博碩士論文 109324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.221.47.203
姓名 李欣庭(Hsin-Ting Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用細胞外間質塗佈表面培養的間充質幹細胞治療急性移植物抗宿主疾病
(Treatment of GVHD using MSCs cultured on ECM-coating surface)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-20以後開放)
摘要(中) 移植物對抗宿主反應(GVHD)是一種在異體移植過後常見的排斥反應,特別是在骨髓移植手術後最常發生。在許多研究中指出人類間充質幹細胞(hMSCs)擁有免疫抑制作,所以近期有越來越多研究關於利用hMSCs治療免疫相關疾病,其中一種就是GVHD。在移植手術中利用hMSCs,像是骨隨幹細胞(BMSCs)或是脂肪幹細胞(ADSCs),有相當顯著的保護能力可以有效保護移植的外來組織以防GVHD的發生。在此研究中,我們主要想要建立一套測試方式來檢測當我們利用不同種類的hMSCs去保護外來組織時是否也能有效的抑制GVHD的發生。我們探討(1)哪一種hMSCs可以更有效的抑制GVHD的發生。在本研究中我們選用人類羊水幹細胞(hAFSCs)、hADSCs和人類誘導多能幹細胞(hiPSCs, HPS0077)分化MSCs;(2)哪一種細胞生長環境(生物材料)能更有利於hMSCs 防止GVHD發生。為了要在與骨髓移植時相近的情況來模擬GVHD,我們先用hMSCs做成骨分化來得到成骨細胞。接下來我們將不同種類的hMSCs分別都與異體單核球共同培養,然後做活死細胞檢測,得知各種hMSCs都具有抗免疫反應。接下來我們更深入探討不同的細胞外基質(ECM)的細胞培養環境 (層粘連蛋白laminin-521, laminin-511, 人類重組-玻璃粘連蛋白rVN, 纖連蛋白fibronectin, 第一型膠原蛋白collagen type I and matrigel) 對於成骨細胞經過異體單核球共同培養後死亡率的減少以及對於hMSCs對於成骨細胞起的保護作用的差異。希望在未來hMSCs用來防止免疫系統作用的這種機制,特別是我們實驗室自己用hiPSCs分化出的MSCs有高度機會能夠應用於免疫相關疾病的治療。
摘要(英) Graft versus host disease (GVHD) is a condition that occurs after allogeneic transplants in patients, especially after bone marrow transplantation. Mesenchymal stem cells (MSC) have been increasingly examined for the treatment of immune-related diseases such as GVHD due to their immunosuppressive properties. The transplantation of human MSCs (hMSCs) such as bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) has shown great effects to protect transplanted tissues or cells from GVHD. In this study, I aimed to establish the evaluation of GVHD effect on the insertion of various kind of hMSCs. I evaluated (1) which hMSCs were effective to suppress GVHD. The following hMSCs were selected in this study: human amniotic fluid stem cells (hAFSCs), hADSCs and human pluripotent stem cells (hiPSCs, HPS0077)-derived MSCs. I also investigated (2) which cell culture environment (biomaterials) supports GVHD treatment by hMSCs. The osteogenic differentiation from hMSCs was performed to obtain osteoblasts, which mimic the bone cells environment of the most happened GVHD situation. Then, hADSCs, hAFSCs and hiPSCs-derived MSCs were treated with allogenic mononuclear cells and subsequently, the live and dead staining of hMSCs were performed after allogenic mononuclear cell treatment. It is found that hADSCs, hAFSCs, and hiPSCs-derived MSCs had the ability to suppress the inflammation reaction by allogenic mononuclear cells. The effect to suppress the reaction by hMSCs is stronger in the following order: hAFSCs > hADSCs > hiPSCs-derived MSCs. We further evaluated the effect of ECM (extracellular matrix) proteins (laminin-521, laminin-511, recombinant vitronectin, fibronectin, collagen type I and Matrigel) on the decrease of dead cells of osteoblasts on ECM protein-coated dishes by treatment of allogenic mononuclear cells, where several kinds of hMSCs were co-cultured with the osteoblasts. The osteoblasts cultured on Matrigel-coated dishes showed more alive cells than those cultured on other ECM-coated dishes by treatment of allogenic mononuclear cells. For the MSCs which were used to prevent the immune attack, hAFSCs cultured on collagen showed more strongly immune tolerance. In the future, these immunosuppressive effects of hMSC, especially hiPSC-derived MSCs have high possibility to apply in other immune-related diseases.
