博碩士論文 109223029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.101.80
姓名 林慶宣(Ching-Hsuan Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 環戊烷二噻吩小分子與雙噻吩吡咯併吡咯高分子之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-20以後開放)
摘要(中) 本論文主要分為有機光伏打電池 (OPV) 與和鈣鈦礦太陽能電池 (PSC) 材料之開發。
本研究主要以具不同苯基烷氧鏈之環戊烷二噻吩 (CDTP) 為核心,開發出可進行溶液製程之醌型 CDTPQ-b8 (1)、CDTPQ-b16 (2) 與 DCV -CDTP-b8 (3)、DCV -CDTP-b16 (4) 材料,探討核心碳鏈長度對元件表現的影響。所開發的四種材料可應用於 N 型的 OPV 元件上,也能作為 PSC 添加劑,鈍化鈣鈦礦層缺陷以提升元件效率。
另外,本研究亦同時製備兩種新型高分子材料作為錫鈣鈦礦太陽能電池中的電洞傳輸層 (HTL),合成出 PPr- SBT-14 (5) 與 PPr- BT-14 (6),目前兩材料已完成初步元件測試,其中 PPr- SBT-14 (5)之光電轉換效率 (PCE) 可達 6.1%,PPr- BT-14 (6) 之元件效能為5.7%。
而上述之新材料的電化學及光學性能 ( HOMO / LUMO 與 Eg ) 已藉由DPV及UV-Vis測定,材料之熱穩定性已透過TGA與DSC檢測,這些新開發的有機分子材料正在進行其相關元件之優化。
摘要(英) A series of new small molecules were synthesized and characterized for the applications in photovoltaic cells (OPVs) and perovskite solar cells (PSCs).
In this study, cyclopentadithiophene with different phenylalkoxy chains (CDTP) was used as the core to develope two quinoidal CDTPQ b8 (1), CDTPQ-b16 (2) and two dicyanovinyl (DCV) end-capped DCV-CDTP-b8 (3), DCV-CDTP-b16 (4). The effect of different alkyl chain lengths on the core was explored and correlated to the performance of the devices. In addition to the application in OPV, these newly developed non-fullerene acceptors could also be used as passivating agents in PSCs based on our recent studies.
Further, two new polymeric hole transporting layers (HTL) materials, PPr-SBT-14 (5) and PPr-BT-14 (6), were developed for tin-based PSCs. At present, preliminarily PSC device test results of these two polymers exhibited pretty good power conversion efficiency (PCE) of 6.1% and 5.7% for PPr-SBT-14 (5) and PPr-BT-14 (6), respectively.
The optical and electrochemical properties of these newly developed
compounds were characterized by UV-vis spectroscopy and DPV. Chemical structures were characterized by 1 H NMR, 13 C NMR and mass spectrometry. Thermal properties were investigated by DSC and TGA. At present, optoelectronic devices based on these new non-fullerene acceptors and organic polymers are under optimization.
關鍵字(中) ★ 有機太陽能電池
★ 添加劑
★ 光伏打電池
★ 電洞傳輸層
★ 鈣鈦礦太陽能電池
★ 非富勒烯受體
關鍵字(英) ★ organic solar cell
★ passivating agent
★ photovoltaic cell
★ hole transport layer
★ perovskite solar cells
★ nonfullerene acceptor
論文目次 摘 要 i
Abstract ii
謝 誌 iii
目 錄 iv
List of Figures x
List of Schemes xii
List of Tables xv
附 錄 xvi
第一章 緒論 1
1-1 前言 2
1-1-1 矽晶太陽能電池 3
1-1-2 無機化合物半導體太陽能電池 4
1-1-3 有機太陽能電池 4
1-2有機光伏打電池之基本元件組成 5
1-3 有機光伏打電池之運作原理 7
1-3-1 光子吸收 (Optical absorption) 8
1-3-2 激子擴散與分離 (Exction diffusion and dissociation) 8
1-3-3 電荷傳輸 (Charge transfer) 9
1-3-4 電荷收集 (Charge collection) 9
1-4 有機光伏打電池之元件演變 10
1-4-1 雙層式異質接面 (Bilayer heterojunction, PHJ) 10
1-4-2 體異質接面 (Bulk heterojunction, BHJ) 11
1-4-3 串聯結構 11
1-5 有機光伏打電池參數介紹 12
1-5-1 J-V 曲線 13
1-5-2 短路電流 (Short circuit current, JSC) 14
1-5-3 開環電壓 (Open circuit voltage, VOC) 14
1-5-4 外部量子效率 (Eternal quantum efficiency, EQE) 15
1-5-5 填充因子 (Fill factor, FF) 15
1-5-6 能量轉換效率 (Power conversion efficiency, η, PCE) 15
