參考文獻 |
1. Joseph, B.; Jini, D., Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency, Asian Pacific Journal of Tropical Disease 2013, 3 (2), 93-102.
2. Grover, J. K.; Yadav, S. P., Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacology 2004, 93, (1), 123-132.
3. Scartezzini, P.; Speroni, E., Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology 2000, 71 (1–2), 23-43
4. Beloin, N.; Gbeassor, M.; Akpagana, K.; Hudson, J.; Soussa, K. d.; Koumaglo, K.; Arnason, J. T., Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology 2005, 96 (1–2), 49-55.
5. Kesari, P.; Pratap, S.; Dhankhar, P.; Dalal, V.; Mishra, M.; Singh, P. K.; Chauhan, H.; Kumar, P., Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Scientific Reports 2020, 10 (1), 1160.
6. Hassan, L. G.; Umar, K. J., Nutritional Value of Balsam Apple (Momordica balsamina L.) Leaves. Pakistan Journal of Nutrition 2006, 5 (6), 522-529.
7. Nagarani, G.; Abirami, A.; Siddhuraju, P., Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review. Food Science and Human Wellness 2014, 3 (3–4), 117-126.
8. Horax, R.; Hettiarachchy, N.; Chen, P., Extraction, Quantification, and Antioxidant Activities of Phenolics from Pericarp and Seeds of Bitter Melons (Momordica charantia) Harvested at Three Maturity Stages (Immature, Mature, and Ripe). Journal of Agricultural and Food Chemistry 2010, 58 (7), 4428-4433.
9. Kubola, J.; Siriamornpun, S., Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry 2008, 110 (4), 881-890.
10. Jia, S.; Shen, M.; Zhang, F.; Xie, J., Recent Advances in Momordica charantia: Functional Components and Biological Activities. International journal of molecular sciences 2017, 18 (12).
11. Kubola, J.; Siriamornpun, S., Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry 2011, 127 (3), 1138-1145.
12. Budrat, P.; Shotipruk, A., Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. Chiang Mai Journal of Science 2008, 35 (1), 123-130.
13. Horax, R.; Hettiarachchy, N.; Chen, P., Extraction, Quantification, and Antioxidant Activities of Phenolics from Pericarp and Seeds of Bitter Melons (Momordica charantia) Harvested at Three Maturity Stages (Immature, Mature, and Ripe). Journal of Agricultural and Food Chemistry 2010, 58 (7), 4428-4433.
14. Kenny, O.; Smyth, T. J.; Hewage, C. M.; Brunton, N. P., Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry 2013, 141 (4), 4295-4302.
15. Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X., Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural product reports 2005, 22 (3), 386-99.
16. Murakami, T.; Emoto, A.; Matsuda, H.; Yoshikawa, M., Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chemical & pharmaceutical bulletin 2001, 49 (1), 54-63.
17. Hsu, C.; Hsieh, C.-L.; Kuo, Y.-H.; Huang, C.-j., Isolation and Identification of Cucurbitane-Type Triterpenoids with Partial Agonist/Antagonist Potential for Estrogen Receptors from Momordica charantia. Journal of Agricultural and Food Chemistry 2011, 59 (9), 4553-4561.
18. Hsiao, P.-C.; Liaw, C.-C.; Hwang, S.-Y.; Cheng, H.-L.; Zhang, L.-J.; Shen, C.-C.; Hsu, F.-L.; Kuo, Y.-H., Antiproliferative and Hypoglycemic Cucurbitane-Type Glycosides from the Fruits of Momordica charantia. Journal of Agricultural and Food Chemistry 2013, 61 (12), 2979-2986.
19. Ma, L.; Yu, A. H.; Sun, L. L.; Gao, W.; Zhang, M. M.; Su, Y. L.; Liu, H.; Ji, T., Two new bidesmoside triterpenoid saponins from the seeds of Momordica charantia L. Molecules (Basel, Switzerland) 2014, 19 (2), 2238-46.
