參考文獻 |
[1] Enerdata, Total Energy Consumption. Available: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
[2] H. Ritchie, M. Roser, and P. Rosado, CO₂ and Greenhouse Gas Emissions, 2020. Available: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#
[3] REN21, Renewables 2021 Global Status Report, 2021. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf
[4] I. E. Agency, Global Energy Review 2021, 2021. Available: https://www.iea.org/reports/global-energy-review-2021/renewables
[5] L. L. N. Laboratory, Energy Flow Charts. Available: https://flowcharts.llnl.gov/
[6] Y. Kishita, Y. Ohishi, M. Uwasu, M. Kuroda, H. Takeda, and K. Hara, "Evaluating the Life Cycle CO2 Emissions and Costs of Thermoelectric Generators for Passenger Automobiles: a Scenario Analysis", Journal of Cleaner Production, vol. 126, pp. 607-619, 2016.
[7] D. B. M. Research, Global Thermoelectric Modules Market - Industry Trend and Forecast to 2027. Available: https://www.databridgemarketresearch.com/reports/global-thermoelectric-modules-market
[8] K. B. V. research, Global Thermoelectric Modules Market By Offering (Hardware and Services), By Type (Bulk, Micro and Thin-Film), By Model (Single Stage and Multi Stage), By Functionality (General Purpose and Deep Cooling), By End User (Consumer Electronics, Automotive, Industrial, Medical & Laboratories, Manufacturing, Telecommunications and Others), By Regional Outlook, Industry Analysis Report and Forecast, 2021 - 2027, 2021. Available: https://www.kbvresearch.com/thermoelectric-modules-market/
[9] T. Kajikawa, "Thermoelectric Application for Power Generation in Japan", Advances in Science and Technology, vol. 74, pp. 83-92, 2010.
[10] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, "Material and Manufacturing Cost Considerations for Thermoelectrics", Renewable & Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014.
[11] Q. H. Zhang, X. Y. Huang, S. Q. Bai, X. Shi, C. Uher, and L. D. Chen, "Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges", Advanced Engineering Materials, vol. 18, pp. 194-213, 2016.
[12] S. H. Choday, M. S. Lundstrom, and K. Roy, "Prospects of Thin-Film Thermoelectric Devices for Hot-Spot Cooling and On-Chip Energy Harvesting", Ieee Transactions on Components Packaging and Manufacturing Technology, vol. 3, pp. 2059-2067, 2013.
[13] L. D. Hicks and M. S. Dresselhaus, "Effect of Quantum-well Structures on the Thermoelectric Figure of Merit", Physical Review B Condensed Matter, vol. 47, pp. 12727-12731, 1993.
[14] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-dimensional Conductor", Physical Review B Condensed Matter, vol. 47, pp. 16631-16634, 1993.
[15] D. Crane, J. LaGrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, and C. Maranville, "TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development", Journal of Electronic Materials, vol. 42, pp. 1582-1591, 2013.
[16] P. Li, L. L. Cai, P. C. Zhai, X. F. Tang, Q. J. Zhang, and M. Niino, "Design of a Concentration Solar Thermoelectric Generator", Journal of Electronic Materials, vol. 39, pp. 1522-1530, 2010.
[17] N. Miljkovic and E. N. Wang, "Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons", Solar Energy, vol. 85, pp. 2843-2855, 2011.
[18] K. P. Sibin, N. Selvakumar, A. Kumar, A. Dey, N. Sridhara, H. D. Shashikala, A. K. Sharma, and H. C. Barshilia, "Design and Development of ITO/Ag/ITO Spectral Beam Splitter Coating for Photovoltaic-thermoelectric Hybrid Systems", Solar Energy, vol. 141, pp. 118-126, 2017.
[19] L. Atsumitec Co., The Successful Development of “Exhaust Gas Power Generating Systems,”. Available: http://www.atsumitec.co.jp/en/technology/basis/
[20] P. Aranguren, D. Astrain, A. Rodriguez, and A. Martinez, "Experimental Investigation of the Applicability of a Thermoelectric Generator to Recover Waste Heat from a Combustion Chamber", Applied Energy, vol. 152, pp. 121-130, 2015.
[21] P. Yodovard, J. Khedari, and J. Hirunlabh, "The Potential of Waste Heat Thermoelectric Power Generation from Diesel Cycle and Gas Turbine Cogeneration Plants", Energy Sources, vol. 23, pp. 213-224, 2001.
