博碩士論文 109324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.188.211.58
姓名 白旭閎(XU-HONG BAI)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 影響硬脂基化Indolicidin結構的因子及其基因傳輸效果的探討
(A study of factors that influence structure of stearylated Indolicidin and their effects on gene delivery)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了提升C端硬脂基化Indolicidin (ILs) 的轉染效率,我們將輔助脂質二油酰磷脂酰乙醇胺(DOPE)與ILs以莫耳比為1:3混合 (ILs0.3L),由先前實驗結果已知ILs0.3L之轉染效果高於ILs。為了瞭解其機制,我們進行了一連串的分析。由圓二色(CD)光譜得知,改質前的IL完全無α螺旋(α-helix)結構,ILs與ILs0.3L則於酸鹼環境皆有α-helix結構,表示IL在添加硬脂基後,有自組裝結構形成,因而導致二級結構改變。利用小角度X-ray散射(SAXS)、動態光散射(DLS)與穿透式電子顯微鏡(TEM)進行結構之構型及粒徑分析,在中性環境,ILs為柱狀微胞結構,ILs0.3L為單層囊泡結構,且ILs所形成的整體結構粒徑較大;而添加DNA後,發現ILs0.3L /DNA粒徑較ILs/DNA小,較易進入細胞。流式細胞儀實驗證實ILs0.3L與ILs皆以內吞作用將DNA帶入細胞,且ILs0.3L載體較ILs組多出巨胞飲作用進入細胞。在酸性環境下ILs0.3L/DNA則有結構重組以及零碎的結構散出的現象,且由肝素競爭實驗可知, 因酸性環境時的結構不穩定,易與DNA分離,這應有助於基因藉由ILs0.3L攝入後的蛋白質表現。共軛焦顯微鏡實驗則顯示ILs0.3L與ILs皆有良好的內體逃脫能力。綜合上述結果,ILs0.3L因具有較小的粒徑、較多進入細胞的途徑、可由內體逃脫以及容易與DNA於胞內脫離等特性,使其傳輸能力高於ILs。
摘要(英) To improve the transfection efficiency of C-terminal stearyl Indolicidin (ILs), a helper lipid, dioleoylphosphatidylethanolamine (DOPE), has been applied to mix with ILs at a molar ratio of 1:3 (ILs0.3L). Previous study indicates that ILs0.3L exhibits higher transfection efficiency than that of ILs. Therefore, a series of analyses were perfomed in this study to understand the promotion mechanism of helper lipids. The circular dichroism (CD) spectra showed that the structure of IL was completely random coiled, whereas ILs and ILs0.3L both exhibited partial α-helix properties. These results indicated that stearyl modiciation allow IL to self-assemble, which also led secondary structure formation. We used small angle X-ray scattering (SAXS), dynamic light scattering (DLS), and transmission electron microscope (TEM) to analyze self-assembled structures and their sizes. In a neutral environment, ILs and ILs0.3L formed cylindrical micelles and unilamellar vesicles, respectively. The overall structure of ILs0.3L was smaller than ILs. ILs0.3L/DNA was also smaller than ILs/DNA, suggesting that ILs0.3L/DNA may enter cells easier. The flow cytometry experiments showed that DNA delivered by ILs0.3L and ILs both through endocytosis. Interestingly, only ILs0.3L/DNA could enter cells through macropinocytosis. In an acidic environment, TEM results showed that the structure of ILs/DNA became compact, whereas ILs0.3L/DNA demonstrated structural reorganization and loose structures. Due to the unstability of ILs0.3L/DNA, the heparin competition experiment showed that acidic environment promoted DNA separated from ILs0.3L, which is essential for the protein expression of ingested genes. Confocal microscopy also showed that DNA delivered by ILs0.3L and ILs could both escape from endosome. Based on the abovementioned results, ILs0.3L owns smaller particle size, additional access to cells, and the capabilities of endosomal escape as well as intracellular DNA release, so its transfection efficiency is better than that of ILs.
