參考文獻 |
1. Lee, S.H., et al., Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(1): p. 5-11.
2. Agarwal, R., et al., Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016. 23(4): p. 1075-1091.
3. Feng, L.R. and Maguire-Zeiss, K.A. Gene therapy in parkinson’s disease. CNS Drugs, 2010. 24(3): p. 177-192.
4. Zhao, X., et al., Octaarginine-modified chitosan as a nonviral gene delivery vector: Properties and in vitro transfection efficiency. Journal of Nanoparticle Research, 2011. 13(2): p. 693-702.
5. Khavari, A., et al., Different physical delivery systems: An important approach for delivery of biological molecules in vivo. Archives of Advances in Biosciences, 2016. 7(1): p. 48-63.
6. Coppolino, F., et al., Gastrointestinal perforation: ultrasonographic diagnosis. Critical Ultrasound Journal, 2013. 5(1): p. 1-6.
7. Liu, F. and Huang, L. A syringe electrode device for simultaneous injection of DNA and electrotransfer. Molecular Therapy, 2002. 5(3): p. 323-328.
8. Gantenbein, B., et al., Non-viral gene delivery methods for bone and joints. Frontiers in bioengineering and biotechnology, 2020. 598466
9. Lundstrom, K. and Boulikas, T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technology in Cancer Research & Treatment, 2003. 2(5): p. 471-485.
10. Al-Dosari, M.S. and Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. The AAPS Journal, 2009. 11(4): p. 671-681.
11. Israelachvili, J.N., et al., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the chemical society, faraday transactions 2: Molecular and Chemical Physics, 1976. 72: p. 1525-1568.
12. Lombardo, D., et al., Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Advances in Condensed Matter Physics, 2015. 151683.
13. Jackson, A.J., Introduction to small-angle neutron scattering and neutron reflectometry. NIST Center for neutron research, 2008: p. 1-24.
14. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000. 62(3): p. 4000-4009.
15. Liu, T. and Chu, B. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. Journal of Applied Crystallography, 2000. 33(3): p. 727-730.
16. Hirai, M., et al., Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophysical Journal, 2003. 85(3): p. 1600-1610.
17. Cano, M.E., et al., Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-L-tartaric acid scaffold. New Journal of Chemistry, 2017. 41(23): p. 14754-14765.
18. Kim, T.-i., et al., Arginine-grafted bioreducible poly (disulfide amine) for gene delivery systems. Biomaterials, 2009. 30(4): p. 658-664.
19. Green, M. and Loewenstein,P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-1188.
20. Zhang, P., et al., Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano, 2013. 7(7): p. 5965-5977.
21. Abuei, H., et al., Construction, expression, and purification of p28 as a Cell-Penetrating Peptide with anticancer effects on Burkitt’s lymphoma cell line. Shiraz E-medical Journal, 2019. 20(7). e85190
22. Temsamani, J. and Vidal, P. The use of cell-penetrating peptides for drug delivery. Drug Discovery Today, 2004. 9(23): p. 1012-1019.
23. Chou, L.Y., et al., Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 2011. 40(1): p. 233-245.
24. Salomone, F., et al., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
25. Fei, L., et al., The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011. 19(8): p. 675-680.
26. Keller, A.-A., et al., Relationships between cargo, cell penetrating peptides and cell type for uptake of non-covalent complexes into live cells. Pharmaceuticals, 2013. 6(2): p. 184-203.
27. Mo, R.H., et al., Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012. 9(2): p. 299-309.
28. Fisher, R.K., et al., Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 2017. 219: p. 136-144.
29. Torchilin, V.P., Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Peptide Science, 2008. 90(5): p. 604-610.
30. Hoyer, J., et al., Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein Journal of Organic Chemistry, 2012. 8(1): p. 1788-1797.
31. Khalil, I.A., et al., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Therapy, 2004. 11(7): p. 636-644.
32. 沈筱容,硬脂基化的Indolicidin作為傳送質體去氧核酸的非病毒載體,化學工程與材料工程學系. 2019, 國立中央大學
33. Alghalayini, A., et al., The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers. Antibiotics, 2019. 8(1).8010012
34. Xing, H., et al., Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomaterialia, 2019. 86: p. 15-40.
35. Bechara, C. and Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Letters, 2013. 587(12): p. 1693-1702.
36. Di Pisa, M., et al., Translocation mechanism (s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry, 2015. 54(2): p. 194-207.
37. Varkouhi, A.K., et al., Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011. 151(3): p. 220-228.
38. Martens, T.F., et al., Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today, 2014. 9(3): p. 344-364.
39. Nguyen, J. and Szoka, F.C. Nucleic acid delivery: the missing pieces of the puzzle? Acc chem res, 2012. 45(7): p. 1153-62.
