博碩士論文 105384603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.22.240.205
姓名 羅傑(Rajan Jaiswal)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Fermentation with pure and mixed cultures of Lactobacillus plantarum, Lactobacillus buchneri, Saccharomyces cerevisiae and Gluconacetobacter enhances the phytochemical content and biological activities of Momordica charantia)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 糖尿病、痛風等慢性疾病的患病率急劇上升,造成人們的過早死亡和巨大的經濟損失。據報導,用於治療此類疾病的化學合成現代藥物具有不良副作用,促使人們大力關注開發富含天然植物化學物質並引起輕微或無副作用的新型功能性食品和飲料。自古以來,使用微生物發酵技術對水果和蔬菜進行改良以增強營養功能、風味和保質期就很受歡迎。混合培養發酵有利於實現更高的生長速率、產品產量、更好的原料運用、有效的多步轉化和減少污染的機會。本次研究旨在利用已知乳酸菌、醋酸菌和酵母菌在混合培養中共存並共生,期能優化研究結果。
Momordica charantia (MC) 也稱為苦瓜,在世界不同地區廣泛種植,用作蔬菜和傳統藥物。苦瓜中不同植物化學物質的存在和治療應用推動了對其生物活性研究的巨大研究。然而,關於微生物發酵在利用苦瓜開發不同功能食品和飲料方面的應用研究有限。因此,在本研究中,我們嘗試使用混合培養發酵開發使用 MC 培養液和豆漿的非乳製飲料。使用植物乳桿菌和布氏乳桿菌的 MC 提取液混合培養厭氧發酵,在 30°C條件下添加 10% 豆漿,將 α- 澱粉酶抑制活性提高到 73.15%,將苦瓜苷含量提高到 14.2 ppm。發酵產生71.9%的DPPH自由基清除活性。在不同的培養溫度中,發現 30°C對 α-澱粉酶抑制、苦瓜苷含量和 DPPH 自由基清除活性為最佳。
在發酵的第 16 天,含有 10% 豆漿的 Gluconacteobacter 純培養物在 125 rpm 下產生 40.33% 的黃嘌呤氧化酶抑制 (XOI) 活性和 1215.34 ppb 的苦瓜苷含量。該結果表明,與未發酵的 MC 粉末相比,XOI 活性增加了 29.61%,Charantin 含量增加了 251.89 ppb。葡萄糖醋桿菌和釀酒酵母與 10% 豆漿的共培養在發酵的第 14 天產生 45.65% 的 XOI 活性。用豆漿多菌發酵葡萄糖醋桿菌、釀酒酵母和植物乳桿菌,發酵第4天XOI活性提高到47.38%。此外,進行了兩階段發酵,其中釀酒酵母、植物乳桿菌和布氏乳桿菌與 10% 豆漿在第一階段厭氧培養前 12 小時,然後添加葡糖醋桿菌,在第二階段進行好氧發酵階段。兩階段發酵在發酵第4天產生最高的XOI活性,達到63.57%,與純培養相比,XOI活性提高了23.24%,發酵時間縮短了12天。
本研究使用新的發酵策略成功地證明了苦瓜的生物活性和植物化學含量可以通過微生物發酵得到增強。結果表明,30°C的兩階段發酵對XOI活性的提升最為顯著,而植物乳桿菌和布氏乳桿菌的厭氧混合培養對促進α-澱粉酶抑制活性和提高苦瓜苷含量為最佳。培養溫度、加入接種物的比例和時間、添加豆漿均會影響微生物發酵的結果,因此需要進一步優化工藝的經濟可行性。
摘要(英) The prevalence of lifestyle diseases including diabetes mellitus and gout has increased tremendously causing large number of untimely deaths and huge financial losses. Chemically synthesized modern medicines used for treatment of such ailments are reported to have adverse side effects driving huge attention to development of novel functional foods and beverages which are rich in natural phytochemicals and cause mild or null side effects. Modification of fruit and vegetables using microbial fermentation technologies to enhance nutritional functionality, flavor and shelf life has been popular since time immemorial. Mixed culture fermentation has been beneficial in achieving higher growth rate, product yield, better utilization of substrates, effective multistep transformation and reduced chances of contamination. Lactic acid bacteria, acetic acid bacteria and yeast have been known to co-exist and function symbiotically in mixed culture fermentation.
