博碩士論文 109223002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.19.0
姓名 張家榮(Jia-Rong Zhang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 研究Triphenylamine Donor以不同連接位置作為電洞傳輸材料對於反式鈣鈦礦太陽能電池性能的影響
(Effects of Position of Triphenylamine Donor in Hole-transporting Materials on Their Photovoltaic Performance of Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 近幾年來,有機材料的太陽能電池 (如 DSSCs, OPVs 及 PSCs) 其發展受到高度重視,其中又以鈣鈦礦太陽能電池備受青睞,在 2010 至 2022 年間,光電轉效率由 3.9% 提升至 25.7%,展現出強大的潛力。先前實驗室發表的論文中以 benzimidazole 作為核心,設計出非對稱的電洞傳輸層材料其元件效率高達 20.81%,所以本篇以 benzimidazole 作為核心設計出對稱型分子在中心分子的鄰位和間位接上兩個 triphenylamine 作為 donor,合成出 IZO 和 IZM,接著我們利用 benzene 連接兩個 benzimidazole 延伸核心的 π-conjugation,並分別在 benzimidazole 的鄰位和間位接上四個 triphenylamine 作為 donor,合成出 BZO 和 BZM。此系列化合物與鈣鈦礦層有匹配的能階,並擁有良好的熱穩定性及優異的溶解度,除了這些優勢之外,benzimidazole 上的氮原子可以與鈣鈦礦層的離子產生作用力彌補鈣鈦礦層缺陷,使晶體生成更順利且平整,能夠有利於電荷的傳遞,進而提升元件的效率表現,預期本研究之 BZO, BZM, IZO 和 IZM 的光電轉換效率將優於標準品 PEDOT:PSS。
摘要(英) In recent years, the development of organic materials of solar cells has been highly valued, including DSSCs, OPVs, PSCs. The photoelectric conversion efficiency of perovskite solar cells has increased from 3.9% to 25.7%. In the previous paper published by our laboratory, YJS003 are asymmetric structure with benzimidazole as the core. Using YJS003 as a dopant-free HTM in a p-i-n PSCs device structure achieved a PCE of 20.81%. Therefore, in this study, we designed symmetrical structures with benzimidazole as the core, and two triphenylamines were connected on the ortho and meta position to synthesize IZO and IZM. Then we connect the two benzimidazoles with benzene, extending the π-conjugation of the core, and connect four triphenylamines on the ortho and meta positions to synthesize BZO and BZM. This series of compounds have suitable energy levels, excellent thermal stability and solubility. In addition to these advantages, the benzimidazole backbone can passivate the defects or stabilize the halides in the perovskite through hydrogen-bonding interaction. Passivation can facilitate the transfer of charges, thereby improving the efficiency of the device. It is expected that the photoelectric conversion efficiency of BZO, BZM, IZO and IZM will be better than of PEDOT:PSS.
關鍵字(中) ★ 鈣鈦礦太陽能電池 關鍵字(英) ★ Perovskite Solar Cells
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 ix
一、緒論 1
1-1 前言 1
1-2 太陽能電池 3
1-3 鈣鈦礦太陽能電池 4
1-3-1 電池基本結構 6
1-3-2 電子傳輸材料 6
1-3-3 鈣鈦礦主動層 7
1-3-4 電洞傳輸材料 7
1-3-5 鈣鈦礦太陽能電池工作原理 8
1-3-6 鈣鈦礦太陽能電池元件製成 9
1-4 電流電壓曲線圖及能量轉換效率相關特性 11
1-4-1 短路電流 (Short-Circuit Current, JSC) 11
1-4-2 開路電壓 (Open-Circuit Voltage, VOC) 12
1-4-3 填充因子 (Fill Factor, FF) 12
1-4-4 光電轉換效率 (Power Conversion Efficiency, PCE or η) 13
1-5 電洞傳輸層材料之文獻回顧 14
1-5-1 線型電洞傳輸層材料 14
1-5-2 星型電洞傳輸層材料 17
1-5-3 螺旋型電洞傳輸層材料 19
二、結構設計概念 22
三、結果與討論 26
3-1 合成策略 26
3-1-1 IZO、BZO系列 26
3-1-2 IZM、BZM系列 29
3-2 光物理性質討論 32
3-3 電化學性質討論 34
3-4 理論計算 37
3-5 熱穩定度分析 43
四、結論及未來展望 44
五、實驗步驟、藥品及儀器 45
5-1 實驗步驟 45
5-1-1 IZO 及 BZO 系列 45
5-1-2 IZM 及 BZM 系列 53
5-2 實驗藥品 60
5-3 實驗儀器 60
5-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 60
5-3-2 超高解析質譜儀 (Mass Spectrometry) 61
5-3-3 紫外光-可見光光譜儀 (UV-Vis Spectrophotometer) 61
5-3-4 螢光光譜儀 (Fluorescence Spectrophotometer) 62
5-3-5 電化學分析儀 (Electrochemical Analyzer) 62
5-3-6 熱重分析儀 (Thermogravimetric Analyzer) 62
參考文獻 64
附錄 68
參考文獻 1. Yamaguchi, M.; Dimroth, F.; Geisz, J. F.; Ekins-Daukes, N. J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901-240915.
