572, 18 5 2009.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明