Momordica charantia [MC) also known as bitter melon or balsam pear is cultivated widely in different regions of the world for its consumption as vegetable and traditional medicines. The presence of different phytochemicals in M. charantia with therapeutic application has driven tremendous research on the study of the biological activities. However, there have been limited studies on the application of microbial fermentation for development of different functional food and beverages using M. charantia. Therefore, in this study we have attempted to develop non-dairy beverages using MC broth and soymilk using mixed culture fermentation. Mixed culture anaerobic fermentation of MC extract broth using L. plantarum and L. buchneri with the addition of 10% soymilk at 30oC increased the α- amylase inhibition activity to 73.15% and charantin content to 14.2 ppm. The fermentation resulted 71.9% DPPH radical scavenging activity. Of the different culture temperatures, 30 oC was found to be optimum for α-amylase inhibition, charantin content and DPPH radical scavenging activity.
Pure cultures of Gluconacteobacter fermented MC media broth with 10% soymilk at 125 rpm demonstrated 40.33% xanthine oxidase inhibition (XOI) activity and 1215.34 ppb charantin content on the 16th day of fermentation. These results showed XOI activity increment of 29.61% and charantin content increment of 251.89 ppb as compared to unfermented MC powder. Co-cultures of Gluconacetobacter and Saccharomyces cerevisiae fermented MC media broth with 10% soymilk produced 45.65 % XOI activity on 14th day of the fermentation. Multi-strain fermentation using Gluconacetobacter, Saccharomyces cerevisiae and L. plantarum fermented MC media broth with soymilk resulted XOI activity to 47.38% on the 4th day of fermentation. Furthermore, two stage fermentation was carried out in which Saccharomyces cerevisiae, L. plantarum and L. buchneri were cultured anaerobically in MC media broth with 10% soymilk for first 12 hours in the first stage followed by the addition of Gluconacetobacter and the fermentation carried out aerobically in the second stage. Two stage fermentation produced the highest XOI activity of 63.57% on the 4th day of the fermentation thereby showing XOI activity increment of 23.24% and shortening the fermentation time by 12 days as compared to pure culture.
This study used novel fermentation strategies to successfully demonstrate that the bioactivities and phytochemical content of M. charantia can be enhanced through microbial fermentation. The results indicated that the two stage fermentation at 30 oC was optimum for XOI activity while anaerobic mixed culture of L. plantarum and L. buchneri was optimum for promoting α- amylase inhibition activity as well as enhancing charantin content. Culture temperature, ratio and time of addition of the inoculum, addition of soymilk affected the outcomes of the microbial fermentation and hence required optimization for economic viability of the process.
關鍵字(中) ★ 也稱為苦瓜 關鍵字(英) ★ Momordica charantia
★ Mixed culture
★ charantin
★ coumarin
★ bioactivities
論文目次 Table of Contents
摘要 i
Abstract iii
Acknowledgement v
List of figures ix
List of tables xi
Abbreviations xii
Chapter 1. Background and research motivation 1
Chapter 2. Literature review 5
2.1 Momordica charantia 5
2.1.1 General introduction and geographical distribution 5
2.1.2 Traditional use of M. charantia 6
2.1.3 Nutritional content 7
2.1.4 Phytochemicals 8
2.1.5 Bioactivity of the phytochemicals in M. charantia 14
2.2 Type II Diabetes mellitus (T2DM) 17
2.2.1 Treatments of T2DM 18
2.2. 2 Charantin 21
2.3 Gout 23
2.3.1 Treatment of gout 24
2.3.2 Xanthine oxidase and XOI mechanism 25
2.3.3 Coumarin 26
2.4 Microbial fermentation to enhance phytochemicals and bioactivities 27
2.5 Basic introduction of the bacterial strain used in this study 28
