博碩士論文 109324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.119.117.77
姓名 徐沛彤(Pei-Tong Syu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(A Modified Empirical Seeding Equation for Crystal Size Control in a Seeded Batch Cooling Crystallization of D-mannitol in Water)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 種晶技術在批次結晶中是一種很有效的方法用來控制晶體的大小與尺寸均一性,而晶體大小的控制對於後續過濾及乾燥製程操作有很大的影響。在許多種晶技術相關的研究中,經驗方程式被用來理解晶種尺寸、晶種添加量與晶體尺寸間的關係,然而此關係式過於理想與簡略,且許多製程控制或操作參數皆被忽略。本研究的目的是透過不同參數的實驗設計來改善種晶方程式,操作溫度與過飽和度將納入考量來推導出甘露醇系統在批次冷卻結晶中種晶的方程式,用作預測不同實驗的晶體尺寸。為瞭解甘露醇在水中的結晶情形,第一部分的研究透過不同初始過飽和度: 1.45, 1.38, 1.32 與 1.25 所獲得的成核誘發時間,甘露醇的初級成核結晶動力學與熱力學參數例如:界面能、臨界Gibbs能障、成核速率、成核臨界尺寸可藉由經典成核理論來求得。第二部份的實驗中,我們調整三種種晶參數進行晶種尺寸為88 – 125 μm的批次冷卻結晶實驗:(1)冷卻溫度範圍,(2)晶種添加量,和(3)由溫度影響的過飽和度。實驗結果發現,在較低的冷卻溫度範圍30 至 15 °C以及25 至 5 °C時,晶體添加量為1, 3, 及5 重量百分比皆得到單一峰的粒徑分佈且甘露醇平均尺寸約200 μm。本研究假設出的種晶經驗方程式為: Lp/Ls =((1+Cs)/Cs )^(1/n) ,其中n=A′(C0-C* ) exp⁡((-Ea)/kT),由同一冷卻範圍且不同晶種添加量的實驗可得n值。實驗結果得到n值分別為5.27,7.81及11.98 當冷卻範圍為35 至 25 °C ,30 至 15 °C及25 至 5 °C。由n值可計算出甘露醇系統中二次成核的活化能Ea = 172.55×10^-22 焦耳/晶核與指數前因子A′= 1.41×10^-3 毫升溶液/毫克。甘露醇在水中的種晶經驗方程式成功地被建立,並且在後續實驗調整晶種尺寸為44 – 88 μm及125 – 177 μm的實驗中被良好地驗證。
摘要(英) The seeding technique is an effective method to control the size and size uniformity of crystals in the batch cooling crystallization. Crystal size has a great influence on the downstream process such as filtration and drying. In many studies related to seeding, a simple empirical equation based on mass balance is used to understand the relationship between seed crystal size, seed loading, and crystal size. However, this relationship is too ideal and simplified, and many process control or operation parameters are ignored. The purpose of this study is to modify the seeding equation by designing experiments with different operating parameters. Temperature cooling range and supersaturation will be taken into consideration to derive an equation for seeding in the D-mannitol system in batch cooling crystallization, which is used to predict the crystal size for different experiments. To understand the crystallization mechanism of D-mannitol in water, the first part of the study was conducted through the nucleation induction period obtained with different initial degrees of supersaturation of: 1.45, 1.38, 1.32 and 1.25. The kinetics and thermodynamic parameters of the primary nucleation D-mannitol system such as interface energy, critical Gibbs energy barrier, nucleation rate, and critical size of nucleation can be obtained by Classical Nucleation Theory (CNT). In the second part of the experiment, we adjusted the three seeding parameters to conduct the batch cooling crystallization experiments with seed crystal sizes ranging from 88 to 125 μm: (1) cooling temperature range, (2) seed loading, and (3) supersaturation. The experimental results found that at the lower temperature cooling ranges of 30 to 15 °C and 25 to 5 °C with seed loading of 1, 3, and 5 wt% all obtained a uni-modal size distribution of D-mannitol crystal and the mean crystal size was about 200 μm. The modified seeding empirical equation was: Lp/Ls =((1+Cs)/Cs )^(1/n), where n=A′(C0-C* ) exp⁡((-Ea)/kT). The values of n could be obtained from experiments with the same temperature cooling range with different seed loadings. The experimental results showed that n was 5.27, 7.81, and 11.98 with the temperature cooling ranges of 35 to 25 °C, 30 to 15 °C, and 25 to 5 °C, respectively. From the value of n, the activation energy of secondary nucleation in the D-mannitol system could be calculated as Ea = 172.55 × 10-22 J·nucleus-1 and the exponential pre-factor A′ = 1.41 × 10-3 mL of solution/mg. The empirical equation for D-mannitol seeding in water was successfully established and well-validated in subsequent experiments adjusting the seed sizes to 44 – 88 μm and 125 – 177 μm.