20. Zhang, J.; Huang, Y.; Kikuchi, T.; Tokuda, H.; Suzuki, N.; Inafuku, K.; Miura, M.; Motohashi, S.; Suzuki, T.; Akihisa, T., Cucurbitane triterpenoids from the leaves of Momordica charantia, and their cancer chemopreventive effects and cytotoxicities. Chemistry & biodiversity 2012, 9 (2), 428-40.
21. Aoki, H.; Kieu, N. T.; Kuze, N.; Tomisaka, K.; Van Chuyen, N., Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG). Bioscience, biotechnology, and biochemistry 2002, 66 (11), 2479-82.
22. Kubola, J.; Siriamornpun, S., Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry 2011, 127 (3), 1138-1145.
23. Ishida, B. K.; Turner, C.; Chapman, M. H.; McKeon, T. A., Fatty Acid and Carotenoid Composition of Gac (Momordica cochinchinensis Spreng) Fruit. Journal of Agricultural and Food Chemistry 2004, 52 (2), 274-279.
24. Chan, L. Y.; Wang, C. K.; Major, J. M.; Greenwood, K. P.; Lewis, R. J.; Craik, D. J.; Daly, N. L., Isolation and characterization of peptides from Momordica cochinchinensis seeds. Journal of natural products 2009, 72 (8), 1453-8.
25. Lo, H. Y.; Li, C. C.; Ho, T. Y.; Hsiang, C. Y., Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem 2016, 204, 298-305.
26. Singh, J.; Cumming, E.; Manoharan, G.; Kalasz, H.; Adeghate, E., Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. The open medicinal chemistry journal 2011, 5 (Suppl 2), 70-77.
27. Tan, M. J.; Ye, J. M.; Turner, N.; Hohnen-Behrens, C.; Ke, C. Q.; Tang, C. P.; Chen, T.; Weiss, H. C.; Gesing, E. R.; Rowland, A.; James, D. E.; Ye, Y., Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chemistry & biology 2008, 15 (3), 263-73.
28. Hazarika, R.; Parida, P.; Neog, B.; Yadav, R. N., Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon). Bioinformation 2012, 8 (6), 251-4.
29. Wang, F. J.; Song, H. L.; Wang, X. M.; Zhang, W. J.; Wang, B. L.; Zhao, J.; Hu, Z. B., Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli. Applied biochemistry and biotechnology 2012, 166 (3), 612-9
30. Tian, M.; Zeng, X. Q.; Song, H. L.; Hu, S. X.; Wang, F. J.; Zhao, J.; Hu, Z. B., Molecular diversity and hypoglycemic polypeptide-P content of Momordica charantia in different accessions and different seasons. Journal of the science of food and agriculture 2015, 95 (6), 1328-1335.
31. Lo, H.-Y.; Hsiang, C.-Y.; Li, T.-C.; Li, C.-C.; Huang, H.-C.; Chen, J.-C.; Ho, T.-Y., A Novel Glycated Hemoglobin A1c-Lowering Traditional Chinese Medicinal Formula, Identified by Translational Medicine Study. PLoS ONE 2014, 9 (8), e104650.
32. Puri, M.; Kaur, I.; Kanwar, R. K.; Gupta, R. C.; Chauhan, A.; Kanwar, J. R., Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Current molecular medicine 2009, 9 (9), 1080-1094.
33. Kabir, S. R.; Nabi, M. M.; Nurujjaman, M.; Abu Reza, M.; Alam, A. H.; Uz Zaman, R.; Khalid-Bin-Ferdaus, K. M.; Amin, R.; Khan, M. M.; Hossain, M. A.; Uddin, M. S.; Mahmud, Z. H., Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Applied biochemistry and biotechnology 2015, 175 (5), 2616-2628
34. Piironen, V.; Lindsay, D.; Miettinen, T.; Toivo, J.; Lampi, A.-M., Plant sterols: Biosynthesis, biological function and their importance to human nutrition. Journal of the science of food and agriculture 2000, 80, 939-966.
