博碩士論文 109223054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.147.70.66
姓名 林姍蓉(Shan-Jung Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計與合成氧橋芳杯環狀化合物應用於反式鈣鈦礦太陽能電池之電洞傳輸材料
(Design and synthesis of Oxa-bridged Calixarenetriazine macrocycles as Hole Transporting Materials for Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 鈣鈦礦太陽能電池為當今備受矚目之新型太陽能電池之一,其轉換效率在短短二十年間由約12 % 提升至25.7%,而電洞傳輸材料在提高元件性能方面作為一重要角色。根據文獻相關報導,有機環狀小分子有利於孔柱狀之排列堆積,然而目前有機環狀小分子應用於光電材料之領域甚少,作為鈣鈦礦太陽能電池之電洞傳輸材料仍有待開發。本文研究並合成三種大小之氧橋芳杯環狀化合物C-TP、C-TBPA、CTPPy,作為反式鈣鈦礦太陽能電池中之電洞傳輸材料,發現三者皆具有良好的熱穩定性及溶解度,而分子中的氮原子預期能達到鈍化鈣鈦礦層之作用,使鈣鈦礦晶形更為平整,有利於電荷之傳遞。以三者所組成之元件初步之光電轉換效率優於標準品PEDOT:PSS,在光電材料上具有潛在之發展性。
摘要(英) Perovskite solar cells (PSCs), as one of the most attractive novel materials solar cells nowadays, have dramatically increased the power conversion efficiency (PCE) from about 12 % to 25.7 % in two decades. Furthermore, hole transporting materials (HTMs) play an important role in the enhancement of device performance. According to relevant literatures, organic cyclic molecules are beneficial to the arrangement and stacking of pore columnars. However, they were rarely used in the field of optoelectronic materials nowadays, neither as HTMs in PSCs. Herein, three different kinds of oxa-calixarene macrocycic compounds, C-TP、C-TBPA、C-TPPy, as hole transporting materials for inverted perovskite solar cells were designed and synthesized. It was found that all of them show great thermal stability and solubility, the nitrogen atoms of moleculars are beneficial for not only potential defect passivation for perovskite film, making it grow smoothly on crystal, but also the hole mobility. The inverted PSCs based on three compounds show better PCE than standard PEDOT:PSS, provide the potential applications on Photoelectronic materials.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸材料
關鍵字(英) ★ Inverted Perovskite Solar Cells
★ Hole Transporting Materials
論文目次 摘要 i
ABSTRACT ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 x
一、 緒論 1
1-1 前言 1
1-2 太陽能電池發展趨勢 2
1-3 鈣鈦礦太陽能電池 3
1-3-1 元件基本架構 4
1-3-2 鈣鈦礦太陽能電池工作原理 9
1-3-3 太陽能電池光伏參數 9
1-4 鈣鈦礦太陽能電池元件製程 11
1-4-1 一步驟溶液沉積 (Single-Step Solution Deposition) 12
1-4-2 二步驟溶液沉積 (Two-Step Solution Deposition) 12
1-4-3 氣相輔助溶液沉積 (Vapor-Assisted Solution Deposition) 12
1-4-4 熱真空蒸鍍 (Thermal Vapor Deposition) 12
1-5 電洞傳輸材料之文獻回顧 13
1-5-1 線型結構 (Linear‒type) 13
1-5-2 星型結構 (Star‒shape) 14
1-5-3 螺旋型結構 (Spiro‒type) 16
1-5-4 不對稱型結構 (Asymmetric type) 18
二、 結構設計概念及動機 19
2-1 Covalant-Organic Framework (COF) 19
2-2 Metal-Organic Framework (MOF) 20
2-3 環狀化合物 21
2-4 Calixarenes 24
三、 合成與討論 27
3-1 合成策略 27
3-2 光學物理性質探討 36
3-3 電化學性質分析 39
3-4 理論計算-密度泛函理論 (Density Functional Theory, DFT) 41
3-5 熱穩定性分析 46
四、 結論與未來展望 47
五、 實驗合成與光譜數據 48
5-1 實驗藥品 48
5-2 實驗儀器 48
5-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 48
5-2-2 超高解析質譜儀 (High Mass Spectrometry) 49
5-2-3 電化學分析儀 (Electrochemical Analyzer) 49
5-2-4 紫外光-可見光光譜儀 (UV-Vis Spectrophotometer) 49
5-2-5 螢光光譜儀 (Fluorescence Spectrophotometer) 49
5-2-6 熱重分析儀 (Thermogravimetric Analyzer) 50
5-3 實驗合成步驟 50
參考文獻 60
附錄 63
參考文獻 1. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867-7918.
2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
3. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
4. Huang, Y.; Li, L.; Liu, Z.; Jiao, H.; He, Y.; Wang, X.; Zhu, R.; Wang, D.; Sun, J.; Chen, Q.; et al. The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 2017, 5, 8537-8544.
5. Marinova, N.; Valero, S.; Delgado, J. L. Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci. 2017, 488, 373-389.
6. Qi, B.; Wang, J. Open-circuit voltage in organic solar cells. J. Mater. Chem. 2012, 22, 24315-24325.
7. Wright, M.; Uddin, A. Organic—inorganic hybrid solar cells: A comparative review. Sol. Energy Mater Sol. Cells 2012, 107, 87-111.
8. Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 2016, 6, 022001.
