博碩士論文 107324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.116.50.244
姓名 吳馥聿(Wu,Fu-Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討遠紅外線陶瓷對 Lactobacillus plantarum BCRC15478發酵豆漿的影響
(Investigating the effect of far-infrared-emitting Ceramic material on soymilk fermented by Lactobacillus plantarum BCRC15478)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 特殊陶瓷或金屬材料製作出的物品釋放出遠紅外線,使得大水團分子變成小水團分子(Micro-clustered water)。近期有學者指出經過遠紅外線共振的小分子水對於人體排毒與身體健康有顯著的影響,遠紅外線抑制細菌和病毒的對於人體影響相較於使用藥物等方式較為無害。在病毒與細菌環視的生活環境中,各種提升免疫力或抗病毒的商品如雨後春筍般的問世。而小分子水的抑制細菌效果仍是非常擁有潛力的方法,擁有許多可以探討與挖掘的潛力。
Lactobacillus sp.對於人類擁有長久的發酵食品歷史,像是液態優酪乳、固態奶酪、德國酸菜、啤酒、葡萄酒與泡菜等等。幾乎每個人都有食用過Lactobacillus sp.所產出的食品,而Lactobacillus plantarum不只在食品方面與人類有關,在人體中的唾液、腸道與陰道中都可以觀察到它的身影。使用這與人類有高度關聯的種類可以充分地觀察到小分子水,對於人類生活周遭的影響。豆漿又被稱為素食牛奶,是華人長久以來實用的飲品,擁有高營養價值,內含蛋白質與有益於身體的微量成分如:大豆皂甙、異黃酮、卵磷脂等。
本研究結果發現,Lactobacillus plantarum BCRC15478受到與遠紅外線陶瓷釋放的遠紅外線影響,小分子豆漿總乳酸產量、總蛋白質消耗量、抗氧化活性整體皆受到抑制,且濃度低影響越大,但是單位菌體產乳酸量則是以小分子豆漿環境較佳。總得來說,L. plantarum受遠紅外線影響在小分子豆漿中單位乳酸產量較高,若能以二次發酵的方式在第一階段正常發酵產生大量的活菌數,第二階段以遠紅外線影響發酵過程的話,製作出的豆漿可能同時ㄐ具有大量活菌以及更多的營養價值。
摘要(英) Small-clustered water is an article made of special ceramic or metal materials that emits far infrared rays, turning large-clustered water into small-clustered water. Recently, some scholars pointed out that the small molecule water that undergoes far-infrared resonance has a significant effect on human detoxification and health. The effect of far-infrared rays on the human body by inhibiting bacteria and viruses is more harmless than using drugs. The anti-bacterial effect of small molecule water is a very potential method, and there are many potentials that can be explored and tapped.
Lactobacillus sp. has a long history of fermented foods for humans, such as liquid yogurt, solid cheese and kimchi. Almost everyone has taken the food produced by Lactobacillus sp., and L. plantarum is not only related to humans in terms of food, but it can be observed in the the human body. Using this type that is highly related to humans can fully observe the impact of small-clustered water on human life.
The results of this study found that Lactobacillus plantarum BCRC15478 was affected by the far infrared rays released from far infrared ceramics, and the total lactic acid production, total protein consumption, and antioxidant activity of small-molecule soybean milk were inhibited as a whole, and the lower the concentration, the greater the impact, but the unit bacteria The production of lactic acid is better in the environment of small molecular soy milk. In general, L. plantarum is affected by far infrared rays and has a higher unit lactic acid yield in small-molecule soymilk. If it can be fermented normally in the first stage by secondary fermentation, a large number of viable bacteria can be produced, and the second stage is affected by far infrared rays. In the process, the soy milk produced may have a large number of live bacteria and more nutritional value at the same time.
關鍵字(中) ★ 發酵
★ 植物乳桿菌
★ 小分子團簇
關鍵字(英)
論文目次 中文摘要.........I
Abstract.........II
誌謝.........III
目錄.........IV
圖目錄.........VII
一、緒論.........1
1-1研究動機.........1
1-2研究目的.........2
二、文獻回顧.........3
2-1遠紅外線.........3
2-1-1遠紅外線介紹.........3
2-1-2遠紅外線生物學效應.........5
2-1-3遠紅外線陶瓷材料介紹.........6
2-1-4遠紅外線陶瓷材料形成小水團分子機制.........6
2-2植物乳桿菌(Lactobacillus plantarum).........8
2-2-1植物乳桿菌介紹.........8
2-2-2植物乳桿菌產品與應用.........8
2-2-3植物乳桿菌對人體益處.........9
三、材料與方法.........10
3-1實驗架構.........10
3-2實驗菌株.........11
3-3實驗材料.........11
3-4實驗藥品.........12
3-5實驗儀器.........13
3-6實驗方法.........14
3-6-1菌株保存與培養.........14
3-6-2實驗步驟.........15
3-7分析方法.........16
3-7-1成長曲線與pH值.........16
3-7-2乳酸定量分析.........17
3-7-3蛋白質定量分析.........18
3-7-4總多酚類化合物定量分析.........19
3-7-5抗氧化能力分析.........20
四、實驗結果.........21
4-1遠紅外線陶瓷對Lactobacillus plantarum BCRC15478發酵豆漿隨時間影響.........21
4-2遠紅外線陶瓷對Lactobacillus plantarum BCRC15478發酵豆漿隨濃度影響.........23
4-2-1發酵後豆漿外觀變化.........23
4-2-2L. plantarum成長曲線與pH值.........27
4-2-3乳酸.........32
4-2-4蛋白質.........34
4-2-5總多酚類化合物.........37
4-2-6抗氧化能力(DPPH自由基清除能力).........39
五、結論與討論.........40
六、參考文獻.........42
參考文獻 [1]Vatansever, F. and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications”, Photonics Lasers Med, 4, p. 255-266, 2012.