[22] S. J. Kim, H. E. Lee, H. Choi, Y. Kim, J. H. We, J. S. Shin, K. J. Lee, and B. J. Cho, "High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process", ACS Nano, vol. 10, pp. 10851-10857, 2016.
[23] J. P. Rojas, D. Conchouso, A. Arevalo, D. Singh, I. G. Foulds, and M. M. Hussain, "Paper-based Origami Flexible and Foldable Thermoelectric Nanogenerator", Nano Energy, vol. 31, pp. 296-301, 2017.
[24] D. Energy, Dyson Energy Bracelet a Good Call, 2009. Available: https://newatlas.com/dyson-energy-bracelet/12040/
[25] L. Yang, Z. G. Chen, M. S. Dargusch, and J. Zou, "High Performance Thermoelectric Materials: Progress and Their Applications", Advanced Energy Materials, vol. 8, p. 1701797, 2018.
[26] V. Vijayenthiran, BMW Showcases Thermoelectric Technology in 5-series, 2011. Available: https://www.motorauthority.com/news/1065596_bmw-showcases-thermoelectric-technology-in-5-series
[27] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, "A Review on Thermoelectric Generators: Progress and Applications", Energies, vol. 13, p. 3606, 2020.
[28] X. H. Hao, B. Peng, G. N. Xie, and Y. Chen, "Efficient On-chip Hotspot Removal Combined Solution of Thermoelectric Cooler and Mini-channel Heat Sink", Applied Thermal Engineering, vol. 100, pp. 170-178, 2016.
[29] J. H. Li, B. K. Ma, R. S. Wang, and L. Han, "Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-power LEDs", Microelectronics Reliability, vol. 51, pp. 2210-2215, 2011.
[30] R. A. Khire, A. Messac, and S. Van Dessel, "Design of Thermoelectric Heat Pump Unit for Active Building Envelope Systems", International Journal of Heat and Mass Transfer, vol. 48, pp. 4028-4040, 2005.
[31] M. Dargusch, W. D. Liu, and Z. G. Chen, "Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems", Advanced Science, vol. 7, p. 2001362, 2020.
[32] J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, "When Thermoelectrics Reached the Nanoscale", Nature Nanotechnology, vol. 8, pp. 471-3, 2013.
[33] D. Enescu, Bring Thermoelectricity into Reality -Thermoelectric Refrigeration Principles, 2018.
[34] L. Lou, D. H. Shou, H. J. Park, D. L. Zhao, Y. S. Wu, X. N. Hui, R. G. Yang, E. C. Kan, and J. T. Fan, "Thermoelectric Air Conditioning Undergarment for Personal Thermal Management and HVAC Energy Saving", Energy and Buildings, vol. 226, p. 110374, 2020.
[35] G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials", Nature Material, vol. 7, pp. 105-14, 2008.
[36] J. E. Hong, S. K. Lee, and S. G. Yoon, "Enhanced Thermoelectric Properties of Thermal Treated Sb2Te3 Thin Films", Journal of Alloys and Compounds, vol. 583, pp. 111-115, 2014.
[37] S. F. Shen, W. Zhu, Y. Deng, H. Z. Zhao, Y. C. Peng, and C. J. Wang, "Enhancing Thermoelectric Properties of Sb2Te3 Flexible Thin Film through Microstructure Control and Crystal Preferential Orientation Engineering", Applied Surface Science, vol. 414, pp. 197-204, 2017.
[38] L. M. Goncalves, P. Alpuim, A. G. Rolo, and J. H. Correia, "Thermal Co-evaporation of Sb2Te3 Thin-films Optimized for Thermoelectric Applications", Thin Solid Films, vol. 519, pp. 4152-4157, 2011.
[39] J. M. Lin, Y. C. Chen, C. F. Yang, and W. Chen, "Effect of Substrate Temperature on the Thermoelectric Properties of the Sb2Te3 Thin Films Deposition by Using Thermal Evaporation Method", Journal of Nanomaterials, vol. 2015, p. 135130, 2015.
[40] J. L. Lensch-Falk, D. Banga, P. E. Hopkins, D. B. Robinson, V. Stavila, P. A. Sharma, and D. L. Medlin, "Electrodeposition and Characterization of Nano-crystalline Antimony Telluride Thin Films", Thin Solid Films, vol. 520, pp. 6109-6117, 2012.