35. Liao, Y.-W.; Chen, C.-R.; Hsu, J.-L.; Cheng, H.-L.; Shih, W.-L.; Kuo, Y.-H.; Huang, T.-C.; Chang, C.-I., Sterols from the Stems of Momordica charantia. Journal of the Chinese Chemical Society 2011, 58 (7), 893-898.
36. Yokozawa, T.; Kim, H. Y.; Kim, H. J.; Okubo, T.; Chu, D. C.; Juneja, L. R., Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. The British journal of nutrition 2007, 97 (6), 1187-1195.
37. Rodrigo, R.; González, J.; Paoletto, F., The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research 2011, 34 (4), 431-440.
38. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S. E., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological reviews 2014, 94 (2), 329-354.
39. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A., Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity 2017, 2017, 8416763.
40. Tripathi, U. N.; Chandra, D., Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian journal of biochemistry & biophysics 2010, 47 (4), 227-233.
41. Tripathi, U. N.; Chandra, D., The plant extracts of Momordica charantia and Trigonella foenum-graecum have anti-oxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxidative medicine and cellular longevity 2009, 2 (5), 290-296.
42. Chakraborty, S.; Uppaluri, R.; Das, C., Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing 2020, 120, 114-122.
43. Shan, B.; Xie, J.-H.; Zhu, J.-H.; Peng, Y., Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food and Bioproducts Processing 2012, 90 (3), 579-587.
44. Wang, S.; Li, Z.; Yang, G.; Ho, C. T.; Li, S., Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food and function 2017, 8 (5), 1749-1762.
45. Jarald, E.; Joshi, S. B.; Jain, D. C., Diabetes VS Herbal Medicines. Iranian Journal of Pharmacology and Therapeutics 2008, 7 (1), 97-106.
46. Gao, H.; Wen, J. J.; Hu, J. L.; Nie, Q. X.; Chen, H. H.; Xiong, T.; Nie, S. P.; Xie, M. Y., Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats. Food research international (Ottawa, Ont.) 2019, 121, 367-378.
47. Blum, A.; Loerz, C.; Martin, H. J.; Staab-Weijnitz, C. A.; Maser, E., Momordica charantia extract, a herbal remedy for type 2 diabetes, contains a specific 11β-hydroxysteroid dehydrogenase type 1 inhibitor. The Journal of steroid biochemistry and molecular biology 2012, 128 (1-2), 51-55.
48. Cummings, E.; Hundal, H. S.; Wackerhage, H.; Hope, M.; Belle, M.; Adeghate, E.; Singh, J., Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Molecular and cellular biochemistry 2004, 261 (1-2), 99-104.
49. Nerurkar, P. V.; Lee, Y. K.; Nerurkar, V. R., Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC complementary and alternative medicine 2010, 10, 34.
50. Shibib, B. A.; Khan, L. A.; Rahman, R., Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. The Biochemical journal 1993, 292(1), 267-270.
51. Ahmed, I.; Adeghate, E.; Sharma, A. K.; Pallot, D. J.; Singh, J., Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes research and clinical practice 1998, 40 (3), 145-151.
52. Gadang, V.; Gilbert, W.; Hettiararchchy, N.; Horax, R.; Katwa, L.; Devareddy, L., Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome. Journal of medicinal food 2011, 14 (1-2), 86-93.
53. Day, C.; Cartwright, T.; Provost, J.; Bailey, C. J., Hypoglycaemic effect of Momordica charantia extracts. Planta medica 1990, 56 (5), 426-429.
54. Chaturvedi, P.; George, S., Momordica charantia maintains normal glucose levels and lipid profiles and prevents oxidative stress in diabetic rats subjected to chronic sucrose load. Journal of medicinal food 2010, 13 (3), 520-527.