關鍵字(中) ★ 甘露醇
★ 種晶技術
★ 批次冷卻結晶
關鍵字(英) ★ D-mannitol
★ Seeding Technique
★ Batch Cooling Crystallization
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xiv
List of Schemes xvi
Chapter 1 Introduction 1
1.1 Seeding Technique for Batch Cooling Crystallization 1
1.2 Brief Introduction of D-mannitol 4
1.3 Polymorphism of D-mannitol 6
1.4 Production of D-mannitol in Industry 9
1.5 Conceptual Framework 11
Chapter 2 Experimental Section 13
2.1 Materials 13
2.1.1 Chemicals 13
2.1.2 Solvents 13
2.2 Experimental Methods 15
2.2.1. Initial Solvent Screening of D-mannitol 15
2.2.2 Solubility Measurement of D-mannitol 16
2.2.3 Cooling Crystallization of D-mannitol 17
2.2.4 Calibration Line of Refractive Index for D-mannitol Solution 18
2.2.5 Solubility Curve of D-mannitol in Water by Refractometry 19
2.2.6 Induction Time Profile of Different Initial Supersaturation Ratios, S0’s 20
2.2.7 Experiment Design for Seeding in Batch Cooling Crystallization 22
2.2.7.1 Preparation of the Seed Crystals 22
2.2.7.2 Seeding in Batch Cooling Crystallization 23
2.2.7.3 Batch Cooling Crystallization with Different Seed Size Ranges 27
2.3 Analytical Instruments 28
2.3.1 Digital Refractometry 28
2.3.2 Optical Microscopy (OM) 28
2.3.3 Powder X-ray Diffraction (PXRD) 29
2.3.4 Fourier-Transform Infrared Spectroscopy (FT-IR) 29
2.3.5 Differential Scanning Calorimetry (DSC) 30
Chapter 3 Results and Discussion 31
3.1 Solid State Characterization of the Purchased D-mannitol 31
3.1.1 FT-IR Spectra 31
3.1.2 PXRD Patterns 33
3.2 Initial Solvent Scanning 34
3.2.1 Solubility Curve of D-mannitol in Good Solvent 36
3.2.2 Cooling Recrystallization of D-mannitol 37
3.3 Concentration Calibration 40
3.3.1 Calibration Line of D-mannitol 40
3.3.2 Modified Solubility Curve of D-mannitol in Water by Refractometry 41
3.4 Crystallization Behavior of D-mannitol 42
3.4.1 Concept of Induction Period 43
3.4.2 Nucleation Mechanism and Classical Nucleation Theory 45
3.5 Seeding Effect in Batch Cooling Crystallization 62
3.5.1 Seeding Effect and Empirical Seeding Equation of D-mannitol System 62
3.5.2 Seeding Crystallization with Different Seed Size Ranges 88
Chapter 4 Conclusion and Future Works 95
References 100
參考文獻 Mitchell, N. A.; Estimation of the Growth Kinetics for the Cooling Crystallization of Paracetamol and Ethanol Solutions. J. Cryst. Growth 2011, 328(1), 39-49.
Beckmann, W. Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies. Org. Proc. Res. Dev. 2000, 4(5),372-383.
Jagadesh, D.; Kubota. N.; Yokota, M.; Doki, N.; Sato, A. Seeding Effect on Batch Crystallization of Potassium Sulfate under Natural Cooling Mode and a Sample Design Method of Crystallizer. J. Chem. Eng. Japan. 1999, 32(4), 514-520.