關鍵字(中) ★ 急性移植物抗宿主疾病
★ 免疫抑制
★ 間質幹細胞
★ 共同培養
★ 單核細胞
關鍵字(英) ★ GVHD
★ immuno-suppression
★ mesenchymal stem cells
★ co-culture
★ mononuclear cells
論文目次 Chapter 1. Introduction 1
1-1 Graft-versus-host Disease (GVHD) 1
1-2 Stem Cells 3
1-2-1 Mesenchymal stem cells (MSCs) 5
1-2-2 Multipotency of MSCs 5
1-2-3 MSCs modulation in the immune system 6
1-2-4 Limitations and future of MSC usage in clinics 8
1-3 Extracellular Matrix (ECM) 10
1-3-1 Matrigel 11
1-3-2 Collagen 12
1-3-3 Laminin 13
1-3-4 Recombinant vitronectin 14
1-4 Peripheral Blood Mononuclear Cells (PBMCs) 15
1-5 Goal of this research 17
Chapter 2. Materials and methods 19
2-1 Materials 19
2-1-1 Cell source 19
I. Adipose tissue 19
II. Amniotic fluid 19
2-1-2 Culture medium 20
I. Human adipose derived stem cells (hADSCs) 20
II. Human amniotic fluid stem cells (hAFSCs) 20
2-1-3 Dissociation and passaging agent 21
2-1-4 Commercial cell cultivation dish 21
2-1-5 Surface coating ECM 21
2-1-6 Osteoblast differentiation 22
I. Commercial differentiation medium 22
II. Homemade differentiation medium 22
III. Evaluation of osteoblasts 22
2-1-7 Isolation of mononuclear cells 23
2-1-8 Live and Dead staining 23
2-1-9 Cytokine ELISA test 23
2-2 Experimental instruments 24
2-3 Experimental methods 24
2-3-1 Preparation and cultivation of human Adipose derived stem cells (hADSCs) 24
I. Extraction of hADSCs 24
II. hADSCs cultivation and passage 26
2-3-2 Preparation and cultivation of humam amniotic fluid stem cells (hAFSCs) 27
I. Extraction of hAFSCs 27
II. hAFSCs cultivation and passage 28
2-3-3 Cell counting 29
2-3-4 Preparation of ECM-coating dishes 30
2-3-5 Osteogenic differentiation and characterization 31
I. Osteogenic differentiation 31
II. Alkaline phosphate activity (ALP activity) 32
III. Alizarin red S staining 32
IV. von Kossa staining 33
2-3-6 Isolation of mononuclear cells 33
2-3-7 Co-culture of cells 34
I. Co-culture of hMSCs with osteoblasts 34
II. Mononuclear treatment of the cells 35
2-3-8 Live and Dead staining 35
2-3-9 Cytokine ELISA test 35
Chapter 3. Result and Discussion 38
3-1 Osteogenic differentiation 38
3-1-1 hAFSCs differentiation into osteoblasts on different ECM in several media 38
3-1-2 Development of hAFSCs induction into osteoblasts using homemade differentiation medium 40
3-1-3 Development of osteogenic differentiation process and medium ingredients 43
3-1-4 hADSCs differentiation into osteoblasts using homemade induction medium and commercial induction medium 44
3-1-5 hADSCs differentiation into osteoblasts on several ECM protein-coating surface 47
3-2 Immune privilege characteristics and suppression of hMSCs 49
3-2-1 hADSC-derived osteoblasts on ECM protein coating dishes treated by allogenic mononuclear cells 50
3-2-2 Immune tolerance of different MSCs on different ECM protein coating dishes 52
I. Immune tolerance comparison of hAFSCs single, hAFSC mix2, hiPSC (mix-4)-derived MSCs, and hADSC 52
II. Immune tolerance comparison of hAFSCs with hiPSC (mix-4)-derived MSCs 54
III. Comparison of doubling time of alive cells cultured on several ECM protein coating dishes after treatment of mononuclear cells 57
3-2-3 Co-culture of MSCs with ADSC-derived osteoblasts 59
Chapter 4. Conclusion 61
Reference 62
Appendix 69
參考文獻 1. Negrin, R.S., Graft-versus-host disease versus graft-versus-leukemia. Hematology 2014, the American Society of Hematology Education Program Book, 2015. 2015(1): p. 225-230.
