博碩士論文 106324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.22.240.205
姓名 孫振偉(Zhen-Wei Sun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 碲化銻薄膜熱電模組異質接合界面對熱電性質之影響
(Effect of Interface on Thermoelectric Properties for Sb2Te3 Thin Film Thermoelectric Modules)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 近年來,碳中和相關的議題備受矚目,全球致力於減少碳排放量,因此再生能源相關的研究逐漸增加,熱電裝置即是一種能將熱能與電能交互轉換的技術,若能將廢熱轉換成可用的電能,將能進一步提升能源使用效率。熱電材料模組化後,由於嚴重的交互擴散以及界面反應導致模組的熱電性質大幅下降,正確選擇熱電薄膜的電極材料與擴散阻障層材料可提升整體的功率因子。本研究將Cu/Sb2Te3/Cu、Ni/Sb2Te3/Ni、Cu/Co/Sb2Te3/Co/Cu模組進行長時間時效熱處理,模擬實際應用下,熱電性質與薄膜組成的變化,在Cu/Sb2Te3/Cu模組中,Cu電極快速擴散至Sb2Te3薄膜,並生成大量的CuTe介金屬化合物 (IMC),導致Sb2Te3薄膜中的Te含量下降,進而生成 SbTe反位缺陷,使功率因子下降。相反地,在Ni/Sb2Te3/Ni模組中,界面處生成一連續NiTe層,成功抑制Ni電極持續擴散至Sb2Te3薄膜,但生成一較厚的IMC層將導致接觸電阻率大幅上升。在Cu/Co/Sb2Te3/Co/Cu模組中,Co成功抑制Cu擴散至Sb2Te3薄膜,同時Co也無擴散至Sb2Te3薄膜中,僅有Sb2O3生成,導致Sb2Te3薄膜中的Sb含量下降,進而生成TeSb反位缺陷,使功率因子增加。在此,提出兩個缺陷反應式來描述反位缺陷對熱電性質之影響以及薄膜的化學計量比與反位缺陷濃度之間的關係。同時,將Cu/Sb2Te3/Cu、Ni/Sb2Te3/Ni、Cu/Co/Sb2Te3/Co/Cu模組熱導率的變化進行討論。綜合熱電性質以及接觸電阻率的研究結果,Cu/Co/Sb2Te3/Co/Cu模組具有最佳的熱電表現以及熱穩定性,期以貢獻於未來Sb2Te3薄膜熱電裝置之商業化。
摘要(英) Issues related to carbon neutrality have received significant attention in recent years, and the world is committed to reducing carbon emissions. Therefore, research into renewable energy has gradually increased. Thermoelectric devices are a technology that can interactively convert thermal energy and electrical energy. The energy efficiency can be further improved if wasted heat is converted into usable electricity. After a thermoelectric material is modularized, the thermoelectric properties of the module are often greatly reduced because of severe interdiffusion and interfacial reactions. This study analyzed the compositional variation and measured the thermoelectric properties of Cu/Sb2Te3/Cu, Ni/Sb2Te3/Ni, and Cu/Co/Sb2Te3/Co/Cu modules that were aged to simulate real applications. The rapid diffusion of Cu in the Cu/Sb2Te3/Cu modules resulted in the massive growth of a CuTe intermetallic compound, which led to Te deficiency. Te deficiency causes the formation of antisite 〖Sb〗_Te^( ′) and reduces the power factor. In the Ni/Sb2Te3/Ni modules, the formation of a NiTe reaction layer at the interface becomes a self-barrier that inhibits Ni from diffusing to the Sb2Te3 film, but that also degrades contact resistivity. In the Cu/Co/Sb2Te3/Co/Cu modules, Co successfully inhibited Cu diffusion. Antisite 〖Te〗_Sb^. increases the power factor because the growth of Sb2O3 on the Sb2Te3 films, results in Sb deficiency. Herein, two defect reactions are proposed to explain the effects of such changes on the thermoelectric properties and the relationship between the stoichiometry of the films and the antisites concentrations. Variations in the thermal conductivity of the films are also discussed. The results show that the Cu/Co/Sb2Te3/Co/Cu modules have good thermoelectric performance and thermal stability, which should contribute to the commercialization of Sb2Te3 thin-film thermoelectric devices in the future.