[41] C. F. Wang, Q. Wang, L. D. Chen, X. C. Xu, and Q. Yao, "Electrodeposition of Sb2Te3 Films on Si(100) and Ag Substrates", Electrochemical and Solid State Letters, vol. 9, pp. C147-C149, 2006.
[42] I. Hilmi, A. Lotnyk, J. W. Gerlach, P. Schumacher, and B. Rauschenbach, "Research Update: Van-der-Waals Epitaxy of Layered Chalcogenide Sb2Te3 Thin Films Grown by Pulsed Laser Deposition", APL Materials, vol. 5, p. 050701, 2017.
[43] J. Ning, J. C. Martinez, J. Momand, H. Zhang, S. C. Tiwari, F. Shimojo, A. Nakano, R. K. Kalia, P. Vashishta, P. S. Branicio, B. J. Kooi, and R. E. Simpson, "Differences in Sb2Te3 Growth by Pulsed Laser and Sputter Deposition", Acta Materialia, vol. 200, pp. 811-820, 2020.
[44] S. L. Benjamin, C. H. de Groot, C. Gurnani, S. L. Hawken, A. L. Hector, R. Huang, M. Jura, W. Levason, E. Reid, G. Reid, S. P. Richards, and G. B. G. Stenning, "Compositionally Tunable Ternary Bi2(Se1−xTex)3 and (Bi1−ySby)2Te3 Thin Films via Low Pressure Chemical Vapour Deposition", Journal of Materials Chemistry C, vol. 6, pp. 7734-7739, 2018.
[45] G. Bendt, S. Schulz, S. Zastrow, and K. Nielsch, "Single-Source Precursor-Based Deposition of Sb2Te3 Films by MOCVD", Chemical Vapor Deposition, vol. 19, pp. 235-241, 2013.
[46] X. Zhang, Z. Zeng, C. Shen, Z. Zhang, Z. Wang, C. Lin, and Z. Hu, "Investigation on the Electrical Transport Properties of Highly (00l)-textured Sb2Te3 Films Deposited by Molecular Beam Epitaxy", Journal of Applied Physics, vol. 115, p. 024307, 2014.
[47] P. Wanarattikan, P. Jitthammapirom, R. Sakdanuphab, and A. Sakulkalavek, "Effect of Grain Size and Film Thickness on the Thermoelectric Properties of Flexible Sb2Te3 Thin Films", Advances in Materials Science and Engineering, vol. 2019, p. 6954918, 2019.
[48] B. Fang, Z. Zeng, X. Yan, and Z. Hu, "Effects of Annealing on Thermoelectric Properties of Sb2Te3 Thin Films Prepared by Radio Frequency Magnetron Sputtering", Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1105-1111, 2012.
[49] M. Tan, Y. Deng, and Y. M. Hao, "Enhanced Thermoelectric Properties and Layered Structure of Sb2Te3 Films Induced by Special (0 0 l) Crystal Plane", Chemical Physics Letters, vol. 584, pp. 159-164, 2013.
[50] D. T. Shi, R. P. Wang, G. X. Wang, C. Li, X. Shen, and Q. H. Nie, "Enhanced Thermoelectric Properties in Cu-doped Sb2Te3 Films", Vacuum, vol. 145, pp. 347-350, 2017.
[51] K. B. Masood, P. Kumar, R. Singh, and J. Singh, "Odyssey of Thermoelectric Materials: Foundation of the Complex Structure", Journal of Physics Communications, vol. 2, p. 062001, 2018.
[52] T. Khumtong, P. Sukwisute, A. Sakulkalavek, and R. Sakdanuphab, "Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures", Journal of Electronic Materials, vol. 46, pp. 3166-3171, 2017.
[53] P. Junlabhut, P. Nuthongkum, R. Sakdanuphab, A. Harnwunggmoung, and A. Sakulkalavek, "Influence of Sputtering Power Density on the Thermoelectric and Mechanical Properties of Flexible Thermoelectric Antimony Telluride Films Deposited by DC Magnetron Sputtering", Journal of Electronic Materials, vol. 49, pp. 2747-2754, 2020.
[54] J. Horák, Č. Drašar, R. Novotný, S. Karamazov, and P. Lošťák, "Non-stoichiometry of the Crystal Lattice of Antimony Telluride", Physica Status Solidi (a), vol. 149, pp. 549-556, 1995.