Mohammad, K. A.; Rahim, S. A.; Baker, M. R. A.; Effect of Seed Loading and Temperature of Seeding on Carbamazepine-Saccharin Co-Crystal. Indian J. Sci. Technol. 2017, 10(6), 1-5.
Kubota, N.; Doki, N.; Yokota, M.; Sato, A. Seeding Policy in Batch Cooling Crystallization. Powder Technol. 2001, 121(1), 31-38.
Zhang, F.; Liu, T.; Chen, W.; Ma, C. Y.; Wang, Xue, Z. Seed Recipe Design for Batch Cooling Crystallization to L-Glutamic Acid. Ind. Eng. Chem. Res. 2019, 58(8), 3175-3187.
Baker, M. A. B.; Nagy, Z. K.; Rielly, C. D. Seeded Batch Cooling Crystallization with Temperature Cycling for the Control of Size Uniformity and Polymorphic Purity of Sulfathiazole Crystals. Org. Process Res. Dev. 2009, 13(6), 1343–1356.
Aamir, E.; Nagy, Z. K.; Rielly, C. D. Evaluation of the Effect of Seed Preparation Method on the Product Crystal Size Distribution for Batch Cooling Crystallization Process. Cryst. Growth Des. 2010, 10(11), 4728-4740.
Kardum, J. P.; Hrkovac, M.; Leskovac, M. Adjustmant of Process Conditions in Seeded Batch Cooling Crystallization. Chem. Eng. Technol. 2013, 36(8), 1347-1354.
Wang, L.; Yang, H.; Sun, Z.; Bao, Y.; Yin, Q. Wet Milling, Seeding, and Ultrasound in the Optimization of the Oiling-Out Crystallization Process. Ind. Eng. Chem. Res. 2021, 60(50), 18452-18463.
Ma, C. Y.; Wang, X. Z. Model Identification of Crystal Facet Growth Kinetics in Morphological Population Balance Modeling of L-glutamic Acid Crystallization and Experimental Validation. Chem. Eng. Sci. 2012, 70(5), 22-30.
Porru, M.; Özkan, L. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements. Ind. Eng. Chem. Res. 2017, 56(34), 9578-9592.
Wang, X. Z.; Calderon De Anda, J.; Roberts, K. J. Real-Time Measurement of the Growth Rates of Individual Crystal Facets Using Imaging and Image Analysis: A Feasibility Study on Needle-shaped Crystals of L-Glutamic Acid. Chem. Eng. Res. Des. 2007, 85(7), 921-927.
Zhou, Y.; Doan, X. T.; Srinivasan, R. Real-Time Imaging and Product Quality Characterization for Control of Particulate Processes. Chem. Eng. Res. Des. 2007, 85(7), 921-927.
Frawley, P. J.; Mitchell, N. A.; Ó′Ciarhá, C. T.; Hutton, K. W. The Effects of Supersaturation, Temperature, Agitation and Seed Surface Area on the Secondary Nucleation of Paracetamol in Ethanol Solutions. Chem. Eng. Sci. 2012, 75(18),183-197.
Saha, B. C.; Racine, F. M.; Biotechnological Production of Mannitol and its Applications. Appl. Microbiol. Biotechnol. 2011, 89(4), 879-891.
Flume, P. A.; Amelina, E.; Daines, C. L.; Charlton, B.; Leadbetter, J.; Guasconi, A.; Aitken, M. L. Efficacy and Safety of Inhaled Dry-Powder Mannitol in Adults with Cystic Fibrosis: An International, Randomized Controlled Study. J. Cyst. Fibros. 2021, 20(6), 1003-1009.
Yoshinari, T.; Forbes, R. T.; York, P.; Kawashima, Y. The Improved Compaction Properties of Mannitol After a Moisture-Induced Polymorphic Transition. Int. J. Pharm. 2003, 258(1-2), 121-131.