關鍵字(中) ★ 碲化銻
★ 界面反應
★ 缺陷反應式
★ 擴散行為
★ 熱電性質
關鍵字(英) ★ Sb2Te3
★ Interfacial reaction
★ Defect reaction
★ Diffusion behavior
★ Thermoelectric property
論文目次 摘要 i
ABSTRACT ii
致謝辭 iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xi
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Thermoelectric Materials 6
1-2-1 Fundamental Theory and Performance of Thermoelectric Device 6
1-2-2 Bulk and Thin-film Thermoelectric Device 9
1-2-3 Applications 11
1-3 Motivation, Aims and Objectives 14
CHAPTER 2 LITERATURE REVIEW 16
2-1 Sb2Te3-based Thermoelectric Materials 16
2-1-1 Deposition Parameter 18
2-1-2 Annealing Condition 20
2-1-3 Doping Method 21
2-2 Interfacial Reaction for Sb2Te3-based Thermoelectric Materials 23
2-2-1 Sb2Te3-based Bulk Modules 23
2-2-2 Sb2Te3-based Thin-film Modules 25
2-3 Co Diffusion Barrier 27
2-4 Evaluation of Thin-film Thermoelectric Modules 30
CHAPTER 3 EXPERIMENTAL PROCEDURE 32
3-1 Sample Preparation 32
3-1-1 Sb2Te3 Thermoelectric Thin-film Fabrication 32
3-1-2 Electrode and Diffusion Barrier Fabrication 34
3-2 Diffusion Behavior 35
3-3 Interfacial Reaction 36
3-4 Contact Resistivity 37
3-5 Thermoelectric Properties 39
3-5-1 ZEM-3 Measurement 39
3-5-2 The 3-w Method 39
CHAPTER 4 RESULTS AND DISCUSSION 42
4-1 Sb2Te3 Thin-Film Characterization 42
4-2 Diffusion Behavior 46
4-2-1 Diffusion Behavior of Cu in the Cu/Sb2Te3/Cu Modules 46
4-2-2 Diffusion Behavior of Ni in the Ni/Sb2Te3/Ni Modules 49
4-2-3 Diffusion Behavior of Cu in the Cu/Co/Sb2Te3/Co/Cu Modules 51
4-3 Interfacial Reaction 54
4-3-1 Interfacial Reaction for Cu/Sb2Te3/Cu Modules 54
4-3-2 Interfacial Reaction for Ni/Sb2Te3/Ni Modules 59
4-3-3 Interfacial Reaction for Cu/Co/Sb2Te3/Co/Cu Modules 63
4-4 Contact Resistivity 67
4-5 Thermoelectric Properties 70
4-5-1 Thermoelectric Properties of Pristine Sb2Te3 Thin Films 70
4-5-2 Thermoelectric Properties of Cu/Sb2Te3/Cu Modules 73
4-5-3 Thermoelectric Properties of Ni/Sb2Te3/Ni Modules 76
4-5-4 Thermoelectric Properties of Cu/Co/Sb2Te3/Co/Cu Modules 79
CHAPTER 5 CONCLUSION 82
REFERENCE 83
參考文獻 [1] Enerdata, Total Energy Consumption. Available: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
[2] H. Ritchie, M. Roser, and P. Rosado, CO₂ and Greenhouse Gas Emissions, 2020. Available: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#
[3] REN21, Renewables 2021 Global Status Report, 2021. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf
[4] I. E. Agency, Global Energy Review 2021, 2021. Available: https://www.iea.org/reports/global-energy-review-2021/renewables
[5] L. L. N. Laboratory, Energy Flow Charts. Available: https://flowcharts.llnl.gov/
[6] Y. Kishita, Y. Ohishi, M. Uwasu, M. Kuroda, H. Takeda, and K. Hara, "Evaluating the Life Cycle CO2 Emissions and Costs of Thermoelectric Generators for Passenger Automobiles: a Scenario Analysis", Journal of Cleaner Production, vol. 126, pp. 607-619, 2016.
[7] D. B. M. Research, Global Thermoelectric Modules Market - Industry Trend and Forecast to 2027. Available: https://www.databridgemarketresearch.com/reports/global-thermoelectric-modules-market
[8] K. B. V. research, Global Thermoelectric Modules Market By Offering (Hardware and Services), By Type (Bulk, Micro and Thin-Film), By Model (Single Stage and Multi Stage), By Functionality (General Purpose and Deep Cooling), By End User (Consumer Electronics, Automotive, Industrial, Medical & Laboratories, Manufacturing, Telecommunications and Others), By Regional Outlook, Industry Analysis Report and Forecast, 2021 - 2027, 2021. Available: https://www.kbvresearch.com/thermoelectric-modules-market/
[9] T. Kajikawa, "Thermoelectric Application for Power Generation in Japan", Advances in Science and Technology, vol. 74, pp. 83-92, 2010.
[10] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, "Material and Manufacturing Cost Considerations for Thermoelectrics", Renewable & Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014.
[11] Q. H. Zhang, X. Y. Huang, S. Q. Bai, X. Shi, C. Uher, and L. D. Chen, "Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges", Advanced Engineering Materials, vol. 18, pp. 194-213, 2016.
