參考文獻 |
[1] E. J. L. B. M. A. T. G. G. Hetland, “Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer,” Scandinavian Journal of Immunology, p. 363–370, 5 9 2008.
[2] e. a. Masahiro Endo, “Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against,” Biochimica et Biophysica Acta, pp. 669-673, 27 3 2010.
[3] C. U. L. F. G. G. Karnikowski, “Antimicrobial properties of the mushroom Agaricus blazei – integrative review,” Brazilian Journal of Pharmacognosy, pp. 780-786, 3 5 2016.
[4] Y. Z. C. X. F. R. Qi Wei, “Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts,” Food Science & Nutrition, pp. 332-339, 4 11 2019.
[5] K.-Y. J. H. J. P. &. J.-S. P. Soo-Muk Cho, “Analysis of the Chemical Constituents of Agaricus,” Mycobiology, pp. 50-54, 18 3 2008.
[6] Y. Z. &. X. B. Liping Sun, “Effects of boiling and microwaving treatments on nutritionalcharacteristics and antioxidant activities ofAgaricus blazeiMurril,” International Journal of Food Science and Technology, pp. 1209-1215, 10 2 2011.
[7] M. L. L. F. R.-R. J.-M. S. Carlos R Llarena-Hern ́andez, “Optimization of the cultivation conditions formushroom production with European wildstrains ofAgaricus subrufescensand Braziliancultivars,” Journal of Science of Food and Agriculture, pp. 77-84, 24 6 2013.
[8] S. C. K. ,. N. T. R. Z. C. S. M. Komsit Wisitrassameewong, “Agaricus subrufescens: A review,” Saudi Journal of Biological Sciences, pp. 131-146, 14 1 2012.
[9] T. H. T. N. T Mizuno, “Antitumor Activity and Some Properties of Water-soluble Polysaccharides from “Himematsutake,” the Fruiting Body of Agavicus blazei Murill,” Agricultural Biology and Chemistry, pp. 2889-2896, 9 5 1990.
[10] M. F. N. M. Y. A. N Ohno, “Antitumor β-glucan from the cultured fruit body of Agaricus blazei,” Biological and Pharmaceutical Bulletin, pp. 820-828, 12 3 2001.
[11] Z. F. a. C. H. Hang Wang, “The Medicinal Values of Culinary-Medicinal Royal Sun,” Evidence-Based Complementary and Alternative Medicine, 31 10 2013.
[12] B. H. L. M. Y. S. Y. N. &. B. Z. Zhihong Hu, “Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae,” Indian Journal of Microbiology, pp. 270-277, 4 7 2017.
[13] Y. K. Takeshi Takaku, “Isolation of an Antitumor Compound from Agaricus blazei Murill and Its Mechanism of Action,” The Journal of Nutrition, pp. 1409-1413, 1 5 2001.
[14] Z.-Y. S. e. al., “Blazeispirol A from Agaricus blazei Fermentation Product Induces Cell Death in Human Hepatoma Hep 3B Cells through Caspase-Dependent and Caspase-Independent Pathways,” JOURNAL of ARGRICULTURAL AND FOOD CHEMISTRY, pp. 5019-5016, 18 3 2011.
[15] B. W. e. al., “A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells,” International Journal of Biological Macromolecules, pp. 1116-1120, 27 2 2012.
[16] G.-Q. L. &. X.-L. Wang, “Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei,” Applied Microbiology and Biotechnology, pp. 78-83, 1 2 2007.
[17] X. C. Q. W. Z. C. Z. C. Z Xiong, “An overview of the bioactivity of monacolin K / lovastatin,” Food and Chemical Toxicology, 15 6 2019.
[18] R. M. A Upadrasta, “Probiotics and blood pressure: current insights,” Integr Blood Press Control, pp. 33-42, 25 2 2016.
[19] K.-J. H. Y.-J. H. L.-T. W. J.-L. M. Shin-Yu Chen, “Contents of lovastatin, g-aminobutyric acid and ergothioneine in mushroom,” LWT - Food Science and Technology, pp. 274-278, 17 1 2012.
[20] K. e. a. Yoshiyuki, “Isolation of an anti-angiogenic substance from Agaricus blazei Murill: Its antitumor and antimetastatic actions,” Cancer Science, pp. 758-764, 19 8 2005.
[21] e. a. Masahiro Endo, “Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against,” Biochimica et Biophysica Acta, pp. 669-673, 27 4 2010.
[22] P. L. I. e. al., “Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities,” Regulatory Toxicology and Pharmacology, pp. 412-422, 3 2 2011.
[23] B. R. e. al., “Agaricus blazei Murill - immunomodulatory properties and health benefits,” Functional Foods in Health and Disease, pp. 428-447, 17 11 2012.
[24] Q. W. e. al., “Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts,” Food Science & Nutrition, pp. 332-339, 4 11 2019.
[25] M. V. e. al, “Dietary Supplementation With Agaricus Blazei Murill Extract Prevents Diet-Induced Obesity and Insulin Resistance in Rats,” Obesity Biology and Integrated Physiology, 17 4 2013.
[26] F. L. a. L. D. Vuyst, “Lactic acid bacteria as functional starter cultures for the food fermentation industry,” Trends in Food Science & Technology, pp. 67-78, 2004.
[27] F. C. M. e. al., “Lactic acid properties, applications and production: A review,” Trends in Food Science & Technology, pp. 70-83, 2013.
[28] C. R. S. e. al., “The Potential of Probiotics: A Review,” Food Technology and Biotechnology, pp. 413-434, 2010.