40. Santos Rodrigues dos, B., et al., Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. International Journal of Pharmaceutics, 2019. 566: p. 717-730.
41. Siddiqui, H., et al., Approaches to Visualising Endocytosis of LDL-Related Lipoproteins. Biomolecules, 2022. 12 .158.
42. Selsted, M.E., et al., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
43. Subbalakshmi, C. and Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 1998. 160(1): p. 91-96.
44. Nan, Y.H., et al., Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiology Letters, 2009. 292(1): p. 134-140.
45. Marchand, C., et al., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research, 2006. 34(18): p. 5157-5165.
46. Lee, D.G., et al., Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
47. Ladokhin, A.S., et al.,. White, Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophysical Journal, 1997. 72(2): p. 794-805.
48. Khoee, S. and Yaghoobian, M. : A novel approach in modern drug delivery systems, in nanostructures for drug delivery. 2017, Elsevier. p. 207-237.
49. Li, Y., et al., Relationships between liposome properties, cell membrane binding, intracellular processing, and intracellular bioavailability. The AAPS Journal, 2011. 13(4): p. 585-597.
50. Pinnaduwage, P., et al., Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1989. 985(1): p. 33-37.
51. Wrobel, I. and Collins, D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1995. 1235(2): p. 296-304.
52. Pal Singh, P., et al., Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020. 30(4): p. 313-335.
53. Cheng, X. and Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016. 99: p. 129-137.
54. Hong, K., et al., Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly (ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Letters, 1997. 400(2): p. 233-237.
55. Lasic, D.D., Liposomes in gene delivery. 2019: CRC Press.p.120-130
56. Koltover, I., et al., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 1998. 281(5373): p. 78-81.
57. Du, Z., et al., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4(1): p. 1-6.
58. Franco, M.S., et al., Investigation of the antitumor activity and toxicity of cisplatin loaded pH-sensitive-pegylated liposomes in a triple negative breast cancer animal model. Journal of Drug Delivery Science and Technology, 2021. 62:102400.
59. Simões, S., et al., On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004. 56(7): p. 947-965.
60. Connor, J., et al., pH-sensitive liposomes: acid-induced liposome fusion. Proceedings of the National Academy of Sciences, 1984. 81(6): p. 1715-1718.
61. Duzgunes, N., et al., Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry, 1985. 24(13): p. 3091-3098.
62. Lv, J., et al., Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery. Colloids and Surfaces B: Biointerfaces, 2016. 146: p. 523-531.
63. Fan, Y., et al., Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces B: Biointerfaces, 2017. 151: p. 19-25.
64. Bergstrand, N., et al., Interactions between pH-sensitive liposomes and model membranes. Biophysical Chemistry, 2003. 104(1): p. 361-379.
65. Ellens, H., et al., pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry, 1984. 23(7): p. 1532-1538.
66. Wang, T.-W., et al., Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Acta Biomaterialia, 2017. 58: p. 54-66.
67. Chen, B., et al., Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Applied Materials & Interfaces, 2015. 7(28): p. 15148-15153.
68. Singh, P.K., et al., Arginine-α, β-dehydrophenylalanine dipeptide nanoparticles for pH-responsive drug delivery. Pharmaceutical Research, 2018. 35(2): p. 1-11.
69. Meade, B.R. and Dowdy, S.F. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Advanced Drug Delivery Reviews, 2008. 60(4-5): p. 530-536.
70. Turner, J.J., et al., RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells, Molecules, and Diseases, 2007. 38(1): p. 1-7.
71. Lokhande, S.S., Liposome drug delivery: An update review. Pharma Science Monitor, 2018. 9(1):p. 188-202.
72. Zhang, X., et al., Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Delivery, 2017. 24(1): p. 986-998.
73. Zhang, C., et al., siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. Journal of Controlled Release, 2006. 112(2): p. 229-239.
74. Zhao, Y., et al., Interaction kinetics of peptide lipids-mediated gene delivery. Journal of Nanobiotechnology, 2020. 18(1): p. 1-14.
75. Li, Y., et al., Delivery of siRNA using lipid nanoparticles modified with cell penetrating peptide. ACS Applied Materials & Interfaces, 2016. 8(40): p. 26613-26621.
76. Kornmueller, K., et al., Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures. Nano Research, 2018. 11(2): p. 913-928.