[12] S. H. Choday, M. S. Lundstrom, and K. Roy, "Prospects of Thin-Film Thermoelectric Devices for Hot-Spot Cooling and On-Chip Energy Harvesting", Ieee Transactions on Components Packaging and Manufacturing Technology, vol. 3, pp. 2059-2067, 2013.
[13] L. D. Hicks and M. S. Dresselhaus, "Effect of Quantum-well Structures on the Thermoelectric Figure of Merit", Physical Review B Condensed Matter, vol. 47, pp. 12727-12731, 1993.
[14] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-dimensional Conductor", Physical Review B Condensed Matter, vol. 47, pp. 16631-16634, 1993.
[15] D. Crane, J. LaGrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, and C. Maranville, "TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development", Journal of Electronic Materials, vol. 42, pp. 1582-1591, 2013.
[16] P. Li, L. L. Cai, P. C. Zhai, X. F. Tang, Q. J. Zhang, and M. Niino, "Design of a Concentration Solar Thermoelectric Generator", Journal of Electronic Materials, vol. 39, pp. 1522-1530, 2010.
[17] N. Miljkovic and E. N. Wang, "Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons", Solar Energy, vol. 85, pp. 2843-2855, 2011.
[18] K. P. Sibin, N. Selvakumar, A. Kumar, A. Dey, N. Sridhara, H. D. Shashikala, A. K. Sharma, and H. C. Barshilia, "Design and Development of ITO/Ag/ITO Spectral Beam Splitter Coating for Photovoltaic-thermoelectric Hybrid Systems", Solar Energy, vol. 141, pp. 118-126, 2017.
[19] L. Atsumitec Co., The Successful Development of “Exhaust Gas Power Generating Systems,”. Available: http://www.atsumitec.co.jp/en/technology/basis/
[20] P. Aranguren, D. Astrain, A. Rodriguez, and A. Martinez, "Experimental Investigation of the Applicability of a Thermoelectric Generator to Recover Waste Heat from a Combustion Chamber", Applied Energy, vol. 152, pp. 121-130, 2015.
[21] P. Yodovard, J. Khedari, and J. Hirunlabh, "The Potential of Waste Heat Thermoelectric Power Generation from Diesel Cycle and Gas Turbine Cogeneration Plants", Energy Sources, vol. 23, pp. 213-224, 2001.
[22] S. J. Kim, H. E. Lee, H. Choi, Y. Kim, J. H. We, J. S. Shin, K. J. Lee, and B. J. Cho, "High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process", ACS Nano, vol. 10, pp. 10851-10857, 2016.
[23] J. P. Rojas, D. Conchouso, A. Arevalo, D. Singh, I. G. Foulds, and M. M. Hussain, "Paper-based Origami Flexible and Foldable Thermoelectric Nanogenerator", Nano Energy, vol. 31, pp. 296-301, 2017.
[24] D. Energy, Dyson Energy Bracelet a Good Call, 2009. Available: https://newatlas.com/dyson-energy-bracelet/12040/
[25] L. Yang, Z. G. Chen, M. S. Dargusch, and J. Zou, "High Performance Thermoelectric Materials: Progress and Their Applications", Advanced Energy Materials, vol. 8, p. 1701797, 2018.
[26] V. Vijayenthiran, BMW Showcases Thermoelectric Technology in 5-series, 2011. Available: https://www.motorauthority.com/news/1065596_bmw-showcases-thermoelectric-technology-in-5-series
[27] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, "A Review on Thermoelectric Generators: Progress and Applications", Energies, vol. 13, p. 3606, 2020.
[28] X. H. Hao, B. Peng, G. N. Xie, and Y. Chen, "Efficient On-chip Hotspot Removal Combined Solution of Thermoelectric Cooler and Mini-channel Heat Sink", Applied Thermal Engineering, vol. 100, pp. 170-178, 2016.
[29] J. H. Li, B. K. Ma, R. S. Wang, and L. Han, "Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-power LEDs", Microelectronics Reliability, vol. 51, pp. 2210-2215, 2011.
[30] R. A. Khire, A. Messac, and S. Van Dessel, "Design of Thermoelectric Heat Pump Unit for Active Building Envelope Systems", International Journal of Heat and Mass Transfer, vol. 48, pp. 4028-4040, 2005.
[31] M. Dargusch, W. D. Liu, and Z. G. Chen, "Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems", Advanced Science, vol. 7, p. 2001362, 2020.
[32] J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, "When Thermoelectrics Reached the Nanoscale", Nature Nanotechnology, vol. 8, pp. 471-3, 2013.
[33] D. Enescu, Bring Thermoelectricity into Reality -Thermoelectric Refrigeration Principles, 2018.