[29] P. D. C. a. P. W. O. Conor Slattery, “Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir,” Nutrients, 1 6 2019.
[30] V. O. a. J. L. M. Pariya Darvishzadeh, “Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia),” Food and Bioprocess Technology, pp. 248-260, 23 1 2021.
[31] Y. T. e. al., “Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage,” INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTONARY MICROBIOLOGY, pp. 3111-3116, 6 4 2020.
[32] R. G. Stefan Heinl, “Systems biology of robustness and flexibility: Lactobacillus buchneri—A show case,” Journal of Biotechnology, pp. 61-69, 25 1 2017.
[33] V. K. B. ,. K.-H. B. Radhika Dhakal, “PRODUCTION OF GABA (γ - AMINOBUTYRIC ACID) BY MICROORGANISMS: A REVIEW,” Brazilian Journal of Microbiology, pp. 1230-1241, 7 7 2012.
[34] L. J. REED, “THE OCCURRENCE OF -r-AMINOBUTYRIC ACID IN YEAST EXTRACT; ITS ISOLATION AND IDENTIFICATION,” JOURNAL OF BIOLOGICAL CHEMISTRY, pp. 451-458, 1 8 1949.
[35] S. M. a. D. H. Ida Bagus Agung Yogeswara, “Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis,” Microorganisms, 3 12 2020.
[36] N. T. e. al., “Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees,” Molecules, pp. 6654-6669, 15 4 2015.
[37] J.-H. Y. e. al., “Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria,” Food Chemistry, pp. 616-623, 14 2 2019.
[38] M. S. A. e. al., “Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts,” Food Chemistry, 20 5 2020.
[39] J. e. al, “Isothiocyanates Induce Cell Cycle Arrest, Apoptosis and Mitochondrial Potential Depolarization in HL-60 and Multidrug-resistant Cell Lines,” ANTICANCER RESEARCH, pp. 3375-3386, 30 5 2005.
[40] X. S. e. al., “Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway,” Hindawi, 6 6 2018.
[41] B. Y. e. al., “Review of the roles of conjugated linoleic acid in health and disease,” Journal of Functional Foods, pp. 314-325, 27 3 2015.
[42] S. K. e. al., “Conjugated Linoleic Acid Production from Linoleic Acid by Lactic Acid Bacteria,” Journal of the American Oil Chemists′ Society, pp. 159-163, 1 2 2002.
[43] 楊正釧, “油茶主題館-農業知識入口,” 林業試驗所植物園組, 17 7 2013. [線上]. Available: https://kmweb.coa.gov.tw/subject/subject.php?id=35139. [存取日期: 17 7 2013].
[44] F. L. e. al., “Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications,” Journal of Functional Foods, 7 10 2020.
[45] G.-C. Y. CHIA-PU LEE, “Antioxidant Activity and Bioactive Compounds of Tea Seed (Camellia oleifera Abel.) Oil,” Journal of Agricultural and Food Chemistry, pp. 779-784, 2006.
[46] D. W. e. al., “Anticancer activity and mechanism of total saponins from the residual seed cake of Camellia oleifera Abel. in hepatoma-22 tumor-bearing mice,” Food & Function, pp. 2480-2490, 26 3 2019.
[47] J.-L. H. e. al., “Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity,” International Journal of Food Science and Technology, 10 5 2012.
[48] J. M. e. al., “Fatty acid composition of Camellia oleifera oil,” Journal für Verbraucherschutz und Lebensmittelsicherheit, pp. 9-12, 9 3 2010.
[49] W. X.-h. LAN Wu-tao, “Optimization of purification process of polyphenols from Camellia oleifera Abel leaves and its antioxidant activity in oils,” Journal of Southern Agriculture, pp. 2058-2064, 2019.
[50] S. F. e. al., “Ultrasonic-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves,” International Journal of Biological Macromolecules, pp. 7-12, 22 4 2014.
[51] Y. T. e. al., “Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera),” BMC Plant Biology, 7 8 2015.
[52] L. Z. e. al., “Increased antioxidant activity and improved structural characterization of sulfuric acid-treated stepwise degraded polysaccharides from Pholiota nameko PN-01,” International Journal of Biological Macromolecules, 1 11 2020.
[53] W.-Y. G. Hong Gao, “Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process,” Biochemical Engineering Journal, pp. 202-210, 21 10 2006.
[54] M. B. e. al., “INFLUENCE OF PHYSIOLOGICAL STATE OF INOCULUM ON VOLATILE ACIDITY PRODUCTION BY SACCHAROMYCES CEREVISIAE DURING HIGH SUGAR FERMENTATION,” Journal international des sciences de la vigne et du vin, pp. 191-197, 31 12 2005.
[55] M. A. e. al., “Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharifcation and fermentation,” Biotechnology for Biofuels, 28 2 2019.
[56] A. P.-G. e. al., “Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens,” Scientific Reports - Nature, 18 5 2020.
[57] J. L. e. al., “Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources,” Applied Biochemistry and Biotechnology, pp. 979-990, 19 2 2011.
[58] Y. K. Takeshi Takaku, “Isolation of an Antitumor Compound from Agaricus blazei Murill and Its Mechanism of Action,” The Journal of nutrition, pp. 1409-1413, 1 5 2001.
[59] X. C. e. al., “New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA,” Arabian Journal of Chemistry, pp. 815-826, 28 12 2017.
[60] X. X. e. al., “Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components,” Future Medicinal Chemistry, 10 8 2017.
[61] A. P. V. e. al., “Bio-protective effects of glucosinolates – A review,” LWT - Food Science and Technology, pp. 1561-1572, 18 5 2009. |