55. Lo, H. Y.; Ho, T. Y.; Lin, C.; Li, C. C.; Hsiang, C. Y., Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor. Journal of Agricultural and Food Chemistry 2013, 61 (10), 2461-2468
56. Kumar, R.; Joshi, G.; Kler, H.; Kalra, S.; Kaur, M.; Arya, R., Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Medicinal Research Reviews 2018, 38 (4), 1073-1125.
57. Krenitsky, T. A., Aldehyde oxidase and xanthine oxidase--functional and evolutionary relationships. Biochemical pharmacology 1978, 27 (24), 2763-2764.
58. Lin, Z.-Y.; Liu, X.; Yang, F.; Yu, Y.-Q., Structural characterization and identification of five triterpenoid saponins isolated from Momordica cochinchinensis extracts by liquid chromatography/tandem mass spectrometry. International Journal of Mass Spectrometry 2012, s 328–329, 43–66.
59. Liu, C.-H.; Yen, M.-H.; Tsang, S.-F.; Gan, K.-H.; Hsu, H.-Y.; Lin, C.-N., Antioxidant triterpenoids from the stems of Momordica charantia. Food Chemistry 2010, 118 (3), 751-756.
60. Alsultanee, I.; Ewadh, M.; Smaism, M., Novel Natural Anti Gout Medication Extract from Momdica charantia. Journal of Natural Sciences Research 2014, 4(7), 16-23.
61. Saeed, S.; Tariq, P., Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia. Pakistan Journal of Botany 2005, 37, 997-1001.
62. Nantachit, K.; Tuchinda, P., Antimicrobial Activity of Hexane and Dichloromethane Extracts from Momordica cochinchinensis (Lour.) Spreng Leaves. Thai Pharmaceutical and Health Science Journal 2009, 4(1), 15-20.
63. Wang, Y. X.; Jacob, J.; Wingfield, P. T.; Palmer, I.; Stahl, S. J.; Kaufman, J. D.; Huang, P. L.; Huang, P. L.; Lee-Huang, S.; Torchia, D. A., Anti-HIV and anti-tumor protein MAP30, a 30 kDa single-strand type-I RIP, shares similar secondary structure and beta-sheet topology with the A chain of ricin, a type-II RIP. Protein science: a publication of the Protein Society 2000, 9 (1), 138-44.
64. Ng, T. B.; Liu, W. K.; Sze, S. F.; Yeung, H. W., Action of alpha-momorcharin, a ribosome inactivating protein, on cultured tumor cell lines. General pharmacology 1994, 25 (1), 75-77.
65. Ganguly, C.; De, S.; Das, S., Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 2000, 9 (4), 283-288.
66. Basch, E.; Gabardi, S.; Ulbricht, C., Bitter melon (Momordica charantia): a review of efficacy and safety. American journal of health-system pharmacy: AJH: official journal of the American Society of Health-System Pharmacists 2003, 60 (4), 356-359.
67. Mada, S., Hepatoprotective Effect of Momordica charantia Extract against CCl4 Induced Liver Damage in Rats. British Journal of Pharmaceutical Research 2014, 4(3), 368-380 .
68. Malik, Z. A.; Singh, M.; Sharma, P. L., Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol 2011, 133 (2), 729-734.
69. Deng, Y. Y.; Yi, Y.; Zhang, L. F.; Zhang, R. F.; Zhang, Y.; Wei, Z. C.; Tang, X. J.; Zhang, M. W., Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia. Molecules (Basel, Switzerland) 2014, 19 (9), 13432-13447.
70. Huang, W. C.; Tsai, T. H.; Huang, C. J.; Li, Y. Y.; Chyuan, J. H.; Chuang, L. T.; Tsai, P. J., Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food & function 2015, 6 (8), 2550-2560
71. Rakh, M. S.; Khedkar, A. N.; Aghav, N. N.; Chaudhari, S. R., Antiallergic and analgesic activity of Momordica dioica Roxb. Willd fruit seed. Asian Pacific Journal of Tropical Biomedicine 2012, 2 (1, Supplement), S192-S196.