[34] L. Lou, D. H. Shou, H. J. Park, D. L. Zhao, Y. S. Wu, X. N. Hui, R. G. Yang, E. C. Kan, and J. T. Fan, "Thermoelectric Air Conditioning Undergarment for Personal Thermal Management and HVAC Energy Saving", Energy and Buildings, vol. 226, p. 110374, 2020.
[35] G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials", Nature Material, vol. 7, pp. 105-14, 2008.
[36] J. E. Hong, S. K. Lee, and S. G. Yoon, "Enhanced Thermoelectric Properties of Thermal Treated Sb2Te3 Thin Films", Journal of Alloys and Compounds, vol. 583, pp. 111-115, 2014.
[37] S. F. Shen, W. Zhu, Y. Deng, H. Z. Zhao, Y. C. Peng, and C. J. Wang, "Enhancing Thermoelectric Properties of Sb2Te3 Flexible Thin Film through Microstructure Control and Crystal Preferential Orientation Engineering", Applied Surface Science, vol. 414, pp. 197-204, 2017.
[38] L. M. Goncalves, P. Alpuim, A. G. Rolo, and J. H. Correia, "Thermal Co-evaporation of Sb2Te3 Thin-films Optimized for Thermoelectric Applications", Thin Solid Films, vol. 519, pp. 4152-4157, 2011.
[39] J. M. Lin, Y. C. Chen, C. F. Yang, and W. Chen, "Effect of Substrate Temperature on the Thermoelectric Properties of the Sb2Te3 Thin Films Deposition by Using Thermal Evaporation Method", Journal of Nanomaterials, vol. 2015, p. 135130, 2015.
[40] J. L. Lensch-Falk, D. Banga, P. E. Hopkins, D. B. Robinson, V. Stavila, P. A. Sharma, and D. L. Medlin, "Electrodeposition and Characterization of Nano-crystalline Antimony Telluride Thin Films", Thin Solid Films, vol. 520, pp. 6109-6117, 2012.
[41] C. F. Wang, Q. Wang, L. D. Chen, X. C. Xu, and Q. Yao, "Electrodeposition of Sb2Te3 Films on Si(100) and Ag Substrates", Electrochemical and Solid State Letters, vol. 9, pp. C147-C149, 2006.
[42] I. Hilmi, A. Lotnyk, J. W. Gerlach, P. Schumacher, and B. Rauschenbach, "Research Update: Van-der-Waals Epitaxy of Layered Chalcogenide Sb2Te3 Thin Films Grown by Pulsed Laser Deposition", APL Materials, vol. 5, p. 050701, 2017.
[43] J. Ning, J. C. Martinez, J. Momand, H. Zhang, S. C. Tiwari, F. Shimojo, A. Nakano, R. K. Kalia, P. Vashishta, P. S. Branicio, B. J. Kooi, and R. E. Simpson, "Differences in Sb2Te3 Growth by Pulsed Laser and Sputter Deposition", Acta Materialia, vol. 200, pp. 811-820, 2020.
[44] S. L. Benjamin, C. H. de Groot, C. Gurnani, S. L. Hawken, A. L. Hector, R. Huang, M. Jura, W. Levason, E. Reid, G. Reid, S. P. Richards, and G. B. G. Stenning, "Compositionally Tunable Ternary Bi2(Se1−xTex)3 and (Bi1−ySby)2Te3 Thin Films via Low Pressure Chemical Vapour Deposition", Journal of Materials Chemistry C, vol. 6, pp. 7734-7739, 2018.
[45] G. Bendt, S. Schulz, S. Zastrow, and K. Nielsch, "Single-Source Precursor-Based Deposition of Sb2Te3 Films by MOCVD", Chemical Vapor Deposition, vol. 19, pp. 235-241, 2013.
[46] X. Zhang, Z. Zeng, C. Shen, Z. Zhang, Z. Wang, C. Lin, and Z. Hu, "Investigation on the Electrical Transport Properties of Highly (00l)-textured Sb2Te3 Films Deposited by Molecular Beam Epitaxy", Journal of Applied Physics, vol. 115, p. 024307, 2014.
[47] P. Wanarattikan, P. Jitthammapirom, R. Sakdanuphab, and A. Sakulkalavek, "Effect of Grain Size and Film Thickness on the Thermoelectric Properties of Flexible Sb2Te3 Thin Films", Advances in Materials Science and Engineering, vol. 2019, p. 6954918, 2019.
[48] B. Fang, Z. Zeng, X. Yan, and Z. Hu, "Effects of Annealing on Thermoelectric Properties of Sb2Te3 Thin Films Prepared by Radio Frequency Magnetron Sputtering", Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1105-1111, 2012.
[49] M. Tan, Y. Deng, and Y. M. Hao, "Enhanced Thermoelectric Properties and Layered Structure of Sb2Te3 Films Induced by Special (0 0 l) Crystal Plane", Chemical Physics Letters, vol. 584, pp. 159-164, 2013.