2. Ahmadpanah, F. S.; Orouji, A. A.; Gharibshahian, I. Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer. J Mater Sci: Mater Electron. 2021, 32, 22535-22547.
3. Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L.; et al. Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. ACS Energy Lett. 2022, 7, 2196-2202.
4. Chang, P. H.; Sil, M. C.; Reddy, K. S. K.; Lin, C. H.; Chen, C. M. Polyimide-Based Covalent Organic Framework as a Photocurrent Enhancer for Efficient Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces. 2022, 14, 25466-25477.
5. Kim, H.; Lim, J.; Sohail, M.; Nazeeruddin, M. K. Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells. Solar RRL. 2022, n/a, 2200013.
6. Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.; et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science. 2020, 370, eabb8985.
7. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012, 2, 591.
8. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science. 2014, 345, 542-546.
9. Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.; et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science. 2020, 370, eabb8985.
10. Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science. 2020, 370, 108-112.
11. Schulz, P. Interface Design for Metal Halide Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1287-1293.
12. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
13. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602-1608.
14. Said, A. A.; Xie, J.; Zhang, Q. Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small. 2019, 15, e1900854.
15. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A. 2016, 4, 3970-3990.
16. Yu, H.; Ryu, J.; Lee, J. W.; Roh, J.; Lee, K.; Yun, J.; Lee, J.; Kim, Y. K.; Hwang, D.; Kang, J.; et al. Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20%. ACS Appl. Mater. Interfaces. 2017, 9, 8113-8120.
17. Liu, X.; Shi, X.; Liu, C.; Ren, Y.; Wu, Y.; Yang, W.; Alsaedi, A.; Hayat, T.; Kong, F.; Liu, X.; et al. A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells. J. Phys. Chem. C. 2018, 122, 26337-26343.
18. Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y. Architecture of p-i-n Sn-Based Perovskite Solar Cells: Characteristics, Advances, and Perspectives. ACS Energy Lett. 2021, 6, 2863-2875.
19. Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces. 2018, 5, 180882.
20. Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A. 2021, 9, 4589-4625.
21. Shao, J.-Y.; Zhong, Y.-W. Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells. Chem. Phys. Rev. 2021, 2, 021302.
22. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; et al. Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. J. Am. Chem. Soc. 2020, 142, 16632-16643.
23. Zhang, H.; Mao, Y.; Xu, J.; Li, S.; Guo, F.; Zhu, L.; Wang, J.; Wu, Y. Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. J. Mater. Chem. C. 2022, 10, 1862-1869.
24. Zhu, H.; Shen, Z.; Pan, L.; Han, J.; Eickemeyer, F. T.; Ren, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X.; et al. Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Lett. 2020, 6, 208-215.
25. Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability. ACS Energy Lett. 2019, 4, 2683-2688.
26. Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science. 2020, 369, 1615-1620.
27. Chang, Y. M.; Li, C. W.; Lu, Y. L.; Wu, M. S.; Li, H.; Lin, Y. S.; Lu, C. W.; Chen, C. P.; Chang, Y. J. Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Appl. Mater. Interfaces. 2021, 13, 6450-6460.
28. Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S. Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2001460.
29. Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L. Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer. Organic Electronics. 2020, 78, 105573.
30. Tingare, Y. S.; Su, C.; Lin, J. H.; Hsieh, Y. C.; Lin, H. J.; Hsu, Y. C.; Li, M. C.; Chen, G. L.; Tseng, K. W.; Yang, Y. H.; et al. Benzimidazole Based Hole‐Transporting Materials for High‐performance Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2022, n/a, 2201933.
31. Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y. D-A-D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Appl. Mater. Interfaces. 2018, 10, 19697-19703.
32. Alinezhad, H.; Salehian, F.; Biparva, P. Synthesis of Benzimidazole Derivatives Using Heterogeneous ZnO Nanoparticles. Synthetic Communications. 2011, 42, 102-108.
33. Jia, H.; Yao, Y.; Zhao, J.; Gao, Y.; Luo, Z.; Du, P. A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A. 2018, 6, 1188-1195.
34. Shao, J.; Chang, J.; Chi, C. Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. Org. Biomol. Chem. 2012, 10, 7045-7052.
指導教授 李文仁(Wen-Ren Li) 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明