2.5.1 Lactic acid bacteria and its role in biotransformation 28
2.5.2 Acetic acid bacteria 29
2.5.3 Saccharomyces cerevisiae 30
2.6 Soymilk 31
2.7 Fermentation strategies and selection of microorganisms for mixed culture fermentation 32
Chapter 3. Materials and methods 37
3.1 Momordica charantia collection and processing 43
3.2 Bacterial strains and maintenance 43
3.3 Inoculum preparation 48
3.4 Soymilk preparation 51
3.5 Antidiabetic bioactivity improvement fermentation 51
3.6 Anti-gout improvement fermentation 52
3.7 pH analysis 54
3.8 Analysis of bacterial growth 54
3.9 Reducing sugar concentration analysis 54
3.10 Ethanol and acetic acid concentration analysis 56
3.11 Lactic acid concentration analysis 57
3.12 Charatin concentration analysis 58
3.13 Coumarin concentration analysis 59
3.14 Antioxidant activity evaluation 60
3.14.1 Total phenolic content (TPC) 60
3.14.2 DPPH radical scavenging activity 61
3.15 Determination of α-amylase inhibition activity 62
3.16 Determination of xanthine oxidase inhibition (XOI) activity 62
3.17 Ultrasound assisted aqueous extraction 63
3.18 Statistical analysis 63
Chapter 4. Results and discussion 64
4.1 Growth curves of the bacterial strains used in this study 64
4.2 Ultrasound assisted aqueous extraction of MC 67
4.3 Effect of mixed culture of L. plantarum and L. buchneri on MC extract broth 68
4.4 Mixed culture fermentation of non-extracted MC broth 72
4.5 Addition of 10 % soymilk in mixed culture fermentation 74
4.6 Effect of temperature on mixed culture fermentation of MC extracted broth with 10% soymilk 78
4.6.1 Growth and production of lactic acid 78
4.6.2 Antioxidant properties 81
4.6.3 Antidiabetic activity 83
4.7 Effect of mixed culture fermentation on soymilk only 85
4.8 Isolation and identification of Gluconacteobacter sp. Sc-01 87
4.9 Effect of Pure cultures of Gluconacetobacter fermentation of MC media broth with 10% soymilk on xanthine oxidase inhibition activity 89
4.10 Effect of temperature on Gluconacetobacter fermentation of MC media broth with soymilk 94
4.11 Co-culture of Gluconacetobacter and Saccharomyces cerevisiae for fermentation of MC media broth supplemented with 10% soymilk 97
4.12 Multistrain culture involoving Gluconacteobacter, Saccharomyces cerevisiae and Lactobacillus plantarum for fermentation of MC broth media with 10% soymilk 100
4.13 Two stage using multistrain culture of Gluconacteobacter, Saccharomyces cerevisiae and Lactobacillus plantarum for fermentation of MC broth media with 10% soymilk 102
4.14 Multistrain involving culture of Gluconacteobacter, Saccharomyces cerevisiae, Lactobacillus plantarum and Lactobacillus buchneri for fermentation of MC broth media with 10% soymilk 104
4.15 Optimization of xanthine oxidase inhibition activity and coumarin content using two stage multistrain cultures of Gluconacteobacter, Saccharomyces cerevisiae, Lactobacillus plantarum and Lactobacillus buchneri for fermentation of MC broth media with 10% soymilk 106
Chapter 5. Conclusion 108
Chapter 6. Future works 111
References 112
Appendix 132
參考文獻 1. Joseph, B.; Jini, D., Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency, Asian Pacific Journal of Tropical Disease 2013, 3 (2), 93-102.
2. Grover, J. K.; Yadav, S. P., Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacology 2004, 93, (1), 123-132.
3. Scartezzini, P.; Speroni, E., Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology 2000, 71 (1–2), 23-43
4. Beloin, N.; Gbeassor, M.; Akpagana, K.; Hudson, J.; Soussa, K. d.; Koumaglo, K.; Arnason, J. T., Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology 2005, 96 (1–2), 49-55.
5. Kesari, P.; Pratap, S.; Dhankhar, P.; Dalal, V.; Mishra, M.; Singh, P. K.; Chauhan, H.; Kumar, P., Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Scientific Reports 2020, 10 (1), 1160.