[50] D. T. Shi, R. P. Wang, G. X. Wang, C. Li, X. Shen, and Q. H. Nie, "Enhanced Thermoelectric Properties in Cu-doped Sb2Te3 Films", Vacuum, vol. 145, pp. 347-350, 2017.
[51] K. B. Masood, P. Kumar, R. Singh, and J. Singh, "Odyssey of Thermoelectric Materials: Foundation of the Complex Structure", Journal of Physics Communications, vol. 2, p. 062001, 2018.
[52] T. Khumtong, P. Sukwisute, A. Sakulkalavek, and R. Sakdanuphab, "Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures", Journal of Electronic Materials, vol. 46, pp. 3166-3171, 2017.
[53] P. Junlabhut, P. Nuthongkum, R. Sakdanuphab, A. Harnwunggmoung, and A. Sakulkalavek, "Influence of Sputtering Power Density on the Thermoelectric and Mechanical Properties of Flexible Thermoelectric Antimony Telluride Films Deposited by DC Magnetron Sputtering", Journal of Electronic Materials, vol. 49, pp. 2747-2754, 2020.
[54] J. Horák, Č. Drašar, R. Novotný, S. Karamazov, and P. Lošťák, "Non-stoichiometry of the Crystal Lattice of Antimony Telluride", Physica Status Solidi (a), vol. 149, pp. 549-556, 1995.
[55] P. Fan, Z. H. Zheng, G. X. Liang, D. P. Zhang, and X. M. Cai, "Thermoelectric Characterization of Ion Beam Sputtered Sb2Te3 Thin Films", Journal of Alloys and Compounds, vol. 505, pp. 278-280, 2010.
[56] S. A. Haidar, Y. Gao, Y. F. He, J. E. Cornett, B. X. Chen, N. J. Coburn, C. Glynn, M. T. Dunham, K. E. Goodson, and N. Sun, "Deposition and Fabrication of Sputtered Bismuth Telluride and Antimony Telluride for Microscale Thermoelectric Energy Harvesters", Thin Solid Films, vol. 717, p. 138444, 2021.
[57] K. Takayama and M. Takashiri, "Multi-layered-stack Thermoelectric Generators Using p-type Sb2Te3 and n-type Bi2Te3 Thin Films by Radio-frequency Magnetron Sputtering", Vacuum, vol. 144, pp. 164-171, 2017.
[58] M. Tan, Y. Deng, Y. Wang, B. W. Luo, L. X. Liang, and L. L. Cao, "Fabrication of Highly (0 0 l)-Textured Sb2Te3 Film and Corresponding Thermoelectric Device with Enhanced Performance", Journal of Electronic Materials, vol. 41, pp. 3031-3038, 2012.
[59] A. Ahmed and S. Han, "Fabrication, Micro-structure Characteristics and Transport Properties of Co-evaporated Thin Films of Bi2Te3 on AlN Coated Stainless Steel Foils", Scientific Reports, vol. 11, p. 4041, 2021.
[60] L. M. Goncalves, P. Alpuim, G. Min, D. M. Rowe, C. Couto, and J. H. Correia, "Optimization of Bi2Te3 and Sb2Te3 Thin Films Deposited by Co-evaporation on Polyimide for Thermoelectric Applications", Vacuum, vol. 82, pp. 1499-1502, 2008.
[61] M. Kitamura, T. Morikawa, T. Ohyanagi, M. Tai, M. Kinoshita, K. Akita, and N. Takaura, "Chemical Vapor Deposition GeTe/Sb2Te3 Super-Lattice Phase Change Memory", International Conference on Solid State Devices and Materials pp. 546-547, 2013.
[62] O. Vigil-Galán, F. Cruz-Gandarilla, J. Fandiño, F. Roy, J. Sastré-Hernández, and G. Contreras-Puente, "Physical Properties of Bi2Te3 and Sb2Te3 Films Deposited by Close Space Vapor Transport", Semiconductor Science and Technology, vol. 24, p. 025025, 2009.
[63] N. W. Park, W. Y. Lee, J. E. Hong, T. H. Park, S. G. Yoon, H. Im, H. S. Kim, and S. K. Lee, "Effect of Grain Size on Thermal Transport in Post-annealed Antimony Telluride Thin Films", Nanoscale Research Letters, vol. 10, p. 20, 2015.
[64] C. Z. Wang, J. W. Zhai, S. Y. Bai, and X. Yao, "Phase Transition Behaviors and Thermal Conductivity Measurements of Nitrogen-doped Sb2Te3 Thin Films", Materials Letters, vol. 64, pp. 2314-2316, 2010.
