博碩士論文 109324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:13.58.139.55
姓名 陳芊涵(Chien-Han Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附從煉鋼廠尾氣中回收一氧化碳
(Recovery of carbon monoxide from steel industry exhaust using pressure swing adsorption)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在煉鋼過程中會產生轉爐氣 (LDG)、高爐氣 (BFG) 和煉焦爐氣(COG)。前兩者具有較高含量的一氧化碳(CO),若能將一氧化碳分離純化成高純度產品,將成為石化行業循環經濟極具潛力的原料。
本研究採用兩階段雙塔六步驟變壓吸附程序(pressure swing adsorption, PSA)來分離純化一氧化碳,模擬進料為轉爐氣和高爐氣時的氣體分離結果,期望能獲得純度95%以上的一氧化碳。根據文獻中所提到PU-1吸附劑對一氧化碳有較好的吸附效能,並於CO/N2的選擇性較好,對CO/CO2的選擇性較低。轉爐氣和高爐煤氣主要氣體組成為H2、N2、CO2和CO。因此,第一階段 PSA使用沸石5A將二氧化碳先進行分離,以提高氣體組成中的氮氣、一氧化碳含量,再於第二階段PSA中以PU-1將第一階段產物進行分離純化,獲得高濃度之一氧化碳。
本研究為獲得純度95%以上之一氧化碳,利用實驗設計(design of experiments, DOE)找尋PSA程序的最佳化操作條件,並設計高壓吸附壓力、同向減壓壓力、抽真空壓力、步驟1/4時間、步驟2/5時間、步驟3/6時間為討論的變因,進行兩水準的全因子設計,經回歸分析找到最佳化操作條件後,從轉爐氣中可獲得98.75%純度的一氧化碳且回收率達90.89%,而高爐氣則為獲得純度95.99%產品下,回收95.67%的一氧化碳。
摘要(英) The Linz-Donawitz converter gas (LDG), blast furnace gas (BFG) and coke oven gas (COG) are important secondary energy components during the steelmaking process in iron and steel industry. The first two contain higher levels of carbon monoxide (CO). If CO can be separated and concentrated into high-purity products, it can become a highly potential raw material in petrochemical industry of circular economy. The mixed gas composition in this study focused on LDG and BFG is considered a quaternary mixtures of H2, N2, CO2 and CO with different concentrations.
In this research, we adopted a two-stage process with two-column six-step pressure swing adsorption (PSA) procedure to separate and purify CO by using two types of adsorbents of zeolite 5A and PU-1. The PU-1 adsorbent was reported with better efficiency of adsorption for CO, better selectivity for CO/N2, but lower selectivity for CO/CO2.The first-stage PSA used zeolite 5A to remove most of the CO2 from LDG and BFG. The second-stage PSA used PU-1 to obtain high CO concentration in the final product.
In order to obtain more than 95% purity of CO, this study uses the design of experiments (DOE) to predict the optimal operating conditions for the PSA process. The two-level full factorial design was discussed with adsorption pressure, cocurrent depressurization pressure, vacuuming pressure, step 1/4 time, step 2/5 time, and step 3/6 time as controlled parameters.
After simulation of the PSA process at the optimal operating conditions predicted by DOE, the final product of CO is 98.75% purity with 90.89% recovery from LDG, and 95.99% CO purity with 95.67% recovery from BFG.