[55] P. Fan, Z. H. Zheng, G. X. Liang, D. P. Zhang, and X. M. Cai, "Thermoelectric Characterization of Ion Beam Sputtered Sb2Te3 Thin Films", Journal of Alloys and Compounds, vol. 505, pp. 278-280, 2010.
[56] S. A. Haidar, Y. Gao, Y. F. He, J. E. Cornett, B. X. Chen, N. J. Coburn, C. Glynn, M. T. Dunham, K. E. Goodson, and N. Sun, "Deposition and Fabrication of Sputtered Bismuth Telluride and Antimony Telluride for Microscale Thermoelectric Energy Harvesters", Thin Solid Films, vol. 717, p. 138444, 2021.
[57] K. Takayama and M. Takashiri, "Multi-layered-stack Thermoelectric Generators Using p-type Sb2Te3 and n-type Bi2Te3 Thin Films by Radio-frequency Magnetron Sputtering", Vacuum, vol. 144, pp. 164-171, 2017.
[58] M. Tan, Y. Deng, Y. Wang, B. W. Luo, L. X. Liang, and L. L. Cao, "Fabrication of Highly (0 0 l)-Textured Sb2Te3 Film and Corresponding Thermoelectric Device with Enhanced Performance", Journal of Electronic Materials, vol. 41, pp. 3031-3038, 2012.
[59] A. Ahmed and S. Han, "Fabrication, Micro-structure Characteristics and Transport Properties of Co-evaporated Thin Films of Bi2Te3 on AlN Coated Stainless Steel Foils", Scientific Reports, vol. 11, p. 4041, 2021.
[60] L. M. Goncalves, P. Alpuim, G. Min, D. M. Rowe, C. Couto, and J. H. Correia, "Optimization of Bi2Te3 and Sb2Te3 Thin Films Deposited by Co-evaporation on Polyimide for Thermoelectric Applications", Vacuum, vol. 82, pp. 1499-1502, 2008.
[61] M. Kitamura, T. Morikawa, T. Ohyanagi, M. Tai, M. Kinoshita, K. Akita, and N. Takaura, "Chemical Vapor Deposition GeTe/Sb2Te3 Super-Lattice Phase Change Memory", International Conference on Solid State Devices and Materials pp. 546-547, 2013.
[62] O. Vigil-Galán, F. Cruz-Gandarilla, J. Fandiño, F. Roy, J. Sastré-Hernández, and G. Contreras-Puente, "Physical Properties of Bi2Te3 and Sb2Te3 Films Deposited by Close Space Vapor Transport", Semiconductor Science and Technology, vol. 24, p. 025025, 2009.
[63] N. W. Park, W. Y. Lee, J. E. Hong, T. H. Park, S. G. Yoon, H. Im, H. S. Kim, and S. K. Lee, "Effect of Grain Size on Thermal Transport in Post-annealed Antimony Telluride Thin Films", Nanoscale Research Letters, vol. 10, p. 20, 2015.
[64] C. Z. Wang, J. W. Zhai, S. Y. Bai, and X. Yao, "Phase Transition Behaviors and Thermal Conductivity Measurements of Nitrogen-doped Sb2Te3 Thin Films", Materials Letters, vol. 64, pp. 2314-2316, 2010.
[65] A. M. Adam, E. M. Elsehly, M. Ataalla, A. El-Khouly, A. Nafady, and A. K. Diab, "Preparation and Thermoelectric Power Properties of Highly Doped p-type Sb2Te3 Thin Films", Physica E-Low-Dimensional Systems & Nanostructures, vol. 127, p. 114505, 2021.
[66] S. Thaowonkaew, M. Kumar, and A. Vora-Ud, "Thermoelectric Properties of Ag-Doped Sb2Te3 Thin Films on SiO2 and Polyimide Substrates with Rapid Thermal Annealing", Journal of Electronic Materials, vol. 50, pp. 2669-2673, 2021.
[67] C. H. Chen, W. T. Yeh, and T. H. Chuang, "Interfacial Reactions in Zn4Sb3/Titanium Diffusion Couples", Journal of Alloys and Compounds, vol. 881, p. 160630, 2021.
[68] J. X. Cheng, X. W. Hu, and Q. L. Li, "Influences of Different Barrier Films on Microstructures and Electrical Properties of Bi2Te3-based Joints", Journal of Materials Science-Materials in Electronics, vol. 31, pp. 14714-14729, 2020.