[65] A. M. Adam, E. M. Elsehly, M. Ataalla, A. El-Khouly, A. Nafady, and A. K. Diab, "Preparation and Thermoelectric Power Properties of Highly Doped p-type Sb2Te3 Thin Films", Physica E-Low-Dimensional Systems & Nanostructures, vol. 127, p. 114505, 2021.
[66] S. Thaowonkaew, M. Kumar, and A. Vora-Ud, "Thermoelectric Properties of Ag-Doped Sb2Te3 Thin Films on SiO2 and Polyimide Substrates with Rapid Thermal Annealing", Journal of Electronic Materials, vol. 50, pp. 2669-2673, 2021.
[67] C. H. Chen, W. T. Yeh, and T. H. Chuang, "Interfacial Reactions in Zn4Sb3/Titanium Diffusion Couples", Journal of Alloys and Compounds, vol. 881, p. 160630, 2021.
[68] J. X. Cheng, X. W. Hu, and Q. L. Li, "Influences of Different Barrier Films on Microstructures and Electrical Properties of Bi2Te3-based Joints", Journal of Materials Science-Materials in Electronics, vol. 31, pp. 14714-14729, 2020.
[69] H. J. Wu, A. T. Wu, P. C. Wei, and S. W. Chen, "Interfacial Reactions in Thermoelectric Modules", Materials Research Letters, vol. 6, pp. 244-248, 2018.
[70] H. Zhang, H. Y. Jing, Y. D. Han, L. Y. Xu, and G. Q. Lu, "Interfacial Reaction between n- and p-type Thermoelectric Materials and SAC305 Solders", Journal of Alloys and Compounds, vol. 576, pp. 424-431, 2013.
[71] D. G. Zhao, X. Y. Li, L. He, W. Jiang, and L. D. Chen, "High Temperature Reliability Evaluation of CoSb3/Electrode Thermoelectric Joints", Intermetallics, vol. 17, pp. 136-141, 2009.
[72] D. Zhao, X. Li, L. He, W. Jiang, and L. Chen, "Interfacial Evolution Behavior and Reliability Evaluation of CoSb3/Ti/Mo–Cu Thermoelectric Joints during Accelerated Thermal Aging", Journal of Alloys and Compounds, vol. 477, pp. 425-431, 2009.
[73] S. W. Chen, H. J. Wu, C. Y. Wu, C. F. Chang, and C. Y. Chen, "Reaction Evolution and Alternating Layer Formation in Sn/(Bi0.25Sb0.75)2Te3 and Sn/Sb2Te3 Couples", Journal of Alloys and Compounds, vol. 553, pp. 106-112, 2013.
[74] T. Y. Lin, C. N. Liao, and A. T. Wu, "Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials", Journal of Electronic Materials, vol. 41, pp. 153-158, 2012.
[75] W. C. Lin, Y. S. Li, and A. T. Wu, "Study of Diffusion Barrier for Solder/n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules", Journal of Electronic Materials, vol. 47, pp. 148-154, 2018.
[76] L. Q. Chen, D. Q. Mei, Y. C. Wang, and Y. Li, "Ni Barrier in Bi2Te3-based Thermoelectric Modules for Reduced Contact Resistance and Enhanced Power Generation Properties", Journal of Alloys and Compounds, vol. 796, pp. 314-320, 2019.
[77] A. Kobayashi, R. Konagaya, S. Tanaka, and M. Takashiri, "Optimized Structure of Tubular Thermoelectric Generators Using n-type Bi2Te3 and p-type Sb2Te3 Thin Films on Flexible Substrate for Energy Harvesting", Sensors and Actuators a-Physical, vol. 313, p. 112199, 2020.
[78] W. Wang, Y. Ji, H. Xu, H. Li, T. Visan, and F. Golgovici, "A High Packing Density Micro-thermoelectric Power Generator Based on Film Thermoelectric Materials Fabricated by Electrodeposition Technology", Surface & Coatings Technology, vol. 231, pp. 583-589, 2013.
[79] H. Yamamuro and M. Takashiri, "Power Generation in Slope-Type Thin-Film Thermoelectric Generators by the Simple Contact of a Heat Source", Coatings, vol. 9, p. 63, 2019.
[80] M. Mizoshiri, M. Mikami, and K. Ozaki, "The Effect of Cr Buffer Layer Thickness on Voltage Generation of Thin-film Thermoelectric Modules", Journal of Micromechanics and Microengineering, vol. 23, p. 115016, 2013.
[81] I. H. Kim and D. H. Lee, "Diffusion at P/N Junctions of Thin Film Bi0.5Sb1.5Te3/Bi2Te2.4Se0.6 Thermoelectrics", AIP Conference Proceedings, vol. 316, pp. 254-259, 1994.