關鍵字(中) ★ 變壓吸附
★ 一氧化碳
★ 二氧化碳
關鍵字(英) ★ pressure swing adsorption
★ CO
★ CO2
★ carbon monoxide
★ carbon dioxide
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
第二章 文獻回顧 4
2-1  吸附(Adsorption) 4
2-1-1 吸附簡介 4
2-1-2 吸附劑與其選擇性 5
2-1-3 吸附程序 7
2-1-4 突破曲線 8
2-2  變壓吸附程序(Pressure Swing Adsorption, PSA) 10
2-2-1 變壓吸附程序之發展與改進 10
2-2-2 理論回顧 14
2-3  一氧化碳分離之回顧 16
第三章 假設與理論 18
3-1  基本假設 18
3-2  統制方程式 19
3-3  吸附平衡關係式 23
3-3-1 等溫吸附平衡關係式 23
3-3-2 質傳驅動力模式(Driving Force Model) 24
3-3-3 吸附熱關係式 24
3-4  參數推導 25
3-4-1 軸向分散係數(Axial dispersion coefficient) 25
3-4-2 熱傳係數 27
3-4-3 線性驅動力質傳係數 29
(Mass transfer coefficient of linear driving force) 29
3-5  邊界條件與流速 32
3-5-1 邊界條件與節點流速 32
3-5-2 閥公式 33
3-6  求解步驟 34
第四章 模擬程序驗證 37
4-1  等溫吸附實驗 37
4-1-1 實驗裝置 37
4-1-2 實驗步驟 42
4-1-3 天平校正 43
4-1-4 空白校正 44
4-1-5 等溫平衡吸附曲線 46
4-1-6 實測吸附劑能力比較 50
4-2  突破曲線實驗 51
4-2-1 實驗裝置 51
4-2-2 突破實驗操作步驟 53
4-3  模擬驗證 54
第五章 轉爐氣之兩階段雙塔六步驟分離程序 56
5-1  吸附劑選擇 56
5-2  程序及模擬參數介紹 62
5-3  模擬結果與分析 66
5-4  以實驗設計求各響應最佳化結果 69
5-4-1 第一階段CO2-PSA實驗設計之最佳化結果 70
5-4-2 以模擬程序驗證第一階段CO2-PSA之最佳化結果 77
5-4-3 第二階段CO-PSA實驗設計之最佳化結果 79
5-4-4 以模擬程序驗證第二階段CO-PSA之最佳化結果 85
第六章 高爐氣之兩階段雙塔六步驟分離程序 87
6-1  吸附劑選擇 87
6-2  程序及模擬參數介紹 90
6-3  模擬結果與分析 91
6-4  以實驗設計求最佳化結果 94
6-4-1 第一階段CO2-PSA實驗設計之最佳化結果 95
6-4-2 以模擬程序驗證第一階段CO2-PSA之最佳化結果 101
6-4-3 第二階段CO-PSA實驗設計之最佳化結果 103
6-4-4 以模擬程序驗證第二階段CO-PSA之最佳化結果 109
第七章 結論 111
符號說明 113
參考資料 117
附錄 122
附錄A、流速之估算方法 122
附錄B、等溫吸附數據 126
附錄C、鋼瓶成分 132
參考文獻 [1] World Steel Association. Total production of crude steel. 2022; Available from: https://worldsteel.org/steel-by-topic/statistics/annual-production-steel-data/P1_crude_steel_total_pub/CHN/IND.
[2] 吳展維, 林佩勳, 副產燃氣優質化利用, 燃燒季刊, 71期, 3-14頁, 2010.
[3] 刘晓勤, 马正飞, 姚虎卿, 变压吸附法回收高炉气中CO的研究, 化学工程, 31卷, 6期, 54-57頁, 2003.
[4] 戴服管, 游家骊, 我国工业废气中的一氧化碳及其利用, 化学进展, 1期, 29-54頁, 1990.
[5] G. Xu, F. Liang, Y. Yang, Y. Hu, K. Zhang and W. Liu, An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory, Energies, vol. 7(5), pp. 3484-3502, 2014.
[6] J. Adewole, A. Ahmad, S. Ismail, and C. Leo, Current challenges in membrane separation of CO2 from natural gas: A review, International Journal of Greenhouse Gas Control, vol. 17, pp. 46-65, 2013.
[7] Z. H. Ban, L. K. Keong and A. Mohd Shariff, Physical Absorption of CO2 Capture: A Review, Advanced Materials Research, vol. 917, pp. 134-143, 2014.
[8] 談駿嵩, 王志盈, 二氧化碳捕獲, 科學發展月刊, 510卷, 32-37頁, 2015.
[9] R. D. Noble and P. A. Terry, Principles of chemical separations with environmental applications, Cambridge University Press, Cambridge UK, 2004.
[10] R. T. Yang, Gas separation by adsorption processes, vol. 1, World Scientific, London, 1997.
[11] R. T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons, New Jersey, 2003.
[12] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[13] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[14] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[15] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[16] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, Boston, 1988.
[17] W. Choi, W. Kwon, Y. Yeo, H. Lee, H. K. Song and B. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20(4), pp. 617-623, 2003.
[18] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter and A. D. Ebner, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[19] M. P. G. De and D. Daniel, Process for Separating a Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[20] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & engineering chemistry research, vol. 41(22), pp. 5498-5503, 2002.
[21] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6(1), pp. 7-13, 1987.
[22] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50(11), pp. 2904-2917, 2004.
[23] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, US Patent 3986849, 1976.
[24] P. H. Turnock and R. H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE Journal, vol. 17(2), pp. 335-342, 1971.
[25] R. Yang and S. Doong, Gas separation by pressure swing adsorption: A pore‐diffusion model for bulk separation, AIChE Journal, vol. 31(11), pp. 1829-1842, 1985.