關鍵字(中) ★ 胜肽
★ 載體
★ 脂質
★ 基因
★ 結構
★ 胞吞作用
關鍵字(英) ★ peptide
★ vector
★ lipid
★ gene
★ structure
★ endocytosis
論文目次 目錄
摘要 i
Abstract iii
致謝 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 實驗設計 3
第二章 文獻回顧 4
2-1 基因治療 4
2-2 基因載體 6
2-3 自組裝結構(Self-assemble Structure) 7
2-3-1 小角X光散射(Small-Angle X-ray Scattering) 9
2-4 細胞穿膜胜肽(Cell Penetrating Peptides, CPPs) 12
2-4-1細胞穿膜胜肽之改質與應用 13
2-4-2 細胞穿膜胜肽與細胞膜間的作用機制 16
2-4-3 Indolicidin(IL) 18
2-5 脂質(Lipids) 19
2-5-1 脂質體轉染機制 20
2-5-2 輔助脂質(Helper lipids) 23
2-6 酸鹼度敏感載體(pH-sensitive vectors) 26
2-7 胜肽與脂質之複合載體 31
2-8 ILs與DOPE之複合物 34
第三章 實驗藥品、儀器與方法 38
3-1 實驗材料 38
3-1-1 質體DNA 38
3-1-2 胜肽(Peptide) 39
3-1-3 細胞培養藥品 39
3-1-4 分析藥品 40
3-2 實驗儀器 43
3-3 實驗方法 45
3-3-1 溶液配置 45
3-3-2 胜肽/脂質(Peptide/Lipid)奈米粒子製備 48
3-3-3 質體DNA純化 49
3-3-4 HEK-293T細胞培養 49
3-3-5 載體及載體/DNA物性鑑定 53
3-3-6 載體進入細胞之途徑分析(Flow cytometer) 61
3-3-7 雷射共軛焦顯微鏡(Confocal) 63
3-3-8 肝素(Heparin)競爭實驗 64
3-4 SAXS數據分析 65
3-4-1 Cylinder model (SASVIEW;Version:5.0.5) 65
3-4-2 Core shell cylinder model (SASVIEW;Version:5.0.5) 65
3-4-3 Sphere model (SASVIEW;Version:5.0.5) 66
3-4-4 Unilamellar vesicle (form factor) /multilamellar vesicle (structure factor) (Matlab) 66
3-4-5 Vesicle model (SASVIEW;Version:5.0.5) 67
3-4-6 Multilayer vesicle model (SASVIEW;Version:5.0.5) 68
3-4-6 Asymmetric vesicle model (Origin) 68
第四章 結果與討論 70
4-1 自組裝結構物性鑑定 70
4-1-1 二級結構(Secondary structure) 70
4-1-2 小角度散射(Small angle-X ray scattering) 72
4-1-3 表面電位 80
4-1-4 載體結構(TEM)與粒徑大小(DLS) 81
4-2 載體細胞攝取效果 93
4-2-1 流式細胞儀之途徑分析 (Flow cytometry) 93
4-2-2 雷射共軛焦顯微鏡 96
4-3 載體釋放DNA之能力 99
第五章 結論 101
第六章 參考文獻 103
參考文獻 1. Lee, S.H., et al., Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(1): p. 5-11.
2. Agarwal, R., et al., Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016. 23(4): p. 1075-1091.
3. Feng, L.R. and Maguire-Zeiss, K.A. Gene therapy in parkinson’s disease. CNS Drugs, 2010. 24(3): p. 177-192.
4. Zhao, X., et al., Octaarginine-modified chitosan as a nonviral gene delivery vector: Properties and in vitro transfection efficiency. Journal of Nanoparticle Research, 2011. 13(2): p. 693-702.
5. Khavari, A., et al., Different physical delivery systems: An important approach for delivery of biological molecules in vivo. Archives of Advances in Biosciences, 2016. 7(1): p. 48-63.
6. Coppolino, F., et al., Gastrointestinal perforation: ultrasonographic diagnosis. Critical Ultrasound Journal, 2013. 5(1): p. 1-6.
7. Liu, F. and Huang, L. A syringe electrode device for simultaneous injection of DNA and electrotransfer. Molecular Therapy, 2002. 5(3): p. 323-328.
8. Gantenbein, B., et al., Non-viral gene delivery methods for bone and joints. Frontiers in bioengineering and biotechnology, 2020. 598466
9. Lundstrom, K. and Boulikas, T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technology in Cancer Research & Treatment, 2003. 2(5): p. 471-485.