9. Zhou, J.; Yin, X.; Dong, Z.; Ali, A.; Song, Z.; Shrestha, N.; Bista, S. S.; Bao, Q.; Ellingson, R. J.; Yan, Y.; et al. Dithieno[3,2-b:2′,3′-d]pyrrole Cored p-Type Semiconductors Enabling 20 % Efficiency Dopant-Free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 13717-13721.
10. Yuan, J.; Chen, Y.; Liu, X.; Xue, S. Dopant-free Hole-transporting Materials for CH3NH3PbI3 Inverted Perovskite Solar Cells with an Approximate Efficiency of 20%. ACS Appl. Energy. Mater. 2021, 4, 5756-5766.
11. Urieta-Mora, J.; Zimmermann, I.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells. Chem. Mater. 2018, 31, 6435-6442.
12. Ma, S.; Zhang, X.; Liu, X.; Ghadari, R.; Cai, M.; Ding, Y.; Mateen, M.; Dai, S. Pyridine-triphenylamine hole transport material for inverted perovskite solar cells. J. Energy Chem. 2021, 54, 395-402.
13. Nakar, R.; Ramos, F. J.; Dalinot, C.; Marques, P. S.; Cabanetos, C.; Leriche, P.; Sanguinet, L.; Kobeissi, M.; Blanchard, P.; Faure-Vincent, J.; et al. Cyclopentadithiophene and Fluorene Spiro-Core-Based Hole-Transporting Materials for Perovskite Solar Cells. J. Phys. Chem. C 2019, 123, 22767-22774.
14. Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G. Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells. Chem. Mater. 2019, 31, 5431-5441.
15. Li, X.; Sun, N.; Li, Z.; Chen, J.; Sun, Q.; Wang, H.; Hao, Y. A low-cost asymmetric carbazole-based hole-transporting material for efficient perovskite solar cells. New J. Chem. 2021, 45, 735-741.
16. Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; et al. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. J. Am. Chem. Soc. 2018, 140, 10016-10024.
17. Liu, Y.; Zhu, Y.; Alahakoon, S. B.; Egap, E. Synthesis of Imine-Based Covalent Organic Frameworks Catalyzed by Metal Halides and in Situ Growth of Perovskite@COF Composites. ACS Materials Lett. 2020, 2, 1561-1566.
18. Wu, S.; Li, Z.; Li, M. Q.; Diao, Y.; Lin, F.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W.; Qi, F.; et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934-940.
19. Izumi, S.; Higginbotham, H. F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P.; Data, P.; Takeda, Y.; Minakata, S. Thermally Activated Delayed Fluorescent Donor-Acceptor-Donor-Acceptor pi-Conjugated Macrocycle for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2020, 142, 1482-1491.
20. Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. Host-Host Interactions Control Self-assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co-assembled with anti-Electrostatic Bisulfate Dimers. Chem. Eur. J. 2018, 24, 9841-9852.
21. Targhi, F. F.; Jalili, Y. S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results Phys. 2018, 10, 616-627.
22. Wang, D. X.; Wang, M. X. Anion-pi interactions: generality, binding strength, and structure. J. Am. Chem. Soc. 2013, 135, 892-897.
23. Wang, M.-X.; Yang, H.-B. A general and high yielding fragment coupling synthesis of heteroatom-bridged calixarenes and the unprecedented examples of calixarene cavity fine-tuned by bridging heteroatoms. J. Am. Chem. Soc. 2004, 126, 15412-15422.
24. Wang, Y.-F.; Lu, H.-Y.; Shen, Y.-F.; Li, M.; Chen, C.-F. Novel oxacalix [2] arene [2] triazines with thermally activated delayed fluorescence and aggregation-induced emission properties. Chem. Commun. 2019, 55, 9559-9562.
25. Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem 2021, 14, 4354-4376.
26. Wu, A.; Zhu, Y.; Yuan, J.; Li, Y.; Gao, M.; Cao, L.; Ding, J. One-Pot Synthesis of Oxacalixarene Derivatives with Tunable Cavity Size Using Miscellaneous Linkers. Synlett 2010, 2011, 52-56.
27. Liu, Y.; Chen, K.; Xing, K.; Wang, Y.; Jiang, H.; Deng, X.; Zhu, M.; Zhu, W. Conjugated and nonconjugated bipolar-transporting dinuclear europium(III) complexes involving triphenylamine and oxadiazole units: synthesis, photophysical and electroluminescent properties. Tetrahedron 2013, 69, 4679-4686.
28. Aucagne, V.; Berná, J.; Crowley, J. D.; Goldup, S. M.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.; Ronaldson, V. E.; Slawin, A. M.; Viterisi, A. Catalytic “Active-Metal” Template Synthesis of [2] Rotaxanes,[3] Rotaxanes, and Molecular Shuttles, and Some Observations on the Mechanism of the Cu (I)-Catalyzed Azide− Alkyne 1, 3-Cycloaddition. J. Am. Chem. Soc. 2007, 129, 11950-11963.
29. Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. High yielding synthesis of 2,2′-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. Chem. Sci. 2016, 7, 3154-3161.
30. Long, R.; Yan, X.; Wu, Z.; Li, Z.; Xiang, H.; Zhou, X. Palladium-catalyzed direct arylation of phenols with aryl iodides. Org. Biomol. Chem. 2015, 13, 3571-3574.
指導教授 李文仁(Wen-Ren Li) 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明