2. Congdon, C.C., D. Uphoff, and E. Lorenz, Modification of acute irradiation injury in mice and guinea pigs by injection of bone marrow: a histopathologic study. Journal of the National Cancer Institute, 1952. 13(1): p. 73-107.
3. Lorenz, E., C. Congdon, and D. Uphoff, Modification of acute irradiation injury in mice and guinea-pigs by bone marrow injections. Radiology, 1952. 58(6): p. 863-877.
4. Billingham, R., Reactions of Graft against Their Hosts: Transplantation immunity works both ways—hosts destroy grafts and grafts may harm hosts. Science, 1959. 130(3381): p. 947-953.
5. Billingham, R.E., The biology of graft-versus-host reactions. Harvery lect., 1967. 62: p. 21-78.
6. Kernan, N.A., et al., Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. 1986.
7. Korngold, R. and J. Sprent, Purified T cell subsets and lethal graft-versus-host disease in mice. Progress in Bone Marrow Transplantation. New York: Alan R. Liss, Inc, 1987: p. 213-218.
8. Ferrara, J.L., et al., Graft-versus-host disease. The Lancet, 2009. 373(9674): p. 1550-1561.
9. Blazar, B.R., W.J. Murphy, and M. Abedi, Advances in graft-versus-host disease biology and therapy. Nature Reviews Immunology, 2012. 12(6): p. 443-458.
10. Kooy, D.v.d. and a.S. Weiss, Why Stem Cells? Science, 2000. 287(5457): p. 1439-1441.
11. Alison, M.R., et al., An introduction to stem cells. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2002. 197(4): p. 419-423.
12. Ramalho-Santos, M. and H. Willenbring, On the Origin of the Term “Stem Cell”. Cell Stem Cell, 2007. 1(1): p. 35-38.
13. Melton, D., ‘Stemness’: definitions, criteria, and standards, in Essentials of stem cell biology. 2014, Elsevier. p. 7-17.
14. Papapetrou, E.P., et al., Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proceedings of the National Academy of Sciences, 2009. 106(31): p. 12759-12764.
15. P De Miguel, M., et al., Immunosuppressive properties of mesenchymal stem cells: advances and applications. Current molecular medicine, 2012. 12(5): p. 574-591.
16. Ding, D.C., W.C. Shyu, and S.Z. Lin, Mesenchymal stem cells. Cell Transplant, 2011. 20(1): p. 5-14.
17. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Experimental biology and medicine, 2001. 226(6): p. 507-520.
18. Kuo, T.K., J.H. Ho, and O.K. Lee, Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. Cell Transplantation, 2009. 18(9): p. 1013-1028.
19. Oishi, K., et al., Differential ability of somatic stem cells. Cell transplantation, 2009. 18(5-6): p. 581-590.
20. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317.
21. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-147.
22. Schachtele, S., C. Clouser, and J. Aho, Markers and Methods to Verify Mesenchymal Stem Cell Identity. Potency, and Quality.[(accessed on 29 January 2020)].
23. Wakitani, S., T. Saito, and A.I. Caplan, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5‐azacytidine. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 1995. 18(12): p. 1417-1426.
24. De Bari, C., et al., Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. The Journal of cell biology, 2003. 160(6): p. 909-918.