10. Al-Dosari, M.S. and Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. The AAPS Journal, 2009. 11(4): p. 671-681.
11. Israelachvili, J.N., et al., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the chemical society, faraday transactions 2: Molecular and Chemical Physics, 1976. 72: p. 1525-1568.
12. Lombardo, D., et al., Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Advances in Condensed Matter Physics, 2015. 151683.
13. Jackson, A.J., Introduction to small-angle neutron scattering and neutron reflectometry. NIST Center for neutron research, 2008: p. 1-24.
14. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000. 62(3): p. 4000-4009.
15. Liu, T. and Chu, B. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. Journal of Applied Crystallography, 2000. 33(3): p. 727-730.
16. Hirai, M., et al., Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophysical Journal, 2003. 85(3): p. 1600-1610.
17. Cano, M.E., et al., Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-L-tartaric acid scaffold. New Journal of Chemistry, 2017. 41(23): p. 14754-14765.
18. Kim, T.-i., et al., Arginine-grafted bioreducible poly (disulfide amine) for gene delivery systems. Biomaterials, 2009. 30(4): p. 658-664.
19. Green, M. and Loewenstein,P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-1188.
20. Zhang, P., et al., Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano, 2013. 7(7): p. 5965-5977.
21. Abuei, H., et al., Construction, expression, and purification of p28 as a Cell-Penetrating Peptide‎ with anticancer effects on Burkitt’s lymphoma cell line. Shiraz E-medical Journal, 2019. 20(7). e85190
22. Temsamani, J. and Vidal, P. The use of cell-penetrating peptides for drug delivery. Drug Discovery Today, 2004. 9(23): p. 1012-1019.
23. Chou, L.Y., et al., Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 2011. 40(1): p. 233-245.
24. Salomone, F., et al., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
25. Fei, L., et al., The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011. 19(8): p. 675-680.
26. Keller, A.-A., et al., Relationships between cargo, cell penetrating peptides and cell type for uptake of non-covalent complexes into live cells. Pharmaceuticals, 2013. 6(2): p. 184-203.
27. Mo, R.H., et al., Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012. 9(2): p. 299-309.
28. Fisher, R.K., et al., Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 2017. 219: p. 136-144.
29. Torchilin, V.P., Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Peptide Science, 2008. 90(5): p. 604-610.
30. Hoyer, J., et al., Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein Journal of Organic Chemistry, 2012. 8(1): p. 1788-1797.
31. Khalil, I.A., et al., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Therapy, 2004. 11(7): p. 636-644.
32. 沈筱容,硬脂基化的Indolicidin作為傳送質體去氧核酸的非病毒載體,化學工程與材料工程學系. 2019, 國立中央大學
33. Alghalayini, A., et al., The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers. Antibiotics, 2019. 8(1).8010012
34. Xing, H., et al., Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomaterialia, 2019. 86: p. 15-40.
35. Bechara, C. and Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Letters, 2013. 587(12): p. 1693-1702.
36. Di Pisa, M., et al., Translocation mechanism (s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry, 2015. 54(2): p. 194-207.
37. Varkouhi, A.K., et al., Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011. 151(3): p. 220-228.
38. Martens, T.F., et al., Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today, 2014. 9(3): p. 344-364.
39. Nguyen, J. and Szoka, F.C. Nucleic acid delivery: the missing pieces of the puzzle? Acc chem res, 2012. 45(7): p. 1153-62.
40. Santos Rodrigues dos, B., et al., Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. International Journal of Pharmaceutics, 2019. 566: p. 717-730.
41. Siddiqui, H., et al., Approaches to Visualising Endocytosis of LDL-Related Lipoproteins. Biomolecules, 2022. 12 .158.
42. Selsted, M.E., et al., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
43. Subbalakshmi, C. and Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 1998. 160(1): p. 91-96.
44. Nan, Y.H., et al., Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiology Letters, 2009. 292(1): p. 134-140.
45. Marchand, C., et al., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research, 2006. 34(18): p. 5157-5165.
46. Lee, D.G., et al., Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
47. Ladokhin, A.S., et al.,. White, Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophysical Journal, 1997. 72(2): p. 794-805.