[82] R. O. Carlson, "Anisotropic Diffusion of Copper into Bismuth Telluride", Journal of Physics and Chemistry of Solids, vol. 13, pp. 65-70, 1960.
[83] X. D. Zhu, L. L. Cao, W. Zhu, and Y. Deng, "Enhanced Interfacial Adhesion and Thermal Stability in Bismuth Telluride/Nickel/Copper Multilayer Films with Low Electrical Contact Resistance", Advanced Materials Interfaces, vol. 5, p. 1801279, 2018.
[84] D. L. Qin, W. Zhu, F. X. Hai, C. J. Wang, J. L. Cui, and Y. Deng, "Enhanced Interface Stability of Multilayer Bi2Te3/Ti/Cu Films after Heat Treatment via the Insertion of a Ti Layer", Advanced Materials Interfaces, vol. 6, p. 1900682, 2019.
[85] C. Y. Ko and A. T. Wu, "Evaluation of Diffusion Barrier Between Pure Sn and Te", Journal of Electronic Materials, vol. 41, pp. 3320-3324, 2012.
[86] S. Chen, L. Tan, C. Yang, P. Chen, A. Hu, H. Ling, M. Li, and T. Hang, "Effects of Amorphous Co W and Ni W Barrier Layers on the Evolution of Sn/Cu Interface", Materials Characterization, vol. 181, p. 111448, 2021.
[87] A. Kohn, M. Eizenberg, and Y. Shacham-Diamand, "The Role of Microstructure in Nanocrystalline Conformal Co0.9W0.02P0.08 Diffusion Barriers for Copper Metallization", Applied Surface Science, vol. 212, pp. 367-372, 2003.
[88] T. K. Tsai, S. S. Wu, W. L. Liu, S. H. Hsieh, and W. J. Chen, "Electroless CoWP as a Diffusion Barrier between Electroless Copper and Silicon", Journal of Electronic Materials, vol. 36, pp. 1408-1414, 2007.
[89] N. Tsyntsaru, G. Kaziukaitis, C. Yang, H. Cesiulis, H. G. G. Philipsen, M. Lelis, and J. P. Celis, "Co-W Nanocrystalline Electrodeposits as Barrier for Interconnects", Journal of Solid State Electrochemistry, vol. 18, pp. 3057-3064, 2014.
[90] H. C. Hsieh, C. H. Wang, T. W. Lan, T. H. Lee, Y. Y. Chen, H. S. Chu, and A. T. Wu, "Joint Properties Enhancement for PbTe Thermoelectric Materials by Addition of Diffusion Barrier", Materials Chemistry and Physics, vol. 246, p. 122848, 2020.
[91] H. C. Hsieh, C. H. Wang, W. C. Lin, S. Chakroborty, T. H. Lee, H. S. Chu, and A. T. Wu, "Electroless Co-P Diffusion Barrier for n-PbTe Thermoelectric Material", Journal of Alloys and Compounds, vol. 728, pp. 1023-1029, 2017.
[92] S. Y. Li, D. H. Yang, Q. Tan, and L. L. Li, "Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material", Journal of Electronic Materials, vol. 44, pp. 2007-2014, 2015.
[93] R. P. Gupta, O. D. Iyore, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, "Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices", Electrochemical and Solid State Letters, vol. 12, pp. H395-H397, 2009.
[94] W. H. Chao, Y. R. Chen, S. C. Tseng, P. H. Yang, R. J. Wu, and J. Y. Hwang, "Enhanced Thermoelectric Properties of Metal Film on Bismuth Telluride-based Materials", Thin Solid Films, vol. 570, pp. 172-177, 2014.
[95] C. H. Wang, H. C. Hsieh, H. Y. Lee, and A. T. Wu, "Co-P Diffusion Barrier for p-Bi2Te3 Thermoelectric Material", Journal of Electronic Materials, vol. 48, pp. 53-57, 2019.
[96] D. H. Li, L. L. Li, D. W. Liu, and J. F. Li, "Temperature Dependence of the Raman Spectra of Bi2Te3 and Bi0.5Sb1.5Te3 Thermoelectric Films", Physica Status Solidi-Rapid Research Letters, vol. 6, pp. 268-270, 2012.
[97] F. Cverna, Thermal Properties of Metals, ASM Ready Reference, 2002.
[98] L. I. Anatychuk and O. J. Luste, "Physical Principles of Microminiaturization in Thermoelectricity", Fifteenth International Conference on Thermoelectrics, pp. 279-287, 1996.
[99] C. H. Wang, H. C. Hsieh, Z. W. Sun, V. K. Ranganayakulu, T. W. Lan, Y. Y. Chen, Y. Y. Chang, and A. T. Wu, "Interfacial Stability in Bi2Te3 Thermoelectric Joints", ACS Applied Material Interfaces, vol. 12, pp. 27001-27009, 2020.