1-6 有機小分子材料電荷傳輸影響因素 16
1-6-1 有機分子結晶度 16
1-7 有機薄膜的製備方式 18
1-7-1 氣相沉積 18
1-7-2 液相沉積 19
1-8 有機光伏打電池材料 20
1-8-1 P-type 有機光伏打材料 (Donor) 20
1-8-2 N-type 有機光伏打材料 (Acceptor) 25
1-9 鈣鈦礦太陽能電池簡介 32
1-9-1 鈣鈦礦太陽能電池的組成 34
1-9-2 工作原理 37
1-9-3電洞傳輸材料 38
1-10 添加劑材料 43
1-11 研究動機與目的 45
1-11-1 有機光伏打電池 45
1-11-2 鈣鈦礦電池添加劑 48
1-11-3電洞傳部份輸層材料 51
第二章 實驗 53
2-1 化合物名稱對照 54
2-2 實驗藥品 56
2-2-1實驗所用之化學藥品 56
2-2-2實驗所用之溶劑除水方式 58
2-3 實驗儀器 58
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 58
2-3-2 紫外光 / 可見光吸收光譜 (Ultraviolet / visible spectro-photometer) ; U-3900 型 59
2-3-3 熱重分析儀 (Thermal Gravimetric Analyer, TGA); TGA Instrument Q50 Series 59
2-3-4 電化學裝置 (Electrochemiacal Analyzer / Work- station);HCH Instrumentent Model 621C 59
2-3-5 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 60
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 61
2-3-7凝膠滲透色譜裝置(Gel Permeation Chromatography, GPC);JASCO PU-2080, RI-2031 61
2-4 合成步驟 62
2-4-1 bis(4-((2-ethylhexyl)oxy)phenyl)methanone (BP-diO-b8 ; 7 ) 之合成 62
2-4-2 bis(4-((2-hexyldecyl)oxy)phenyl)methanone (BP-diO-b16 ; 8 ) 63
2-4-3 3-bromo-2,2′-bithiophene (3-BrBT ; 11)之合成 64
2-4-4 4,4-bis(4-((2-ethylhexyl)oxy)phenyl)4H-cyclopenta [2,1-b:3,4-b′] 66
2-4-5 2,6-dibromo-4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclo- penta [2,1-b:3,4-b′]dithiophene (DiBr-CDTP-b8 ; 14) 68
2-4-6 2,2′-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-2H-cyclopenta[2,1-b: 3,4-b′]dithiophene-2,6(4H)-diylidene)dimalononitrile (CDTPQ-b8 ; 1) 69
2-4-7 4,4-bis(4-(2-ethylhexyl)phenyl)-4H-cyclopenta[2,1-b:3,4-b′] dithiophene-2,6-dicarbaldehyde (Dicho-CDTP-b8 ; 15) 70
2-4-8 2,2′-((4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1 71
2-4-9 4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4- 72
2-4-10 2,6-dibromo-4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-4H- cyclopenta[2,1-b:3,4-b′]dithiophene (Dibr-CDTP-b16; 18) 之合成 74
2-4-11 2,2′-(4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-2H-cyclopenta[2,1 74
2-4-12 4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-4H-cyclopenta[2,1-b: 76
2-4-13 2,2′-((4-(4-((2-hexyldecyl)oxy)phenyl)-4-(4-(pentadecan-7- yloxy)phenyl)-4H-cyclopenta[2,1-b3,4-b′]dithiophene-2,6-diyl)bis(methaneylylidene))dimalononitrile (DCV-CDTP-b16 ; 4) 之合成 77
2-4-14 3,3′-Dibromo-2,2′-bithiophene (Dibr-BT ; 18)之合成 78
2-4-15 3,3′-bis(tetradecanylsulfany)- 2,2′-bithiophene (SBT-14 ; 21) 之合成 79
2-4-16 (3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5,5′-diyl)bis 80
2-4-17 3,3′-ditetradecyl-2,2′-bithiophene (BT-14 ; 24)之合成 81
2-4-18 (3,3′-ditetradecyl-[2,2′-bithiophene]-5,5′-diyl)bis 82
bithiophene 82
2-4-19 2,5-bis(5-bromothiophen-2-yl)-1,4-di-p-tolyl-1,4-dihydro 83
2-4-20 PPr-SBT-14之合成 (PPr-SBT-14 ; 5) 84
2-4-21 PPr-BT-14之合成 (PPr-BT-14 ; 6) 85
第三章 結果與討論 86
3-1 有機分子材料之光學性質探討 87
3-1-1 有機太陽能電池 (OPVs、PSCs) 87
3-1-2電洞傳輸層 (HTLs) 89
3-2 有機分子材料之光學性質探討 90
3-2-1 有機太陽能電池 (OPVs、PSCs) 91
3-2-2 電洞傳輸層 (HTLs) 92
3-3 有機分子材料之熱穩定性分析 94
3-3-1 有機太陽能電池 (OPVs、PSCs) 94
3-3-2 電洞傳輸層 (HTLs) 95
第四章 結論 97
附 錄 106
參考文獻 Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676–677.