25. Ninichuk, V., et al., Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney international, 2006. 70(1): p. 121-129.
26. Black, I.B. and D. Woodbury, Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells, Molecules, and Diseases, 2001. 27(3): p. 632-636.
27. Hofstetter, C., et al., Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences, 2002. 99(4): p. 2199-2204.
28. Nauta, A.J. and W.E. Fibbe, Immunomodulatory properties of mesenchymal stromal cells. Blood, The Journal of the American Society of Hematology, 2007. 110(10): p. 3499-3506.
29. Bartholomew, A., et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology, 2002. 30(1): p. 42-48.
30. Di Nicola, M., et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, The Journal of the American Society of Hematology, 2002. 99(10): p. 3838-3843.
31. Klyushnenkova, E., et al., T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. Journal of biomedical science, 2005. 12(1): p. 47-57.
32. Bernardo, M., et al., Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone marrow transplantation, 2011. 46(2): p. 200-207.
33. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-1822.
34. Nasef, A., et al., Identification of IL-10 and TGF-β transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expression The Journal of Liver Research, 2006. 13(4-5): p. 217-226.
35. Ortiz, L.A., et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences, 2007. 104(26): p. 11002-11007.
36. Lee, R.H., et al., Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell stem cell, 2009. 5(1): p. 54-63.
37. Kim, J. and P. Hematti, Mesenchymal stem cell–educated macrophages: A novel type of alternatively activated macrophages. Experimental hematology, 2009. 37(12): p. 1445-1453.
38. Djouad, F., et al., Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin‐6‐dependent mechanism. Stem cells, 2007. 25(8): p. 2025-2032.
39. Liu, Y., et al., MSCs inhibit bone marrow-derived DC maturation and function through the release of TSG-6. Biochemical and Biophysical Research Communications, 2014. 450(4): p. 1409-1415.
40. Sato, K., et al., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007. 109(1): p. 228-234.
41. Sensebe, L., et al., Mesenchymal stem cells for clinical application. Vox sanguinis, 2010. 98(2): p. 93-107.
42. Pittenger, M.F., et al., Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine, 2019. 4(1): p. 22.
43. Tirode, F., et al., Mesenchymal Stem Cell Features of Ewing Tumors. Cancer Cell, 2007. 11(5): p. 421-429.
44. Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem cells, 2007. 25(11): p. 2896-2902.
45. Han, Y., et al., Mesenchymal stem cells for regenerative medicine. Cells, 2019. 8(8): p. 886.
46. Young, J.L., A.W. Holle, and J.P. Spatz, Nanoscale and mechanical properties of the physiological cell-ECM microenvironment. Exp Cell Res, 2016. 343(1): p. 3-6.
47. Miller, R.T., Mechanical properties of basement membrane in health and disease. Matrix Biol, 2017. 57-58: p. 366-373.
48. Muiznieks, L.D. and F.W. Keeley, Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochim Biophys Acta, 2013. 1832(7): p. 866-75.
49. Stylianopoulos, T., et al., Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J, 2010. 99(5): p. 1342-9.
50. Mecham, R.P., Overview of extracellular matrix. Curr Protoc Cell Biol, 2001. Chapter 10: p. Unit 10.1.
51. Hussey, G.S., J.L. Dziki, and S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018. 3(7): p. 159-173.
52. Méhes, E., et al., Matrigel patterning reflects multicellular contractility. PLoS Comput Biol, 2019. 15(10): p. e1007431.
53. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
54. Parenteau-Bareil, R., R. Gauvin, and F. Berthod, Collagen-Based Biomaterials for Tissue Engineering Applications. Materials, 2010. 3(3): p. 1863-1887.
55. Malinda, K.M. and H.K. Kleinman, The laminins. Int J Biochem Cell Biol, 1996. 28(9): p. 957-9.
56. Colognato, H. and P.D. Yurchenco, Form and function: the laminin family of heterotrimers. Dev Dyn, 2000. 218(2): p. 213-34.