[100] J. M. Park, D. Y. Hyeon, H. S. Ma, S. Kim, S. T. Kim, Y. N. Nguyen, I. Son, S. Yi, K. T. Kim, and K. I. Park, "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer", Journal of Alloys and Compounds, vol. 884, p. 161119, 2021.
[101] C. P. Lin and C. M. Chen, "The Cross-interactions in the Ni/Sn/Cu Diffusion Couples with an Electroless Palladium Surface Finish", Journal of Alloys and Compounds, vol. 547, pp. 37-42, 2013.
[102] L. Zhong and F. Shimura, "Substitutional Diffusion of Transition-Metal Impurities in Silicon", Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 32, pp. L1113-L1116, 1993.
[103] X. G. Zhu, J. Wen, G. Wang, X. Chen, J. F. Jia, X. C. Ma, K. He, L. L. Wang, and Q. K. Xue, "Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films", Surface Science, vol. 617, pp. 156-161, 2013.
[104] S. Fujimoto, S. Sano, and T. Kajitani, "Analysis of diffusion mechanism of cu in polycrystalline Bi2Te3-Based alloy with the aging of electrical conductivity", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 5033-5039, 2007.
[105] A. H. Barajas-Aguilar, S. J. Jimenez Sandoval, and A. M. Garay-Tapia, "On the Stability of CuxTe Polytypes: Phase Transitions, Vibrational and Electronic Properties", Journal of Physics Condensed Matter, vol. 32, p. 045403, 2020.
[106] Y. Y. Jia, Z. F. Li, X. X. Ye, R. D. Liu, B. Leng, J. Qiu, M. Liu, and Z. J. Li, "Effect of Cr Contents on the Diffusion Behavior of Te in Ni-based Alloy", Journal of Nuclear Materials, vol. 497, pp. 101-106, 2017.
[107] H. Y. Jing, Y. Li, L. Y. Xu, Y. D. Han, G. Q. Lu, and H. Zhang, "Interfacial Reaction and Shear Strength of SnAgCu/Ni/Bi2Te3-Based TE Materials During Aging", Journal of Materials Engineering and Performance, vol. 24, pp. 4844-4852, 2015.
[108] M. Tashiro, S. Sukenaga, K. Ikemoto, K. Shinoda, T. Kajitani, S. Suzuki, and H. Shibata, "Investigation of Interfacial Reactions between Metallic Substrates and n-type Bulk Bismuth Telluride Thermoelectric Material", Journal of Materials Science, vol. 56, pp. 14170-14180, 2021.
[109] R. P. Gupta, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, "Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization", Journal of the Electrochemical Society, vol. 157, pp. H666-H670, 2010.
[110] M. Muñoz-Rojo, O. Caballero-Calero, and M. Martín-González, "Electrical Contact Resistances of Thermoelectric Thin Films Measured by Kelvin Probe Microscopy", Applied Physics Letters, vol. 103, p. 183905, 2013.
[111] H. Yong, S. Na, J.-G. Gang, H. Shin, S.-J. Jeon, S. Hyun, and H.-J. Lee, "Study on the Contact Resistance of Various Metals (Au, Ti, and Sb) on Bi–Te and Sb–Te Thermoelectric Films", Japanese Journal of Applied Physics, vol. 55, p. 06JE03, 2016.
[112] W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, "Understanding of the Contact of Nanostructured Thermoelectric n-type Bi2Te2.7Se0.3 Legs for Power Generation Applications", Journal of Materials Chemistry A, vol. 1, pp. 13093-13100, 2013.
[113] T. Thonhauser, G. S. Jeon, G. D. Mahan, and J. O. Sofo, "Stress-induced Defects in Sb2Te3", Physical Review B, vol. 68, p. 205207, 2003.
[114] P. Y. Chuang, S. H. Su, C. W. Chong, Y. F. Chen, Y. H. Chou, J. C. A. Huang, W. C. Chen, C. M. Cheng, K. D. Tsuei, C. H. Wang, Y. W. Yang, Y. F. Liao, S. C. Weng, J. F. Lee, Y. K. Lan, S. L. Chang, C. H. Lee, C. K. Yang, H. L. Su, and Y. C. Wu, "Anti-site Defect Effect on the Electronic Structure of a Bi2Te3 Topological Insulator", RSC Advances, vol. 8, pp. 423-428, 2018.
[115] W. Y. Lee, N. W. Park, J. E. Hong, S. G. Yoon, J. H. Koh, and S. K. Lee, "Effect of Electronic Contribution on Temperature-dependent Thermal Transport of Antimony Telluride Thin Film", Journal of Alloys and Compounds, vol. 620, pp. 120-124, 2015.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明