[69] H. J. Wu, A. T. Wu, P. C. Wei, and S. W. Chen, "Interfacial Reactions in Thermoelectric Modules", Materials Research Letters, vol. 6, pp. 244-248, 2018.
[70] H. Zhang, H. Y. Jing, Y. D. Han, L. Y. Xu, and G. Q. Lu, "Interfacial Reaction between n- and p-type Thermoelectric Materials and SAC305 Solders", Journal of Alloys and Compounds, vol. 576, pp. 424-431, 2013.
[71] D. G. Zhao, X. Y. Li, L. He, W. Jiang, and L. D. Chen, "High Temperature Reliability Evaluation of CoSb3/Electrode Thermoelectric Joints", Intermetallics, vol. 17, pp. 136-141, 2009.
[72] D. Zhao, X. Li, L. He, W. Jiang, and L. Chen, "Interfacial Evolution Behavior and Reliability Evaluation of CoSb3/Ti/Mo–Cu Thermoelectric Joints during Accelerated Thermal Aging", Journal of Alloys and Compounds, vol. 477, pp. 425-431, 2009.
[73] S. W. Chen, H. J. Wu, C. Y. Wu, C. F. Chang, and C. Y. Chen, "Reaction Evolution and Alternating Layer Formation in Sn/(Bi0.25Sb0.75)2Te3 and Sn/Sb2Te3 Couples", Journal of Alloys and Compounds, vol. 553, pp. 106-112, 2013.
[74] T. Y. Lin, C. N. Liao, and A. T. Wu, "Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials", Journal of Electronic Materials, vol. 41, pp. 153-158, 2012.
[75] W. C. Lin, Y. S. Li, and A. T. Wu, "Study of Diffusion Barrier for Solder/n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules", Journal of Electronic Materials, vol. 47, pp. 148-154, 2018.
[76] L. Q. Chen, D. Q. Mei, Y. C. Wang, and Y. Li, "Ni Barrier in Bi2Te3-based Thermoelectric Modules for Reduced Contact Resistance and Enhanced Power Generation Properties", Journal of Alloys and Compounds, vol. 796, pp. 314-320, 2019.
[77] A. Kobayashi, R. Konagaya, S. Tanaka, and M. Takashiri, "Optimized Structure of Tubular Thermoelectric Generators Using n-type Bi2Te3 and p-type Sb2Te3 Thin Films on Flexible Substrate for Energy Harvesting", Sensors and Actuators a-Physical, vol. 313, p. 112199, 2020.
[78] W. Wang, Y. Ji, H. Xu, H. Li, T. Visan, and F. Golgovici, "A High Packing Density Micro-thermoelectric Power Generator Based on Film Thermoelectric Materials Fabricated by Electrodeposition Technology", Surface & Coatings Technology, vol. 231, pp. 583-589, 2013.
[79] H. Yamamuro and M. Takashiri, "Power Generation in Slope-Type Thin-Film Thermoelectric Generators by the Simple Contact of a Heat Source", Coatings, vol. 9, p. 63, 2019.
[80] M. Mizoshiri, M. Mikami, and K. Ozaki, "The Effect of Cr Buffer Layer Thickness on Voltage Generation of Thin-film Thermoelectric Modules", Journal of Micromechanics and Microengineering, vol. 23, p. 115016, 2013.
[81] I. H. Kim and D. H. Lee, "Diffusion at P/N Junctions of Thin Film Bi0.5Sb1.5Te3/Bi2Te2.4Se0.6 Thermoelectrics", AIP Conference Proceedings, vol. 316, pp. 254-259, 1994.
[82] R. O. Carlson, "Anisotropic Diffusion of Copper into Bismuth Telluride", Journal of Physics and Chemistry of Solids, vol. 13, pp. 65-70, 1960.
[83] X. D. Zhu, L. L. Cao, W. Zhu, and Y. Deng, "Enhanced Interfacial Adhesion and Thermal Stability in Bismuth Telluride/Nickel/Copper Multilayer Films with Low Electrical Contact Resistance", Advanced Materials Interfaces, vol. 5, p. 1801279, 2018.
[84] D. L. Qin, W. Zhu, F. X. Hai, C. J. Wang, J. L. Cui, and Y. Deng, "Enhanced Interface Stability of Multilayer Bi2Te3/Ti/Cu Films after Heat Treatment via the Insertion of a Ti Layer", Advanced Materials Interfaces, vol. 6, p. 1900682, 2019.