72. Kushwaha, J. S.; Gupta, V. K.; Singh, A.; Giri, R., Significant correlation between taste dysfunction and HbA1C level and blood sugar fasting level in type 2 diabetes mellitus patients in at a tertiary care center in north India. Diabetes Epidemiology and Management 2022, 8, 100092
73. He, l.; Yang, F.-Q.; Tang, P.; Gao, T.-H.; Yang, C.-X.; Tan, L.; Yue, P.; Hua, Y.-N.; Liu, S.-J.; Guo, J.-L., Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine & Pharmacotherapy 2022, 151, 113091.
74. DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I.; Simonson, D. C.; Testa, M. A.; Weiss, R., Type 2 diabetes mellitus. Nature reviews. Disease primers 2015, 1, 15019.
75. Imamovic Kadric, S.; Kulo Cesic, A.; Dujic, T., Pharmacogenetics of new classes of antidiabetic drugs. Bosnian journal of basic medical sciences 2021, 21 (6), 659-671.
76. Trakoon-osot, W.; Sotanaphun, U.; Phanachet, P.; Porasuphatana, S.; Udomsubpayakul, U.; Komindr, S., Pilot study: Hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients. Journal of Pharmacy Research 2013, 6 (8), 859-864.
77. Su, L.; Xin, C.; Yang, J.; Dong, L.; Mei, H.; Dai, X.; Wang, Q., A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. International Journal of Biological Macromolecules 2022, 214, 312-323.
78. Gothai, S.; Ganesan, P.; Park, S. Y.; Fakurazi, S.; Choi, D. K.; Arulselvan, P., Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients 2016, 8 (8), 461.
79. Kirchner, H.; Osler, M. E.; Krook, A.; Zierath, J. R., Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends in cell biology 2013, 23 (5), 203-209.
80. Distefano, J. K.; Watanabe, R. M., Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals (Basel, Switzerland) 2010, 3 (8), 2610-2646.
81. Hollander, P., Safety profile of acarbose, an alpha-glucosidase inhibitor. Drugs 1992, 44 Suppl 3, 47-53.
82. Bailey, C. J.; Turner, R. C., Metformin. New England Journal of Medicine 1996, 334 (9), 574-579.
83. Wehash, F. E.; Abpo-Ghanema, I. I.; Saleh, R., Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with cidophage®. World Academy of Science, Engineering and Technology 2012, 64, 1206-1214.
84. Mohammady, I.; Elattar, S.; Mohamed, S.; Ewais, M., An Evaluation of Anti-Diabetic and Anti-Lipidemic Properties of Momordica Charantia (Bitter Melon) Fruit Extract in Experimentally Induced Diabetes. life science journal 2012, 9, 363-374.
85. Desai, S., An Important Lead compound from Momordica charantia for the Treatment of Diabetes. Journal of Pharmacognosy and Phytochemistry 2015, 3, 87-90.
86. Lolitka, M. M.; and Rajarama Rao MR., Note on a hypoglycaemic principle isolated from the fruits of Momordica charantia. Journal of University of Bombay 1962, 29, 223-224.
87. Cuong, D. M.; Jeon, J.; Morgan, A. M. A.; Kim, C.; Kim, J. K.; Lee, S. Y.; Park, S. U., Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia). Journal of Agricultural and Food Chemistry 2017, 65 (33), 7240-7249.
88. Ahamad, J.; Mir, S. R.; Amin, S., Antihyperglycemic activity of charantin isolated from fruits of Momordica charantia Linn. International Research Journal of Pharmacy 2019, 10, 61-64.
89. Fuangchan, A.; Sonthisombat, P.; Seubnukarn, T.; Chanouan, R.; Chotchaisuwat, P.; Sirigulsatien, V.; Ingkaninan, K.; Plianbangchang, P.; Haines, S. T., Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol 2011, 134 (2), 422-428.