6. Hassan, L. G.; Umar, K. J., Nutritional Value of Balsam Apple (Momordica balsamina L.) Leaves. Pakistan Journal of Nutrition 2006, 5 (6), 522-529.
7. Nagarani, G.; Abirami, A.; Siddhuraju, P., Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review. Food Science and Human Wellness 2014, 3 (3–4), 117-126.
8. Horax, R.; Hettiarachchy, N.; Chen, P., Extraction, Quantification, and Antioxidant Activities of Phenolics from Pericarp and Seeds of Bitter Melons (Momordica charantia) Harvested at Three Maturity Stages (Immature, Mature, and Ripe). Journal of Agricultural and Food Chemistry 2010, 58 (7), 4428-4433.
9. Kubola, J.; Siriamornpun, S., Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry 2008, 110 (4), 881-890.
10. Jia, S.; Shen, M.; Zhang, F.; Xie, J., Recent Advances in Momordica charantia: Functional Components and Biological Activities. International journal of molecular sciences 2017, 18 (12).
11. Kubola, J.; Siriamornpun, S., Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry 2011, 127 (3), 1138-1145.
12. Budrat, P.; Shotipruk, A., Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. Chiang Mai Journal of Science 2008, 35 (1), 123-130.
13. Horax, R.; Hettiarachchy, N.; Chen, P., Extraction, Quantification, and Antioxidant Activities of Phenolics from Pericarp and Seeds of Bitter Melons (Momordica charantia) Harvested at Three Maturity Stages (Immature, Mature, and Ripe). Journal of Agricultural and Food Chemistry 2010, 58 (7), 4428-4433.
14. Kenny, O.; Smyth, T. J.; Hewage, C. M.; Brunton, N. P., Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry 2013, 141 (4), 4295-4302.
15. Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X., Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural product reports 2005, 22 (3), 386-99.
16. Murakami, T.; Emoto, A.; Matsuda, H.; Yoshikawa, M., Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chemical & pharmaceutical bulletin 2001, 49 (1), 54-63.
17. Hsu, C.; Hsieh, C.-L.; Kuo, Y.-H.; Huang, C.-j., Isolation and Identification of Cucurbitane-Type Triterpenoids with Partial Agonist/Antagonist Potential for Estrogen Receptors from Momordica charantia. Journal of Agricultural and Food Chemistry 2011, 59 (9), 4553-4561.
18. Hsiao, P.-C.; Liaw, C.-C.; Hwang, S.-Y.; Cheng, H.-L.; Zhang, L.-J.; Shen, C.-C.; Hsu, F.-L.; Kuo, Y.-H., Antiproliferative and Hypoglycemic Cucurbitane-Type Glycosides from the Fruits of Momordica charantia. Journal of Agricultural and Food Chemistry 2013, 61 (12), 2979-2986.
19. Ma, L.; Yu, A. H.; Sun, L. L.; Gao, W.; Zhang, M. M.; Su, Y. L.; Liu, H.; Ji, T., Two new bidesmoside triterpenoid saponins from the seeds of Momordica charantia L. Molecules (Basel, Switzerland) 2014, 19 (2), 2238-46.
20. Zhang, J.; Huang, Y.; Kikuchi, T.; Tokuda, H.; Suzuki, N.; Inafuku, K.; Miura, M.; Motohashi, S.; Suzuki, T.; Akihisa, T., Cucurbitane triterpenoids from the leaves of Momordica charantia, and their cancer chemopreventive effects and cytotoxicities. Chemistry & biodiversity 2012, 9 (2), 428-40.
21. Aoki, H.; Kieu, N. T.; Kuze, N.; Tomisaka, K.; Van Chuyen, N., Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG). Bioscience, biotechnology, and biochemistry 2002, 66 (11), 2479-82.
22. Kubola, J.; Siriamornpun, S., Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry 2011, 127 (3), 1138-1145.
23. Ishida, B. K.; Turner, C.; Chapman, M. H.; McKeon, T. A., Fatty Acid and Carotenoid Composition of Gac (Momordica cochinchinensis Spreng) Fruit. Journal of Agricultural and Food Chemistry 2004, 52 (2), 274-279.