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44–48.
https://www.nrel.gov/pv/cell-efficiency.htm
Marinova, N.; Valero, S.; Delgado, J. L. J. Colloid Interface Sci. 2017, 488, 373–389.
McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics (Second Edition), Academic Press., Switzerland, 2011.
Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474-1476.
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021–1033.
Boudreault, P.-L.T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456–469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374–380.
Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. J. Am. Chem. Soc. 2015, 137, 4956–4959.
Schulze, K.; Riede, M.; Brier, E.; Reinold, E.; Bäuerle, P.; Leo, K. J. Appl. Phys. 2008, 104, 074511.
Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532–538.
Zhang, J.; Deng, D.; Chang, He, Y. J.; Zhang, M. J.; Zhang, Z. G.; Zhang Z. J.; Li, Y. F. Chem. Mater. 2011, 23, 817–822.
Zhou, J.; Wan, X.; Liu, Y.; Long, G.; Wang, F.; Li, Z.; Zuo, L.; Li C.; Chen, Y. Chem. Mater. 2011, 23, 4666–4668.
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44–48.
Patra, D. Huang, T.; Chiang, C.; Orlando, R.; Pao, C.; Ho, K.; Wei, K.; Chu, C. ACS Appl. Mater. Interfaces, 2013, 5, 9494–9500.
Cheng, M.; Chen, C.; Yang, X.; Huang, J.; Zhang, F.; Xu, B.; Sun, L Chem. Mater., 2015, 27, 5, 1808–1814.
Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature, 1985, 318, 162–163.
Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Appl. Phys. Lett. 2009, 94, 223307.
Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532–538.
He, Y.; Chen, H. Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377-1382.
Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22, 4355–4358.
Dittmer, J. J.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Rost, H.; Holmes, A. B. Synth.Met. 1999, 102, 879–880.
Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403–4406.
Singh, R.; Aluicio-Sarduy, E.; Kan, Z.; Ye, T.; MacKenzie, R. C. I.; Keivanidis, P. E. J. Mater. Chem. A 2014, 2, 14348–14353.
Cai, Y.; Huo, L.; Sun, X.; Wei, D.; Tang, M.; Sun, Y. Adv. Energy Mater. 2015, 5, 1500032.
Jiang, W.; Ye, L.; Li, X.; Xiao, C.; Tan, F.; Zhao, W.; Hou, J.; Wang, Z. Chem. Commun. 2014, 50, 1024–1026.
Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Hou, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156–11162.
Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W., Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z. H.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375–380.
Zhang, G.; Zhao, J.; Chow, P. C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447–3507.
Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.; Shu, Y.; Singh, T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. Chem. Commun. 2013, 49, 6307–6309.
Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Röhr, J. A.; Tan, C. H.; Collado-Fregoso, E.; Knall. A. C.; Durrant, J. R.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 898–904.
Zhang, H.; Liu, Y.; Sun, Y.; Li, M.; Ni, W.; Zhang, Q.; Wan, X.; Chen, Y. Sci. China Chem. 2017, 60, 366–369.
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170-1174.
Yang, Y.; Zhang, Z.-G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. F. J. Am. Chem. Soc. 2016, 138, 15011–15018.
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148-7151.
Wadsworth, A.; Bristow, H.; Hamid, Z.; Babics, M.; Gasparini, N.; Boyle,C. W.; Zhang, W.; Dong, Y.; Thorley, K. J.; Neophytou, M.; Ashraf, R. S.; Durrant, J. R. Baran, D.; McCulloch, I. Adv. Funct. Mater. 2019, 29, 180842.
Li, S.; Li, C. Z.; Shi, M.; Chen, H. ACS Energy Letters, 2020, 5, 1554–1567.
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z. Hou. J. Adv. Mater. 2021, 2102420.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 60506051.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1–7.