90. Iseki, K.; Ikemiya, Y.; Inoue, T.; Iseki, C.; Kinjo, K.; Takishita, S., Significant hyperuricaemia as a risk factor for developing ESRD in a screened cohort. American journal of kidney diseases: the official journal of the National Kidney Foundation 2004, 44, 642-650.
91. Abu Bakar, F. I.; Abu Bakar, M. F.; Rahmat, A.; Abdullah, N.; Sabran, S. F.; Endrini, S., Anti-gout Potential of Malaysian Medicinal Plants. Frontiers in pharmacology 2018, 9, 261.
92. Feng, S.; Wu, S.; Xie, F.; Yang, C. S.; Shao, P., Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends in Food Science & Technology 2022, 123, 87-102.
93. Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, H.; Fujishiro, M.; Ono, H.; Asano, T., Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediators of inflammation 2016, 2016, 8603164.
94. Furuhashi, M., New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. American journal of physiology. Endocrinology and metabolism 2020, 319 (5), E827-e834.
95. Singh, J. V.; Bedi, P. M. S.; Singh, H.; Sharma, S., Xanthine oxidase inhibitors: patent landscape and clinical development (2015-2020). Expert opinion on therapeutic patents 2020, 30 (10), 769-780.
96. Mo, S. F.; Zhou, F.; Lv, Y. Z.; Hu, Q. H.; Zhang, D. M.; Kong, L. D., Hypouricemic action of selected flavonoids in mice: structure-activity relationships. Biological & pharmaceutical bulletin 2007, 30 (8), 1551-1556.
97. Wang, Y.; Zhang, G.; Pan, J.; Gong, D., Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. Journal of Agricultural and Food Chemistry 2015, 63 (2), 526-34.
98. Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M. J.; Delogu, F.; Kumar, A., Coumarin derivatives as promising xanthine oxidase inhibitors. International journal of biological macromolecules 2018, 120 (Pt A), 1286-1293.
99. Prabhala, P.; Sutar, S. M.; Savanur, H. M.; Joshi, S. D.; Kalkhambkar, R. G., In vitro antimicrobial combat, molecular modelling and structure activity relationship studies of novel class of aryl-ethyne tethered coumarin analogues and some 3-aryl coumarin derivatives. European Journal of Medicinal Chemistry Reports 2022, 5, 100048.
100. Patil, S. B., Medicinal significance of novel coumarin analogs: Recent studies. Results in Chemistry 2022, 4, 100313.
101. Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M. K.; Mahajan, G. B.; Kim, H., Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Research International 2016, 81, 1-16.
102. Harrison, D. E. F., Mixed Cultures in Industrial Fermentation Processes. In Advances in Applied Microbiology, Perlman, D., Ed. Academic Press: 1978; Vol. 24, pp 129-164.
103. George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F. J.; Revol-Junelles, A. M.; Borges, F.; Foligné, B., Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Frontiers in microbiology 2018, 9, 2899.
104. Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W., Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in bioengineering and biotechnology 2021, 9, 612285.
105. Lee, N. K.; Paik, H. D., Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds. Journal of microbiology and biotechnology 2017, 27 (5), 869-877.
106. Yunes, R. A.; Poluektova, E. U.; Dyachkova, M. S.; Klimina, K. M.; Kovtun, A. S.; Averina, O. V.; Orlova, V. S.; Danilenko, V. N., GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 2016, 42, 197-204.
107. Bao, W.; Huang, X.; Liu, J.; Han, B.; Chen, J., Influence of Lactobacillus brevis on metabolite changes in bacteria-fermented sufu. Journal of food science 2020, 85 (1), 165-172.
108. Di Cagno, R.; Mazzacane, F.; Rizzello, C. G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M., Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied microbiology and biotechnology 2010, 86 (2), 731-741.
109. Mamlouk, D.; Gullo, M., Acetic Acid bacteria: physiology and carbon sources oxidation. Indian journal of microbiology 2013, 53 (4), 377-384.