77. 謝勗元, 利用磷脂質促進硬脂基化胜肽之基因輸送,化學工程與材料工程學系. 2021, 國立中央大學
78. Wei, Y., et al., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(12): p. 2331-2337.
79. Luo, P. and Baldwin, R.L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry, 1997. 36(27): p. 8413-8421.
80. Shepherd, N.E., et al., Single turn peptide alpha helices with exceptional stability in water. Journal of the American Chemical Society, 2005. 127(9): p. 2974-2983.
81. Wang, D., et al., Evaluation of biologically relevant short α-helices stabilized by a main-chain hydrogen-bond surrogate. Journal of the American Chemical Society, 2006. 128(28): p. 9248-9256.
82. Yokum, T.S., et al., Solvent effects on the 310-/α-helix equilibrium in short amphipathic peptides rich in α, α-disubstituted amino acids. Journal of the American Chemical Society, 1997. 119(5): p. 1167-1168.
83. Kallenbach, et al., CD spectroscopy and the helix-coil transition in peptides and polypeptides, in Circular dichroism and the conformational analysis of biomolecules. 1996, Springer. p. 201-259.
84. Borrelli, A., et al., Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules, 2018. 23. 295.
85. Fields, G.B., et al., Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Peptide Science, 1998. 47(2): p. 143-151.
86. Chu-Kung, A.F., et al., Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjugate chemistry, 2004. 15(3): p. 530-535.
87. Luan, L., et al., Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. Journal of Materials Chemistry B, 2015. 3(6): p. 1068-1078.
88. Zimenkov, Y., et al., Rational design of a reversible pH-responsive switch for peptide self-assembly. Journal of the American Chemical Society, 2006. 128(21): p. 6770-6771.
89. Xiong, M., et al., Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proceedings of the National Academy of Sciences, 2017. 114(48): p. 12675-12680.
90. Pedersen, J.S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science, 1997. 70: p. 171-210.
91. Fournet, G., Scattering functions for geometrical forms. Bull. Soc. Fr. Min. Crist., 1951. 74: p. 39-113.
92. Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(4): p. 627-659.
93. Livsey, I., Neutron scattering from concentric cylinders. Intraparticle interference function and radius of gyration. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1987. 83(8): p. 1445-1452.
94. Guinier, A., et al., Small-angle scattering of X-rays. 1955.
95. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003. 36(6): p. 1378-1388.
96. Blaurock, A.E., Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1982. 650(4): p. 167-207.
97. Zhang, R., et al., Theory of the structure factor of lipid bilayers. Physical Review E, 1994. 50(6): p. 5047-5060.
98. Cabane, B., Small-Angle Scattering methods in Surfactant Solutions: New methods and investigations, ed. R. Zana. 1987, Marcel Dekker, New York. p. 461-468
99. Brzustowicz, M.R. and Brunger, A.T. X-ray scattering from unilamellar lipid vesicles. Journal of Applied Crystallography, 2005. 38(1): p. 126-131.
100. Friedrich, C.L., et al., Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. Journal of Biological Chemistry, 2001. 276(26): p. 24015-24022.
101. Dong, W., et al., Structure-activity analysis and biological studies of chensinin-1b analogues. Acta Biomaterialia, 2016. 37: p. 59-68.
102. Lombardo, D., et al., Structural characterization of biomaterials by means of small angle X-rays and neutron scattering (SAXS and SANS), and light scattering experiments. Molecules, 2020. 25(23): 5624.
103. Qi, M. and Zhou, Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers, 2019. 3(10): p. 1994-2009.
104. Zhang, G. and Sun, J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. International Journal of Nanomedicine, 2021. 16: p. 7391.
105. Cui, L., et al., Impact of phosphoethanolamine reverse micelles on lipid oxidation in bulk oils. Journal of the American Oil Chemists′ Society, 2014. 91(11): p. 1931-1937.
106. Su, C.-J., et al., Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(2): p. 528-534.
107. Komorowski, K., et al., Vesicle adhesion and fusion studied by small-angle x-ray scattering. Biophysical journal, 2018. 114(8): p. 1908-1920.
108. Wang, J., et al., pH-responsive vesicles from supra-amphiphiles based on dynamic imine bond. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 484: p. 28-36.
109. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical journal, 2004. 377(1): p. 159-169.
110. Canton, J., Macropinocytosis: new insights into its underappreciated role in innate immune cell surveillance. Frontiers in immunology, 2018. 9: p. 2286.
111. Ahmed, S., et al., Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration. Nanoscale, 2016. 8(35): p. 15888-15901.
112. Khalil, I., et al., Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene therapy, 2007. 14(8): p. 682-689.
113. Khalil, I.A., et al., High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. Journal of Biological Chemistry, 2006. 281(6): p. 3544-3551. |