Mannitol Market Size, Share & Trends Analysis Report by Application (Food Additive, Pharmaceuticals, Industrial, Surfactants), And Segment Forecasts, 2015 to 2024. http://www.grandviewresearch.com/industry-analysis/mannitol-market/
Cares, P. M. G.; Vaca, M. G.; Calvet, R.; Espitalier, F.; Letourneau, J. J.; Rouilly, A., Rodier, E. Physicochemical Characterization of D-mannitol Polymorphs: The Challenging Surface Energy Determination by Inverse Gas Chromatography in the Infinite Dilution Region. Int. J. Pharm. 2014, 475(1-2), 69-81.
Ho, R.; Naderi, M.; Heng, J. Y. Y.; Williams, D. R.; Thielmann, F.; Bouza, P.; Keith, A. R.; Thiele, G.; Burnett, D. J. Effect on Milling on Particle Shape and Surface Energy Heterogeneity of Needle-Shaped Crystals. Pharm Res. 2012, 29(10), 2806-2816.
Su, W.; Li, C.; Hao, H.; Whelan, J.; Barrett, M.; Glennon, B. Monitoring the Liquid Phase Concentration by Raman Spectroscopy in a Polymorphic System. J. Raman. Spectrosc. 2015, 46(11), 1150-1156.
Poornachary, S. K.; Parambil, J. V.; Chow, P. S.; Tan, R. B. H.; Heng, J. Y. Y. Nucleation of Elusive Crystal Polymorphs at the Solution-Substrate Contact Line. Cryst. Growth Des. 2013, 13(3), 1180-1186.
Larsen, H. M. L.; Trnka, H.; Grohganz, H. Formation of Mannitol Hemihydrate in Freeze-Dried Protein Formulations-A Design of Experiment Approach. Int. J. Pharm. 2014, 460(1-2), 45-52.
Bruni. G.; Berbenni. V.; Milanese, C.; Girella, A.; Cofranceso, P.; Bellazzi, G. Marini, A. Physico-Chemical Characterization of Anhydrous D-mannitol. J. Therm. Anal. Calorim. 2009, 95(3), 871-876.
Yoshinari, T.; Schueckler, F.; Poellinger, N.; Megata, S. Crystalline Mannitol, US patent 6235947. 2001.
Su, W.; Zhang, Y.; Liu, J.; Ma, M.; Guo, P.; Liu, X.; Wang, H.; Li, C. Molecular Dynamic Simulation and in Solution Relating with Spontaneous Nucleation. J. Pharm. Sci. 2020, 109(4), 1537-1546.
Liu, S.; Xu, S.; Tang, W.; Yu, B.; Hou, B.; Gong, J. Revealing the Roles of Solvation in D-mannitol’s Polymorphic Nucleation. CrystEngComm, 2018, 20(46),7435-7445.
Saha, B. C.; Racine, F. M. Biotechnological Production of Mannitol and Its Applications. Appl. Microbiol. Biotechnol. 2011, 89(4), 879-891.
Soetaert, W.; Vanhooren, P. T.; Vandamme, E. J. The Production of Mannitol by Fermentation Methods. Biotechnology. 1999, 10, 261-275.
Gillarová, S.; Henke, S.; Svoboda, T.; Kadlec, P.; Hinková, A.; Bubník, Z.; Pour, V.; Sluková, M. Chromatographic Separation of Mannitol from Mixtures of Other Carbohydrates in Aqueous Solutions. Czech J. Food Sci. 2021, 39(4), 281-288.
Howaldt, M.; Gottlob, A.; Kulbe, K. D. Chmiel, H. Simultaneous Conversion of Glucose/Fructose Mixtures in a Membrane Reactor. Ann. NY Acad. Sci. 1988, 542(1), 400-404.
Saha, B. C.; Racine, F. M. Effects of pH and Corn Steep Liquor Variability on Mannitol Production by Lactobacillus Intermedius NRRL B-3693. Appl. Microbiol. Biotechnol. 2010, 87(2), 553-560.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30(10), 72-93.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S. L.; Lee, S.-W.; Hu, J. C.; Chen, L.T. Stabilization and Spheroidization of Ammonium Nitrate: Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225(1), 809-817.
Lee, T.; Chen, Y. H.; Zhang, C. W. Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dihydrate. Pharm. Tech. 2007, 31(6), 72-87.