24. Chan, L. Y.; Wang, C. K.; Major, J. M.; Greenwood, K. P.; Lewis, R. J.; Craik, D. J.; Daly, N. L., Isolation and characterization of peptides from Momordica cochinchinensis seeds. Journal of natural products 2009, 72 (8), 1453-8.
25. Lo, H. Y.; Li, C. C.; Ho, T. Y.; Hsiang, C. Y., Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem 2016, 204, 298-305.
26. Singh, J.; Cumming, E.; Manoharan, G.; Kalasz, H.; Adeghate, E., Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. The open medicinal chemistry journal 2011, 5 (Suppl 2), 70-77.
27. Tan, M. J.; Ye, J. M.; Turner, N.; Hohnen-Behrens, C.; Ke, C. Q.; Tang, C. P.; Chen, T.; Weiss, H. C.; Gesing, E. R.; Rowland, A.; James, D. E.; Ye, Y., Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chemistry & biology 2008, 15 (3), 263-73.
28. Hazarika, R.; Parida, P.; Neog, B.; Yadav, R. N., Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon). Bioinformation 2012, 8 (6), 251-4.
29. Wang, F. J.; Song, H. L.; Wang, X. M.; Zhang, W. J.; Wang, B. L.; Zhao, J.; Hu, Z. B., Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli. Applied biochemistry and biotechnology 2012, 166 (3), 612-9
30. Tian, M.; Zeng, X. Q.; Song, H. L.; Hu, S. X.; Wang, F. J.; Zhao, J.; Hu, Z. B., Molecular diversity and hypoglycemic polypeptide-P content of Momordica charantia in different accessions and different seasons. Journal of the science of food and agriculture 2015, 95 (6), 1328-1335.
31. Lo, H.-Y.; Hsiang, C.-Y.; Li, T.-C.; Li, C.-C.; Huang, H.-C.; Chen, J.-C.; Ho, T.-Y., A Novel Glycated Hemoglobin A1c-Lowering Traditional Chinese Medicinal Formula, Identified by Translational Medicine Study. PLoS ONE 2014, 9 (8), e104650.
32. Puri, M.; Kaur, I.; Kanwar, R. K.; Gupta, R. C.; Chauhan, A.; Kanwar, J. R., Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Current molecular medicine 2009, 9 (9), 1080-1094.
33. Kabir, S. R.; Nabi, M. M.; Nurujjaman, M.; Abu Reza, M.; Alam, A. H.; Uz Zaman, R.; Khalid-Bin-Ferdaus, K. M.; Amin, R.; Khan, M. M.; Hossain, M. A.; Uddin, M. S.; Mahmud, Z. H., Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Applied biochemistry and biotechnology 2015, 175 (5), 2616-2628
34. Piironen, V.; Lindsay, D.; Miettinen, T.; Toivo, J.; Lampi, A.-M., Plant sterols: Biosynthesis, biological function and their importance to human nutrition. Journal of the science of food and agriculture 2000, 80, 939-966.
35. Liao, Y.-W.; Chen, C.-R.; Hsu, J.-L.; Cheng, H.-L.; Shih, W.-L.; Kuo, Y.-H.; Huang, T.-C.; Chang, C.-I., Sterols from the Stems of Momordica charantia. Journal of the Chinese Chemical Society 2011, 58 (7), 893-898.
36. Yokozawa, T.; Kim, H. Y.; Kim, H. J.; Okubo, T.; Chu, D. C.; Juneja, L. R., Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. The British journal of nutrition 2007, 97 (6), 1187-1195.
37. Rodrigo, R.; González, J.; Paoletto, F., The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research 2011, 34 (4), 431-440.
38. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S. E., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological reviews 2014, 94 (2), 329-354.
39. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A., Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity 2017, 2017, 8416763.
40. Tripathi, U. N.; Chandra, D., Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian journal of biochemistry & biophysics 2010, 47 (4), 227-233.
41. Tripathi, U. N.; Chandra, D., The plant extracts of Momordica charantia and Trigonella foenum-graecum have anti-oxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxidative medicine and cellular longevity 2009, 2 (5), 290-296.