[2]Moschandreou, T.E., “The Effects of the Far-Infrared Ray (FIR) Energy Radiation on Living Body”, Blood Cell - An Overview of Studies in Hematology, InTech, Croatia, 2012.
[3]Lee, M.S., et al., “Far-infrared absorption of water clusters by first-principles molecular dynamics”, J Chem Phys, 128(21), p. 214506, 2008.
[4]Zhou, L., et al., “Mn4+, Bi3 + Co-Doped K0.5La0.5SrMgTeO6 Far-Red Emitting Phosphor”, ECS Journal of Solid State Science and Technology, 10(9), p. 096009, 2021.
[5]Xiang, J., et al., “Far red and near infrared double-wavelength emitting phosphor Gd 2 ZnTiO 6 : Mn 4+ , Yb 3+ for plant cultivation LEDs”, Dyes and Pigments, 154, p. 257-262, 2018.
[6]黃柏銘, 嚴正傑, 和李忠仁, 「針灸治療與紅外線照射對於2型糖尿病患者的臨床研究」, 台灣中醫臨床醫學雜誌,13(2), 128~133 頁, 2007。
[7]林永昇等, 「高效能遠紅外線陶瓷粉末之材料特性與生物效應」, 科儀新知, 28(6), 60~67 頁, 2007。
[8]Yerlikaya, F., et al., “Formation of quantum water in nanoparticulate systems”, Journal of Drug Delivery Science and Technology, 63, p. 102456, 2021.
[9]Li, R., et al., “Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster”, Journal of Molecular Liquids, 126(1-3), p. 14-18, 2006.
 [10]Leung, T.K., J.C. Yang, and Y.S. Lin, “The Physical, Chemical and Biological Effects by Room Temperature Ceramic Far‐infrared Ray Emitting Material Irradiated Water: A Pilot Study”, Journal of the Chinese Chemical Society, 59(5), p. 589-597, 2012.
[11]Yokono, T., et al., “Infra-red spectroscopic study of structural change of liquid water induced by sunlight irradiation”, Water, 1, p. 29-34, 2009.
[12]Leung, T., et al., “The influence of ceramic far-infrared ray (cFIR) irradiation on water hydrogen bonding and its related chemo-physical properties”, Hydrol Current Res, 5(174), p. 2, 2014.
[13]Liu, J., et al., “Investigation on the mechanism of water activated via tourmaline powder”, Journal of Molecular Liquids, 332, p. 115854, 2021.
[14] Carr, F.J., D. Chill, and N. Maida, “The lactic acid bacteria: a literature survey”, Crit Rev Microbiol, 28(4), p. 281-370, 2002.
[15]Zheng, J., et al., “A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae”, Int J Syst Evol Microbiol, 70(4), p. 2782-2858, 2020.
[16]Duar, R.M., et al., “Lifestyles in transition: evolution and natural history of the genus Lactobacillus”, FEMS Microbiology Reviews, 41(Supp_1), p. S27-S48, 2017.
[17]Martino, M.E., et al., “Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats”, Environ Microbiol, 18(12), p. 4974-4989, 2016.
[18]Giraud, E., B. Lelong, and M. Raimbault, “Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum”, Applied Microbiology and Biotechnology, 36(1), p. 96-99, 1991.
[19]Matejčeková, Z., et al., “Characterization of the growth of Lactobacillus plantarum in milk in dependence on temperature”, Acta Chimica Slovaca, 9(2), p. 104-108, 2016.
[20]Dhewa, T., S. Pant, and V. Mishra, “Development of freeze dried synbiotic formulation using a probiotic strain of Lactobacillus plantarum”, J Food Sci Technol, 51(1), p. 83-9, 2014.
[21]Kim, J.H., D.E. Block, and D.A. Mills, “Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass”, Appl Microbiol Biotechnol, 88(5), p. 1077-85, 2010.
[22]Nybom, S.M.K., et al., “Effect of Glucose in Removal of Microcystin-LR by Viable Commercial Probiotic Strains and Strains Isolated from Dadih Fermented Milk”, Journal of Agricultural and Food Chemistry, 56(10), p. 3714-3720, 2008.
[23]Song, Y.S., et al., “Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products”, Food Chem, 108(2), p. 571-81, 2008.
[24]Kim, I.S., et al., “Oral Administration of β-Glucan and Lactobacillus plantarum [Alleviates Atopic Dermatitis-Like Symptoms”, J Microbiol Biotechnol, 29(11), p. 1693-1706, 2019.
[25]Liu, Y.W., et al., “Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities”, Int Immunopharmacol, 11(12), p. 2159-66, 2011.
[26]Han, Y., et al., “A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis”, Pediatr Allergy Immunol, 23(7), p. 667-73, 2012.
[27]Šeme, H., et al., “Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential”, Benef Microbes, 6(3), p. 369-79, 2015.
[28]Costabile, A., et al., “An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults”, PLoS One, 12(12), p. e0187964, 2017.
[29] Wu, C.C., et al., “Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice”, Evid Based Complement Alternat Med, 2015, p. 391767, 2015.
[30]Smith, P.K., et al., “Measurement of protein using bicinchoninic acid”, Analytical Biochemistry, 150(1), p. 76-85, 1985.
[31]Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent”, Methods in Enzymology, 299, p. 152-178, 1999.
[32]Raob, H.H.a.N., “Changes in Macronutrient, Total Phenolic and Anti-Nutrient Contents during Preparation of Tempeh”, Journal of Nutrition & Food Sciences, 04(03), 2014.
[33]Molyneux, P., “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity”, Songklanakarin J. sci. technol, 26(2), p. 211-219, 2004.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明