Findlay, A. The Solubility of Mannitol, Picric Acid, and Anthracene. J. Chem. Soc., Trans. 1902, 81, 1217-1221.
Kubota, N.; Onosawa, W. Seeded Batch Crystallization of Ammonium Aluminum Sulfate from Aqueous Solution. J. Cryst. Growth. 2009, 311(20), 4525-4529.
Lin, J. M.; Huang, J. F.; Chen, J. Y.; Lin, Z. C.; Ou, Y. X.; Zhang, X. F.; Kang, Q. J.; Pan, Y. T. Low Cytotoxic D-mannitol Isolated from the Industrial Wastewater of Agaricus bisporus. J. Food Nutr. Res. 2016, 4(9), 610-614.
Burger, A.; Henck, J.O.; Hetz, S.; Rollinger, J.M.; Weissnicht, A. A.; Stöttner, H. Energy/Temperature Diagram and Compression Behavior of the Polymorphs of D-mannitol. J. Pharm. Sci. 2000, 89(4), 457-468.
Nunes, C.; Suryanarayanan, R.; Botez, C. E.; Stephens, P. W. Characterization and Crystal Structure of D-mannitol Hemihydrate. J. Pharm. Sci. Res. 2004, 93(11), 2800-2809.
Fronczek, F.R.; Kamel, H.N.; Slattery, M. Three Polymorphs (α, β, and δ) of D-mannitol at 100K. Acta Cryst. 2004, 35(5), 567-570.
Lu, J.; Rohani, S. Polymorphism and Crystallization of Active Pharmaceutical Ingredients (APIs) Curr. Med. Chem. 2009, 16(7), 884-905.
Boerlage, S.; Kennedy, M.D.; Bremere, I.; Schippers, J.C. Stable Barium Sulphate Supersaturation in Reverse Osmosis, J. Membr. Sci. 2000, 179(1-2), 53-68.
Lee, T.; Chen, Y.H.; Wang, Y.W. Effects of Homochiral Molecules of (S)- (+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of the Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate. Cryst. Growth Des. 2008, 8(2), 415-426.
Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, OFE, 2001.
Doran, P.M. Bioprocess Engineering Principles, 2nd ed.; Academic Press, 2013; pp: 899-919.
Volmer, M.; Weber, A. Nucleus Formation in Supersaturated System. Z. Phys. Chem. 1926, 119(1), 277-301.
Becker, R.; Döring, W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 1935, 416(8), 719-752.
Kashchiev. D.; van Rosmalen, G. M. Review: Nucleation in Solutions revisited. Cryst. Res. Technol. 2003, 38(7-8), 555-574.
Mersmann, A.; Bartosh, K. How to Predict the Metastable Zone Width. J. Cryst. Growth 1998, 183(1-2), 240-250.
Su, W.Y.; Hao, H. X.; Glennon, B.; Barrett, M. Spontaneous Polymorphic Nucleation of D-mannitol in Aqueous Solution Monitored with Raman Spectroscopy and FBRM. Cryst. Growth Des. 2013, 13(12), 5179-5187.
Siddheswaran, R.; Rathanakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkemar, P. Nucleation, Growth and Characterization Studies of a Nonlinear Optical Crystal-tris Allylthiourea Cadmium Chloride (ATCC). Laser Phys. Lett. 2006, 3(12), 588-593.
Shiau, L. D.; Wang, H. P. Simultaneous Determination of Interfacial Energy and Growth Activation Energy from Induction Time Measurements. J. Cryst. Growth 2016, 442(15), 47-51.
Bennema, P.; Söhnel, O. Interfacial Surface tension for crystallization and Precipitation from Aqueous Solutions. P. J. Cryst. Growth 1990, 102(3), 547-556.
Lini, F. Z.; Pratama, D. E.; Lee, T. Co-crystallization Kinetics of 2:1 Benzoic Acid-Sodium Benzoate Co-crystal: The Effect of Templating Molecules in a Solution. Cryst. 2021, 11(7), 812.
Kee, N. C. S.; Tan, R. B. H.; Braatz, R. D. Selective Crystallization of the Metastable α-Form of L-Glutamic Acid using Concentration Feedback Control. Cryst. Growth Des. 2009, 9(7), 3052-3061.