Tian, X.; Stranks, S. D.; You, F. Sci. Adv. 2020, 6(31), eabb0055.
https//www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiency-world-record-for-perovskite-solar-cell/
Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1–7.
Chen, Y, C.; Huang, S, K.; Li, S, S.; Tsai, Y, Y.; Chen, C, P.; Chen, C, W.; Chang, Y, J.; ChemSusChem, 2018, 11, 3225–3233.
Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.; Qiu, Y.; Xie, Z.; Shan, T.; Chen, Z.; Zhong, H.; Chen, C. Chem. Mater., 2021, 33, 285.
Cho, I.; Jeon, N.; Kwon, O.; Kim, D.; Jung, E.; Noh, J.; Seo, J.; Seok, S.; Park, S. Chem. Sci., 2017, 8, 734.
Wang, Y, K.; Ma, H.; Chen, Q.; Sun, Q.; Liu, Z.; Sun, Z.; Jia, X.; Zhu, Y.; Zhang, S.; Zhang, J.; Yuan, N.; Ding, J.; Zhou, Y.; Song, Bo.; Li, Y.; ACS Appl. Mater. Interfaces. 2021, 13, 7705–7713.
F. Zhang Z. Yao, Y. Guo, Y. Li, J. Bergstrand, C. J. Brett, B. Cai, A.

Hajian, Y. Guo, X. Yang, J. M. Gardner, J. Widengren, S. V. Roth, L. Kloo, L. Sun. J. Am. Chem. Soc. 2019, 141, 19700.
Sun, X.; Li, Z.; Yu, X.; Wu, X.; Zhong, C.; Liu, D.; Lei, D.; Jen, A. K. Y.; Li, Z.; Zhu, Z. Angew. Chem. Int. Ed. 2021, 60, 7227–7233.
Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
Qin, M.; Cao, J.; Zhang, T.; Mai, J.; Lau, T.; Zhou, S.; Zhou, Y.; Wang, J.; Hsu, Y.; Zhao, N.; Xu, J.; Zhan, X. Lu, X. Adv. Energy Mater. 2018, 1703399.
Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W. W. Yu, X. Bai, Y. Zhang and Q. Dai, Nanoscale Horiz., 2020, 5, 1574–1585.
Vegiraju, S.; He, G. Y.; Kim, C.; Priyanka, P.; Chiu, Y. J.; Liu, C. W.; Huang, C. Y.; Ni, J. S.; Facchetti, A. Adv. Funct. Mater., 2017, 27, 1606761.
Chen, Y. L.; Chang, C. Y.; Cheng, Y. J. Hsu, C.S. Chem. Mater. 2012, 24, 3964−3971.
Cao, F. Y.; Huang, W. C.; Chang, S. L.; Cheng, Y. J. Chem. Mater. 2018, 30, 4968−4977
Hou, R.; Li, M.; Ma, X.; Huang, H.; Lu, H.; Jia, Q.; Liu, Y.; Xu, X.; Li, H. B.; Bo.Z. ACS A. M. I. 2020, 12, 46220−46230.
Li, S.; Sun, Y.; Zhou, B.; Fu, Q. Meng, L.; Yang, Y.; Wang, J.; Yao, Z.; Wan, X. Chen, Y. ACS A. M. I. 2021, 13, (34), 40766-40777.
Zhang, M.; Dai, S.; Chandrabose, S.; Chen, K.; Liu, K.; Qin, M.; Lu, X.; Hodgkiss, J, M.; Zhou, H.; Zhan, X. J. Am. Chem. Soc., 2018, 140, 14938–14944.
Wang, K.; Liu, J.; Yin, J.; Aydin, E.; Harrison, G. T.; Liu, W.; Chen, S.; Mohammed, O. F.; Wolf, S. D. Adv. Funct. Mater. 2020, 2002861.
Afraj, S. N.; Velusamy, A.; Chen, C.; Ni, J.; Ezhumalai, Y.; Pan, C.; Chen, K.; Chen, Yau, S.; Liu, L.; Chiang, C.; Wu, C.; Chen, M. J. Mater. Chem. A, 2022, 10, 11254.
Vegiraju, S.; Ke,W.; Priyanka, P.; Ni, J.; Wu, Y.; Spanopoulos, I.; Yau, S.; Marks, T. J.; Chen, M. Kanatzidis, M. G. Adv. Funct. Mater. 2019, 1905393.
指導教授 陳銘洲 姚學麟(Ming-Chou Chen Shueh-Lin Yau) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明