[26] S. Farooq and D. M. Ruthven, Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model, Industrial & engineering chemistry research, vol. 29(6), pp. 1084-1090, 1990.
[27] E. Glueckauf and J. Coates, 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, Journal of the Chemical Society (Resumed), pp. 1315-1321, 1947.
[28] N. Dutta and G. Patil, Developments in CO separation, Gas separation & purification, vol. 9(4), pp. 277-283, 1995.
[29] Y. Xie, J. Zhang, J. Qiu, X. Tong, J. Fu, G. Yang, H. Yan and Y. Tang, Zeolites modified by CuCl for separating CO from gas mixtures containing CO2, Adsorption, vol. 3(1), pp. 27-32, 1997.
[30] C. Xue, W. Hao, W. Cheng, J. Ma and R. Li, Effects of pore size distribution of activated carbon (AC) on CuCl dispersion and CO adsorption for CuCl/AC adsorbent, Chemical Engineering Journal, vol. 375, article 122049, 2019.
[31] L. Q. Zhu, J. L. Tu and Y. J. Shi, Separation of CO-CO2-N2 gas mixture for high-purity CO by pressure swing adsorption, Gas separation & purification, vol. 5(3), pp. 173-176, 1991.
[32] H. Miyajima, A. Kodama, M. Goto and T. Hirose, Improved purge step in pressure swing adsorption for CO purification, Adsorption, vol. 11(1), pp. 625-630, 2005.
[33] Y. B. Chen, P. Ning, Y. C. Xie, Y. H. Chen, H. Sun and Z. Y. Liu, Pilot-scale experiment for purification of CO from industrial tail gases by pressure swing adsorption, Chinese Journal of Chemical Engineering, vol. 16(5), pp. 715-721, 2008.
[34] C. T. Chou and C. Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology, vol. 39(1-2), pp. 51-65, 2004.
[35] S. Sircar, R. Mohr, C. Ristic and M. Rao, Isosteric heat of adsorption: theory and experiment, The Journal of Physical Chemistry B, vol. 103(31), pp. 6539-6546, 1999.
[36] C. Y. Wen and L. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[37] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[38] E. Fuller and J. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatographic Science, vol. 3(7), pp. 222-227, 1965.
[39] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, The Journal of Physical Chemistry, vol. 73(11), pp. 3679-3685, 1969.
[40] D. F. Fairbanks and C. R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[41] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[42] N. Wakao, S. Kaguei and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: Correlation of nusselt numbers, Chemical Engineering Science, 1979.
[43] G. Carta and A. Cincotti, Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, vol. 53(19), pp. 3483-3488, 1998.
[44] W. Schirmer, Diffusion in zeolites and other microporous solids, Zeitschrift für physikalische Chemie, vol. 186(2), pp. 269-270, 1994.
[45] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Energy, vol. 16, pp. 17, 1997.
[46] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic Study of Diffusion in Molecular Sieve Carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[47] H. Qinglin, S. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecular Sieves, Langmuir, vol. 19(2), pp. 393-405, 2003.
[48] P. V. Danckwerts, Continuous flow systems: Distribution of residence times, Chemical engineering science, vol. 2(1), pp. 1-13, 1953.
[49] 耿云峰, 唐伟, 张佳平, 谢有畅. 以PU-Ⅰ为吸附剂的变压吸附分离CO新技术, 中國煤炭加工與綜合利用技術戰略研討會論文集 , 77-79頁, 2004.
[50] S. Ahn, Y. W. You, D. G. Lee, K. H. Kim, M. Oh and C. H. Lee, Layered two-and four-bed PSA processes for H2 recovery from coal gas, Chemical engineering science, vol. 68(1), pp. 413-423, 2012.
[51] Y. Park, Y. Ju, D. Park and C. H. Lee, Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chemical Engineering Journal, vol. 292, pp. 348-365, 2016.
[52] Y. Xie, N. Bu, J. Liu, G. Yang, J. Qiu, N. Yang, and Y. Tang, Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases, US Patent 4917711, 1990.
[53] G. M. Nam, B. M. Jeong, S. H. Kand, B. K. Lee and D. K. Choi, Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method, Journal of Chemical & Engineering Data, vol. 50(1), pp. 72-76, 2005.
[54] 鄭筑勻,以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析, 國立中央大學 , 碩士論文 , 2019.
[55] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill Inc., New York, 1987.
[56] K. Kamatani, Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution, Bernoulli, vol. 24(4B), pp. 3711-3750, 2018.
[57] S. Awad and R. Nagarajan, Development in Surface Contamination and
Cleaning, Elsevier, Amsterdam, 2010.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2022-9-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明