48. Khoee, S. and Yaghoobian, M. : A novel approach in modern drug delivery systems, in nanostructures for drug delivery. 2017, Elsevier. p. 207-237.
49. Li, Y., et al., Relationships between liposome properties, cell membrane binding, intracellular processing, and intracellular bioavailability. The AAPS Journal, 2011. 13(4): p. 585-597.
50. Pinnaduwage, P., et al., Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1989. 985(1): p. 33-37.
51. Wrobel, I. and Collins, D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1995. 1235(2): p. 296-304.
52. Pal Singh, P., et al., Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020. 30(4): p. 313-335.
53. Cheng, X. and Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016. 99: p. 129-137.
54. Hong, K., et al., Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly (ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Letters, 1997. 400(2): p. 233-237.
55. Lasic, D.D., Liposomes in gene delivery. 2019: CRC Press.p.120-130
56. Koltover, I., et al., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 1998. 281(5373): p. 78-81.
57. Du, Z., et al., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4(1): p. 1-6.
58. Franco, M.S., et al., Investigation of the antitumor activity and toxicity of cisplatin loaded pH-sensitive-pegylated liposomes in a triple negative breast cancer animal model. Journal of Drug Delivery Science and Technology, 2021. 62:102400.
59. Simões, S., et al., On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004. 56(7): p. 947-965.
60. Connor, J., et al., pH-sensitive liposomes: acid-induced liposome fusion. Proceedings of the National Academy of Sciences, 1984. 81(6): p. 1715-1718.
61. Duzgunes, N., et al., Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry, 1985. 24(13): p. 3091-3098.
62. Lv, J., et al., Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery. Colloids and Surfaces B: Biointerfaces, 2016. 146: p. 523-531.
63. Fan, Y., et al., Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces B: Biointerfaces, 2017. 151: p. 19-25.
64. Bergstrand, N., et al., Interactions between pH-sensitive liposomes and model membranes. Biophysical Chemistry, 2003. 104(1): p. 361-379.
65. Ellens, H., et al., pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry, 1984. 23(7): p. 1532-1538.
66. Wang, T.-W., et al., Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Acta Biomaterialia, 2017. 58: p. 54-66.
67. Chen, B., et al., Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Applied Materials & Interfaces, 2015. 7(28): p. 15148-15153.
68. Singh, P.K., et al., Arginine-α, β-dehydrophenylalanine dipeptide nanoparticles for pH-responsive drug delivery. Pharmaceutical Research, 2018. 35(2): p. 1-11.
69. Meade, B.R. and Dowdy, S.F. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Advanced Drug Delivery Reviews, 2008. 60(4-5): p. 530-536.
70. Turner, J.J., et al., RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells, Molecules, and Diseases, 2007. 38(1): p. 1-7.
71. Lokhande, S.S., Liposome drug delivery: An update review. Pharma Science Monitor, 2018. 9(1):p. 188-202.
72. Zhang, X., et al., Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Delivery, 2017. 24(1): p. 986-998.
73. Zhang, C., et al., siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. Journal of Controlled Release, 2006. 112(2): p. 229-239.
74. Zhao, Y., et al., Interaction kinetics of peptide lipids-mediated gene delivery. Journal of Nanobiotechnology, 2020. 18(1): p. 1-14.
75. Li, Y., et al., Delivery of siRNA using lipid nanoparticles modified with cell penetrating peptide. ACS Applied Materials & Interfaces, 2016. 8(40): p. 26613-26621.
76. Kornmueller, K., et al., Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures. Nano Research, 2018. 11(2): p. 913-928.
77. 謝勗元, 利用磷脂質促進硬脂基化胜肽之基因輸送,化學工程與材料工程學系. 2021, 國立中央大學
78. Wei, Y., et al., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(12): p. 2331-2337.
79. Luo, P. and Baldwin, R.L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry, 1997. 36(27): p. 8413-8421.
80. Shepherd, N.E., et al., Single turn peptide alpha helices with exceptional stability in water. Journal of the American Chemical Society, 2005. 127(9): p. 2974-2983.