110. Qiu, X.; Zhang, Y.; Hong, H., Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021, 11.
111. He, Y.; Xie, Z.; Zhang, H.; Liebl, W.; Toyama, H.; Chen, F., Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Frontiers in microbiology 2022, 13, 879246.
112. Gullo, M.; Sola, A.; Zanichelli, G.; Montorsi, M.; Messori, M.; Giudici, P., Increased production of bacterial cellulose as starting point for scaled-up applications. Applied microbiology and biotechnology 2017, 101 (22), 8115-8127.
113. Chen, R. J.; Chen, M. H.; Chen, Y. L.; Hsiao, C. M.; Chen, H. M.; Chen, S. J.; Wu, M. D.; Yech, Y. J.; Yuan, G. F.; Wang, Y. J., Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study. Journal of food and drug analysis 2017, 25 (3), 597-606.
114. Wu, M.-D.; Cheng, M.-J.; Chen, Y.-L.; Chen, M.-H.; Chen, S.-J.; Yu, L.-W.; Hsu, H.-Y., Identification of Components from Acetobacter pasteurianus and their Xanthine Oxidase Inhibitory Activity. Chemistry of Natural Compounds 2020, 56(6), 1-2.
115. Parapouli, M.; Vasileiadis, A.; Afendra, A. S.; Hatziloukas, E., Saccharomyces cerevisiae and its industrial applications. AIMS microbiology 2020, 6 (1), 1-31.
116. Nandy, S. K.; Srivastava, R. K., A review on sustainable yeast biotechnological processes and applications. Microbiological Research 2018, 207, 83-90.
117. Vieira, E. F.; Delerue-Matos, C., Exploitation of Saccharomyces cerevisiae Enzymes in Food Processing and Preparation of Nutraceuticals and Pharmaceuticals. In Microbial Enzymes: Roles and Applications in Industries, Arora, N. K.; Mishra, J.; Mishra, V., Eds. Springer Singapore: Singapore, 2020; pp 41-62.
118. Walker, G.M.; Stewart, G.G., Saccharomyces cerevisiae in the Production of Fermented Beverages, Beverages, 2016, 2(4), 10-12.
119. Cheng, C. P.; Tsai, S. W.; Chiu, C. P.; Pan, T. M.; Tsai, T. Y., The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. Journal of the science of food and agriculture 2013, 93 (5), 1219-25.
120. Chen, Y.-M.; Shih, T.-W.; Chiu, C. P.; Pan, T.-M.; Tsai, T.-Y., Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. Journal of Functional Foods 2013, 5 (1), 395-405.
121. Marazza, J. A.; LeBlanc, J. G.; de Giori, G. S.; Garro, M. S., Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods 2013, 5 (4), 1848-1853.
122. Chien, H. L.; Huang, H. Y.; Chou, C. C., Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food microbiology 2006, 23 (8), 772-778.
123. Harrison, D. E. F., Mixed Cultures in Industrial Fermentation Processes. In Advances in Applied Microbiology, Perlman, D., Ed. Academic Press: 1978; Vol. 24, pp 129-164.
124. Jin, X.; Chen, W.; Chen, H.; Chen, W.; Zhong, Q., Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as Starter Culture to Produce Mango Slurry: Microbiological, Chemical Parameters and Antioxidant Activity. Molecules (Basel, Switzerland) 2019, 24 (23), 4349.
125. Chen, Y.; Huang, Y.; Bai, Y.; Fu, C.; Zhou, M.; Gao, B.; Wang, C.; Li, D.; Hu, Y.; Xu, N., Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT 2017, 84, 753-763.
126. Jayabalan, R.; Malbaša, R. V.; Lončar, E. S.; Vitas, J. S.; Sathishkumar, M., A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive reviews in food science and food safety 2014, 13 (4), 538-550.
127. Baú, T. R.; Garcia, S.; Ida, E. I., Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. International journal of food sciences and nutrition 2015, 66 (8), 845-50.
128. Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Yin, L.; Wang, Z.; Li, X.; Zhou, J., Kombucha fermentation enhances the health-promoting properties of soymilk beverage. Journal of Functional Foods 2019, 62, 103549.
129. Ni, C.; Li, X.; Wang, L.; Li, X.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W., Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food and function 2021, 12,7054-7067
130. Miller, G. L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 1959, 31 (3), 426-428.
131. Marulanda-Buitrago, P.-A.; Marulanda, V., Production of reducing sugars from lignocellulosic Kikuyu grass residues by hydrolysis using subcritical water in batch and semibatch reactors. CT y F - Ciencia, Tecnologia y Futuro 2017, 7, 137-146.
132. Marazza, J. A.; LeBlanc, J. G.; de Giori, G. S.; Garro, M. S., Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods 2013, 5 (4), 1848-1853.
133. Wang, Z.; Yan, M.; Chen, X.; Li, D.; Qin, L.; Li, Z.; Yao, J.; Liang, X., Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochemical Engineering Journal 2013, 79, 41-45.
134. Apostolidis, E.; Kwon, Y. I.; Ghaedian, R.; Shetty, K., Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnology 2007, 21, 217-236.
135. Wang, S.; Tang, F.; Yue, Y.; Yao, X.; Wei, Q.; Yu, J., Simultaneous determination of 12 coumarins in bamboo leaves by HPLC. Journal of AOAC International 2013, 96 (5), 942-946.
136. Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, Academic Press: 1999; Vol. 299, pp 152-178.
137. Molyneux, P., The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. 2003, 26(2), 211-219.
138. Gu, Y.; Yang, X.; Shang, C.; Thao, T. T. P.; Koyama, T., Correction: Inhibition and interactions of alpha-amylase by daucosterol from the peel of Chinese water chestnut (Eleocharis dulcis). Food and function 2021, 12 (19), 9503.
139. Umamaheswari, M.; AsokKumar, K.; Somasundaram, A.; Sivashanmugam, T.; Subhadradevi, V.; Ravi, T. K., Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol 2007, 109 (3), 547-551.
140. Chen, S.J.; Chen, Y.L.; Chen, Hsu, H.Y.; Chen, K.P.; Liao, C.M.; Yech, Y.J., Novel acetobacter and gluconacetobacter strains and their metabolites for use in inhibiting xanthine oxidase. United States Patent Application Publication 2016 US20160051596A
141. Chen, S.J.; Chen, Y.L.; Chen, Hsu; Wann, S.Y.; Chen, M.H.; Yu,L.W., Strain of Lactobacillus rhamnosus and its metabolites for use in inhibiting xanthine oxidase and treating gout. United States Patents 2017 9636368B2
142. McCue, P. P.; Shetty, K., Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry 2005, 40 (5), 1791-1797.
143. Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S., Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry 2007, 103, 381-388.
144. Nguyen, N. K.; Nguyen, P. B.; Nguyen, H. T.; Le, P. H., Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT - Food Science and Technology 2015, 64 (2), 1149-1155.
145. Gomes, R. J.; Borges, M. F.; Rosa, M. F.; Castro-Gómez, R. J. H.; Spinosa, W. A., Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food technology and biotechnology 2018, 56 (2), 139-151.
146. Casey, E.; Sedlak, M.; Ho, N. W.; Mosier, N. S., Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS yeast research 2010, 10 (4), 385-93.
147. Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M., Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods 2019, 52, 81-89.
148. 劉庭萱, "探討利用 Lactobacillus plantarum 發酵 Momordica charantia 山苦瓜對其降血糖及其他生物活性之影響," vol. 國立中央大學化材所, 2020.
149. 彭文正, "探討以 Lactobacillus buchneri 發酵巴西蘑菇 並產生 γ-氨基丁酸之研究," 碩士, vol. 國立中央大學化材所, 2020. |