He. Y.; Gao, Z. G.; Zang, T.; Sun, J.; Ma, Y. M.; Tian, N. N.; Gong, J. B. Seeding Techniques and Optimization of Solution Crystallization Process. Org. Process Res. Dev. 2020, 24(10), 1839-1849.
Parambil, J. V.; Heng, J. Y. Y. Seeding in Crystallization. Springer, Dordrecht. 2017; pp: 235-245.
Kubota, N.; Doki, N.; Yokota, M.; Jagadesh, D. Seeding Effect on Product Crystal Size in Batch Crystallization. J. Chem. Eng. Japan 2002, 35(11), 1063-1071.
Hojjati, H.; Rohani, S. Cooling and Seeding Effect on Supersaturation and Final Crystal Size Distribution (CSD) of Ammonium Sulphate in A Batch Crystallizer. Chem. Eng. Process.: Process Intensif. 2005, 44(9), 949-957.
Jagadesh, D.; Kubota. N.; Yokota, M.; Sato, A.; Tavere, N. S.; Large and Mono-Sized Product Crystals from Natural Cooling Mode Batch Crystallizer. J. Chem. Eng. Japan 1996, 29(5), 865-873.
Reed, J. S. Principles of Ceramics Processing, 2nd ed.; John Wiley, Sons Singapore Pte, 1995; pp:93-117.
Doki, N.; Yokota, M.; Sasaki, S.; Kubota. N. Size Distribution of Needle-Shape Crystals of Monosodium L-Glutamate Obtained by Seeding Batch Cooling Crystallization. J. Chem. Eng. Japan 2004, 37(3), 436-442.
Hojjati, H.; Rohani, S. Cooling and Seeding Effect on Supersaturation and Final Crystal Size Distribution (CSD) of Ammonium Sulphate in A Batch Crystallizer. Chem. Eng. Process 2005, 44(9), 949-957.
Lung-Somarriba, B. L. M.; Moscosa-Santillan, M.; Porte, C.; Delacroix, A. Effect of Seeded Surface Area on Crystal Size Distribution in Glycine Batch Cooling Crystallization: A Seeding Methodology. J. Cryst. Growth 2004, 270(3-4), 624-632.
Doki, N.; Kubota, N.; Yokota, M.; Chianese, A. Determination of Critical Seed Loading Ratio for the Production of Crystals of Uni-Modal Size Distribution in Batch Cooling Crystallization of Potassium Alum. J. Chem. Eng. Japan 2002, 35(7), 670-676.
Shiau, L. D.; Lu, T. S. Programmed Cooling of a Batch Crystallizer in the Presence of Growth Rate Dispersion. J. Chin. Inst. Chem. Engrs. 2004, 35(6). 677-682.
Sarkar, D.; Rohani, S.; Jutan, A. Multi-Objective Optimization of Seeded Batch Crystallization Process. Chem. Eng. Sci. 2006, 61(16), 5282-5295.
Mitchell, N. A.; Ó′Ciardhá, C.T.; Frawley, P.J. Estimation of the Growth Kinetics for the Cooling Crystallization of Paracetamol and Ethanol Solutions. J. Cryst. Growth 2011, 328 (1), 39-49.
Takada, A.; Nail, S. L.; Yonese, M. Influence of Ethanol on Physical State of Freeze-Dried Mannitol. Pharm Res. 2009, 26(5), 1112-1120.
Vedantam, S.; Ranade, V. V. Crystallization: Key Thermodynamic, Kinetic and Hydrodynamic Aspects. Sadhana 2013, 38(6), 1287-1337.
Aamir, E.; Nagy, Z. K.; Rielly, C. D. Optical Seed Recipe Design for Crystal Size Distribution Control for Batch Cooling Crystallization Processes. Chem. Eng. Sci. 2010, 65(11), 3602-3614.
Schöll, J.; Lindenberg, C.; Vicum, L.; Brozio, J.; Mazzotti, M. Precipitation of α L-Glutamic acid: determination of growth kinetics. Faraday Discuss. 2007, 136(20), 247-264.
指導教授 李度(Tu Lee) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明