42. Chakraborty, S.; Uppaluri, R.; Das, C., Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing 2020, 120, 114-122.
43. Shan, B.; Xie, J.-H.; Zhu, J.-H.; Peng, Y., Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food and Bioproducts Processing 2012, 90 (3), 579-587.
44. Wang, S.; Li, Z.; Yang, G.; Ho, C. T.; Li, S., Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food and function 2017, 8 (5), 1749-1762.
45. Jarald, E.; Joshi, S. B.; Jain, D. C., Diabetes VS Herbal Medicines. Iranian Journal of Pharmacology and Therapeutics 2008, 7 (1), 97-106.
46. Gao, H.; Wen, J. J.; Hu, J. L.; Nie, Q. X.; Chen, H. H.; Xiong, T.; Nie, S. P.; Xie, M. Y., Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats. Food research international (Ottawa, Ont.) 2019, 121, 367-378.
47. Blum, A.; Loerz, C.; Martin, H. J.; Staab-Weijnitz, C. A.; Maser, E., Momordica charantia extract, a herbal remedy for type 2 diabetes, contains a specific 11β-hydroxysteroid dehydrogenase type 1 inhibitor. The Journal of steroid biochemistry and molecular biology 2012, 128 (1-2), 51-55.
48. Cummings, E.; Hundal, H. S.; Wackerhage, H.; Hope, M.; Belle, M.; Adeghate, E.; Singh, J., Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Molecular and cellular biochemistry 2004, 261 (1-2), 99-104.
49. Nerurkar, P. V.; Lee, Y. K.; Nerurkar, V. R., Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC complementary and alternative medicine 2010, 10, 34.
50. Shibib, B. A.; Khan, L. A.; Rahman, R., Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. The Biochemical journal 1993, 292(1), 267-270.
51. Ahmed, I.; Adeghate, E.; Sharma, A. K.; Pallot, D. J.; Singh, J., Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes research and clinical practice 1998, 40 (3), 145-151.
52. Gadang, V.; Gilbert, W.; Hettiararchchy, N.; Horax, R.; Katwa, L.; Devareddy, L., Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome. Journal of medicinal food 2011, 14 (1-2), 86-93.
53. Day, C.; Cartwright, T.; Provost, J.; Bailey, C. J., Hypoglycaemic effect of Momordica charantia extracts. Planta medica 1990, 56 (5), 426-429.
54. Chaturvedi, P.; George, S., Momordica charantia maintains normal glucose levels and lipid profiles and prevents oxidative stress in diabetic rats subjected to chronic sucrose load. Journal of medicinal food 2010, 13 (3), 520-527.
55. Lo, H. Y.; Ho, T. Y.; Lin, C.; Li, C. C.; Hsiang, C. Y., Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor. Journal of Agricultural and Food Chemistry 2013, 61 (10), 2461-2468
56. Kumar, R.; Joshi, G.; Kler, H.; Kalra, S.; Kaur, M.; Arya, R., Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Medicinal Research Reviews 2018, 38 (4), 1073-1125.
57. Krenitsky, T. A., Aldehyde oxidase and xanthine oxidase--functional and evolutionary relationships. Biochemical pharmacology 1978, 27 (24), 2763-2764.
58. Lin, Z.-Y.; Liu, X.; Yang, F.; Yu, Y.-Q., Structural characterization and identification of five triterpenoid saponins isolated from Momordica cochinchinensis extracts by liquid chromatography/tandem mass spectrometry. International Journal of Mass Spectrometry 2012, s 328–329, 43–66.
59. Liu, C.-H.; Yen, M.-H.; Tsang, S.-F.; Gan, K.-H.; Hsu, H.-Y.; Lin, C.-N., Antioxidant triterpenoids from the stems of Momordica charantia. Food Chemistry 2010, 118 (3), 751-756.
60. Alsultanee, I.; Ewadh, M.; Smaism, M., Novel Natural Anti Gout Medication Extract from Momdica charantia. Journal of Natural Sciences Research 2014, 4(7), 16-23.
61. Saeed, S.; Tariq, P., Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia. Pakistan Journal of Botany 2005, 37, 997-1001.