[85] C. Y. Ko and A. T. Wu, "Evaluation of Diffusion Barrier Between Pure Sn and Te", Journal of Electronic Materials, vol. 41, pp. 3320-3324, 2012.
[86] S. Chen, L. Tan, C. Yang, P. Chen, A. Hu, H. Ling, M. Li, and T. Hang, "Effects of Amorphous Co W and Ni W Barrier Layers on the Evolution of Sn/Cu Interface", Materials Characterization, vol. 181, p. 111448, 2021.
[87] A. Kohn, M. Eizenberg, and Y. Shacham-Diamand, "The Role of Microstructure in Nanocrystalline Conformal Co0.9W0.02P0.08 Diffusion Barriers for Copper Metallization", Applied Surface Science, vol. 212, pp. 367-372, 2003.
[88] T. K. Tsai, S. S. Wu, W. L. Liu, S. H. Hsieh, and W. J. Chen, "Electroless CoWP as a Diffusion Barrier between Electroless Copper and Silicon", Journal of Electronic Materials, vol. 36, pp. 1408-1414, 2007.
[89] N. Tsyntsaru, G. Kaziukaitis, C. Yang, H. Cesiulis, H. G. G. Philipsen, M. Lelis, and J. P. Celis, "Co-W Nanocrystalline Electrodeposits as Barrier for Interconnects", Journal of Solid State Electrochemistry, vol. 18, pp. 3057-3064, 2014.
[90] H. C. Hsieh, C. H. Wang, T. W. Lan, T. H. Lee, Y. Y. Chen, H. S. Chu, and A. T. Wu, "Joint Properties Enhancement for PbTe Thermoelectric Materials by Addition of Diffusion Barrier", Materials Chemistry and Physics, vol. 246, p. 122848, 2020.
[91] H. C. Hsieh, C. H. Wang, W. C. Lin, S. Chakroborty, T. H. Lee, H. S. Chu, and A. T. Wu, "Electroless Co-P Diffusion Barrier for n-PbTe Thermoelectric Material", Journal of Alloys and Compounds, vol. 728, pp. 1023-1029, 2017.
[92] S. Y. Li, D. H. Yang, Q. Tan, and L. L. Li, "Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material", Journal of Electronic Materials, vol. 44, pp. 2007-2014, 2015.
[93] R. P. Gupta, O. D. Iyore, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, "Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices", Electrochemical and Solid State Letters, vol. 12, pp. H395-H397, 2009.
[94] W. H. Chao, Y. R. Chen, S. C. Tseng, P. H. Yang, R. J. Wu, and J. Y. Hwang, "Enhanced Thermoelectric Properties of Metal Film on Bismuth Telluride-based Materials", Thin Solid Films, vol. 570, pp. 172-177, 2014.
[95] C. H. Wang, H. C. Hsieh, H. Y. Lee, and A. T. Wu, "Co-P Diffusion Barrier for p-Bi2Te3 Thermoelectric Material", Journal of Electronic Materials, vol. 48, pp. 53-57, 2019.
[96] D. H. Li, L. L. Li, D. W. Liu, and J. F. Li, "Temperature Dependence of the Raman Spectra of Bi2Te3 and Bi0.5Sb1.5Te3 Thermoelectric Films", Physica Status Solidi-Rapid Research Letters, vol. 6, pp. 268-270, 2012.
[97] F. Cverna, Thermal Properties of Metals, ASM Ready Reference, 2002.
[98] L. I. Anatychuk and O. J. Luste, "Physical Principles of Microminiaturization in Thermoelectricity", Fifteenth International Conference on Thermoelectrics, pp. 279-287, 1996.
[99] C. H. Wang, H. C. Hsieh, Z. W. Sun, V. K. Ranganayakulu, T. W. Lan, Y. Y. Chen, Y. Y. Chang, and A. T. Wu, "Interfacial Stability in Bi2Te3 Thermoelectric Joints", ACS Applied Material Interfaces, vol. 12, pp. 27001-27009, 2020.
[100] J. M. Park, D. Y. Hyeon, H. S. Ma, S. Kim, S. T. Kim, Y. N. Nguyen, I. Son, S. Yi, K. T. Kim, and K. I. Park, "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer", Journal of Alloys and Compounds, vol. 884, p. 161119, 2021.