81. Wang, D., et al., Evaluation of biologically relevant short α-helices stabilized by a main-chain hydrogen-bond surrogate. Journal of the American Chemical Society, 2006. 128(28): p. 9248-9256.
82. Yokum, T.S., et al., Solvent effects on the 310-/α-helix equilibrium in short amphipathic peptides rich in α, α-disubstituted amino acids. Journal of the American Chemical Society, 1997. 119(5): p. 1167-1168.
83. Kallenbach, et al., CD spectroscopy and the helix-coil transition in peptides and polypeptides, in Circular dichroism and the conformational analysis of biomolecules. 1996, Springer. p. 201-259.
84. Borrelli, A., et al., Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules, 2018. 23. 295.
85. Fields, G.B., et al., Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Peptide Science, 1998. 47(2): p. 143-151.
86. Chu-Kung, A.F., et al., Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjugate chemistry, 2004. 15(3): p. 530-535.
87. Luan, L., et al., Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. Journal of Materials Chemistry B, 2015. 3(6): p. 1068-1078.
88. Zimenkov, Y., et al., Rational design of a reversible pH-responsive switch for peptide self-assembly. Journal of the American Chemical Society, 2006. 128(21): p. 6770-6771.
89. Xiong, M., et al., Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proceedings of the National Academy of Sciences, 2017. 114(48): p. 12675-12680.
90. Pedersen, J.S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science, 1997. 70: p. 171-210.
91. Fournet, G., Scattering functions for geometrical forms. Bull. Soc. Fr. Min. Crist., 1951. 74: p. 39-113.
92. Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(4): p. 627-659.
93. Livsey, I., Neutron scattering from concentric cylinders. Intraparticle interference function and radius of gyration. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1987. 83(8): p. 1445-1452.
94. Guinier, A., et al., Small-angle scattering of X-rays. 1955.
95. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003. 36(6): p. 1378-1388.
96. Blaurock, A.E., Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1982. 650(4): p. 167-207.
97. Zhang, R., et al., Theory of the structure factor of lipid bilayers. Physical Review E, 1994. 50(6): p. 5047-5060.
98. Cabane, B., Small-Angle Scattering methods in Surfactant Solutions: New methods and investigations, ed. R. Zana. 1987, Marcel Dekker, New York. p. 461-468
99. Brzustowicz, M.R. and Brunger, A.T. X-ray scattering from unilamellar lipid vesicles. Journal of Applied Crystallography, 2005. 38(1): p. 126-131.
100. Friedrich, C.L., et al., Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. Journal of Biological Chemistry, 2001. 276(26): p. 24015-24022.
101. Dong, W., et al., Structure-activity analysis and biological studies of chensinin-1b analogues. Acta Biomaterialia, 2016. 37: p. 59-68.
102. Lombardo, D., et al., Structural characterization of biomaterials by means of small angle X-rays and neutron scattering (SAXS and SANS), and light scattering experiments. Molecules, 2020. 25(23): 5624.
103. Qi, M. and Zhou, Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers, 2019. 3(10): p. 1994-2009.
104. Zhang, G. and Sun, J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. International Journal of Nanomedicine, 2021. 16: p. 7391.
105. Cui, L., et al., Impact of phosphoethanolamine reverse micelles on lipid oxidation in bulk oils. Journal of the American Oil Chemists′ Society, 2014. 91(11): p. 1931-1937.
106. Su, C.-J., et al., Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(2): p. 528-534.
107. Komorowski, K., et al., Vesicle adhesion and fusion studied by small-angle x-ray scattering. Biophysical journal, 2018. 114(8): p. 1908-1920.
108. Wang, J., et al., pH-responsive vesicles from supra-amphiphiles based on dynamic imine bond. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 484: p. 28-36.
109. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical journal, 2004. 377(1): p. 159-169.
110. Canton, J., Macropinocytosis: new insights into its underappreciated role in innate immune cell surveillance. Frontiers in immunology, 2018. 9: p. 2286.
111. Ahmed, S., et al., Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration. Nanoscale, 2016. 8(35): p. 15888-15901.
112. Khalil, I., et al., Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene therapy, 2007. 14(8): p. 682-689.
113. Khalil, I.A., et al., High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. Journal of Biological Chemistry, 2006. 281(6): p. 3544-3551.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2022-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明