57. Arimori, T., et al., Structural mechanism of laminin recognition by integrin. Nature Communications, 2021. 12(1): p. 4012.
58. Tanzer, M.L., et al., Role of laminin carbohydrates on cellular interactions. Kidney Int, 1993. 43(1): p. 66-72.
59. Sato, F., et al., Apigenin Induces Morphological Differentiation and G2-M Arrest in Rat Neuronal Cells. Biochemical and Biophysical Research Communications, 1994. 204(2): p. 578-584.
60. Yan, H.H., et al., Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays, 2007. 29(1): p. 36-48.
61. Tang, J. and T. Saito, A Novel Fragment Derived from Laminin-411 Facilitates Proliferation and Differentiation of Odontoblast-Like Cells. Biomed Res Int, 2018. 2018: p. 9465383.
62. Tang, J. and T. Saito, iMatrix-511 Stimulates the Proliferation and Differentiation of MDPC-23 Cells into Odontoblastlike Phenotype. J Endod, 2018. 44(9): p. 1367-1375.
63. Colognato, H. and P.D. Yurchenco, Form and function: the laminin family of heterotrimers. Developmental dynamics: an official publication of the American Association of Anatomists, 2000. 218(2): p. 213-234.
64. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
65. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424-429.
66. Sato, K., et al., Vitronectin binding protein, BOM1093, confers serum resistance on Borrelia miyamotoi. Sci Rep, 2021. 11(1): p. 5462.
67. Kleiveland, C.R., Peripheral blood mononuclear cells. The impact of food bioactives on health, 2015: p. 161-167.
68. Barbedo, J.G.A. Automatic object counting in Neubauer chambers. in Embrapa Informática Agropecuária-Artigo em anais de congresso (ALICE). 2013. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 31., 2013, Fortaleza.[Anais ….
69. Jaatinen, T. and J. Laine, Isolation of mononuclear cells from human cord blood by Ficoll‐Paque density gradient. Current protocols in stem cell biology, 2007. 1(1): p. 2A. 1.1-2A. 1.4.
70. Roberts, S.J., et al., Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Research, 2011. 7(2): p. 137-144.
71. Wrobel, E., J. Leszczynska, and E. Brzoska, The Characteristics Of Human Bone-Derived Cells (HBDCS) during osteogenesis in vitro. Cellular & Molecular Biology Letters, 2016. 21(1): p. 26.
72. Kubista, M., et al., Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene, 2002. 21(31): p. 4747-4756.
73. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 2002. 13(12): p. 4279-4295.
74. Huang, Y.-R., Design of Thermoresponsive Surface Immobilized with ECM for Differentiation of Human Amniotic Fluid Stem Cells. 2019.
75. Vierck, J.L., et al., Ten commandments for preventing contamination of primary cell cultures. Methods in cell science, 2000. 22(1): p. 33-41.
76. Sharma, M.B., L.S. Limaye, and V.P. Kale, Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica, 2012. 97(5): p. 651.
77. Bunnell, B.A., A.M. Betancourt, and D.E. Sullivan, New concepts on the immune modulation mediated by mesenchymal stem cells. Stem cell research & therapy, 2010. 1(5): p. 1-8.
78. Van Der Sanden, B., et al., Optimizing stem cell culture. Journal of cellular biochemistry, 2010. 111(4): p. 801-807.
79. Gattazzo, F., A. Urciuolo, and P. Bonaldo, Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014. 1840(8): p. 2506-2519.
80. Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews Molecular cell biology, 2007. 8(3): p. 221-233.
81. Lu, P., et al., Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology, 2011. 3(12): p. a005058.
82. Jiang, W. and J. Xu, Immune modulation by mesenchymal stem cells. Cell proliferation, 2020. 53(1): p. e12712.
83. Rasmusson, I., Immune modulation by mesenchymal stem cells. Experimental cell research, 2006. 312(12): p. 2169-2179.
84. Le Blanc, K., Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy, 2006. 8(6): p. 559-561.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明