[101] C. P. Lin and C. M. Chen, "The Cross-interactions in the Ni/Sn/Cu Diffusion Couples with an Electroless Palladium Surface Finish", Journal of Alloys and Compounds, vol. 547, pp. 37-42, 2013.
[102] L. Zhong and F. Shimura, "Substitutional Diffusion of Transition-Metal Impurities in Silicon", Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 32, pp. L1113-L1116, 1993.
[103] X. G. Zhu, J. Wen, G. Wang, X. Chen, J. F. Jia, X. C. Ma, K. He, L. L. Wang, and Q. K. Xue, "Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films", Surface Science, vol. 617, pp. 156-161, 2013.
[104] S. Fujimoto, S. Sano, and T. Kajitani, "Analysis of diffusion mechanism of cu in polycrystalline Bi2Te3-Based alloy with the aging of electrical conductivity", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 5033-5039, 2007.
[105] A. H. Barajas-Aguilar, S. J. Jimenez Sandoval, and A. M. Garay-Tapia, "On the Stability of CuxTe Polytypes: Phase Transitions, Vibrational and Electronic Properties", Journal of Physics Condensed Matter, vol. 32, p. 045403, 2020.
[106] Y. Y. Jia, Z. F. Li, X. X. Ye, R. D. Liu, B. Leng, J. Qiu, M. Liu, and Z. J. Li, "Effect of Cr Contents on the Diffusion Behavior of Te in Ni-based Alloy", Journal of Nuclear Materials, vol. 497, pp. 101-106, 2017.
[107] H. Y. Jing, Y. Li, L. Y. Xu, Y. D. Han, G. Q. Lu, and H. Zhang, "Interfacial Reaction and Shear Strength of SnAgCu/Ni/Bi2Te3-Based TE Materials During Aging", Journal of Materials Engineering and Performance, vol. 24, pp. 4844-4852, 2015.
[108] M. Tashiro, S. Sukenaga, K. Ikemoto, K. Shinoda, T. Kajitani, S. Suzuki, and H. Shibata, "Investigation of Interfacial Reactions between Metallic Substrates and n-type Bulk Bismuth Telluride Thermoelectric Material", Journal of Materials Science, vol. 56, pp. 14170-14180, 2021.
[109] R. P. Gupta, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, "Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization", Journal of the Electrochemical Society, vol. 157, pp. H666-H670, 2010.
[110] M. Muñoz-Rojo, O. Caballero-Calero, and M. Martín-González, "Electrical Contact Resistances of Thermoelectric Thin Films Measured by Kelvin Probe Microscopy", Applied Physics Letters, vol. 103, p. 183905, 2013.
[111] H. Yong, S. Na, J.-G. Gang, H. Shin, S.-J. Jeon, S. Hyun, and H.-J. Lee, "Study on the Contact Resistance of Various Metals (Au, Ti, and Sb) on Bi–Te and Sb–Te Thermoelectric Films", Japanese Journal of Applied Physics, vol. 55, p. 06JE03, 2016.
[112] W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, "Understanding of the Contact of Nanostructured Thermoelectric n-type Bi2Te2.7Se0.3 Legs for Power Generation Applications", Journal of Materials Chemistry A, vol. 1, pp. 13093-13100, 2013.
[113] T. Thonhauser, G. S. Jeon, G. D. Mahan, and J. O. Sofo, "Stress-induced Defects in Sb2Te3", Physical Review B, vol. 68, p. 205207, 2003.
[114] P. Y. Chuang, S. H. Su, C. W. Chong, Y. F. Chen, Y. H. Chou, J. C. A. Huang, W. C. Chen, C. M. Cheng, K. D. Tsuei, C. H. Wang, Y. W. Yang, Y. F. Liao, S. C. Weng, J. F. Lee, Y. K. Lan, S. L. Chang, C. H. Lee, C. K. Yang, H. L. Su, and Y. C. Wu, "Anti-site Defect Effect on the Electronic Structure of a Bi2Te3 Topological Insulator", RSC Advances, vol. 8, pp. 423-428, 2018.
[115] W. Y. Lee, N. W. Park, J. E. Hong, S. G. Yoon, J. H. Koh, and S. K. Lee, "Effect of Electronic Contribution on Temperature-dependent Thermal Transport of Antimony Telluride Thin Film", Journal of Alloys and Compounds, vol. 620, pp. 120-124, 2015. |