62. Nantachit, K.; Tuchinda, P., Antimicrobial Activity of Hexane and Dichloromethane Extracts from Momordica cochinchinensis (Lour.) Spreng Leaves. Thai Pharmaceutical and Health Science Journal 2009, 4(1), 15-20.
63. Wang, Y. X.; Jacob, J.; Wingfield, P. T.; Palmer, I.; Stahl, S. J.; Kaufman, J. D.; Huang, P. L.; Huang, P. L.; Lee-Huang, S.; Torchia, D. A., Anti-HIV and anti-tumor protein MAP30, a 30 kDa single-strand type-I RIP, shares similar secondary structure and beta-sheet topology with the A chain of ricin, a type-II RIP. Protein science: a publication of the Protein Society 2000, 9 (1), 138-44.
64. Ng, T. B.; Liu, W. K.; Sze, S. F.; Yeung, H. W., Action of alpha-momorcharin, a ribosome inactivating protein, on cultured tumor cell lines. General pharmacology 1994, 25 (1), 75-77.
65. Ganguly, C.; De, S.; Das, S., Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 2000, 9 (4), 283-288.
66. Basch, E.; Gabardi, S.; Ulbricht, C., Bitter melon (Momordica charantia): a review of efficacy and safety. American journal of health-system pharmacy: AJH: official journal of the American Society of Health-System Pharmacists 2003, 60 (4), 356-359.
67. Mada, S., Hepatoprotective Effect of Momordica charantia Extract against CCl4 Induced Liver Damage in Rats. British Journal of Pharmaceutical Research 2014, 4(3), 368-380 .
68. Malik, Z. A.; Singh, M.; Sharma, P. L., Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol 2011, 133 (2), 729-734.
69. Deng, Y. Y.; Yi, Y.; Zhang, L. F.; Zhang, R. F.; Zhang, Y.; Wei, Z. C.; Tang, X. J.; Zhang, M. W., Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia. Molecules (Basel, Switzerland) 2014, 19 (9), 13432-13447.
70. Huang, W. C.; Tsai, T. H.; Huang, C. J.; Li, Y. Y.; Chyuan, J. H.; Chuang, L. T.; Tsai, P. J., Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food & function 2015, 6 (8), 2550-2560
71. Rakh, M. S.; Khedkar, A. N.; Aghav, N. N.; Chaudhari, S. R., Antiallergic and analgesic activity of Momordica dioica Roxb. Willd fruit seed. Asian Pacific Journal of Tropical Biomedicine 2012, 2 (1, Supplement), S192-S196.
72. Kushwaha, J. S.; Gupta, V. K.; Singh, A.; Giri, R., Significant correlation between taste dysfunction and HbA1C level and blood sugar fasting level in type 2 diabetes mellitus patients in at a tertiary care center in north India. Diabetes Epidemiology and Management 2022, 8, 100092
73. He, l.; Yang, F.-Q.; Tang, P.; Gao, T.-H.; Yang, C.-X.; Tan, L.; Yue, P.; Hua, Y.-N.; Liu, S.-J.; Guo, J.-L., Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine & Pharmacotherapy 2022, 151, 113091.
74. DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I.; Simonson, D. C.; Testa, M. A.; Weiss, R., Type 2 diabetes mellitus. Nature reviews. Disease primers 2015, 1, 15019.
75. Imamovic Kadric, S.; Kulo Cesic, A.; Dujic, T., Pharmacogenetics of new classes of antidiabetic drugs. Bosnian journal of basic medical sciences 2021, 21 (6), 659-671.
76. Trakoon-osot, W.; Sotanaphun, U.; Phanachet, P.; Porasuphatana, S.; Udomsubpayakul, U.; Komindr, S., Pilot study: Hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients. Journal of Pharmacy Research 2013, 6 (8), 859-864.
77. Su, L.; Xin, C.; Yang, J.; Dong, L.; Mei, H.; Dai, X.; Wang, Q., A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. International Journal of Biological Macromolecules 2022, 214, 312-323.
78. Gothai, S.; Ganesan, P.; Park, S. Y.; Fakurazi, S.; Choi, D. K.; Arulselvan, P., Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target. Nutrients 2016, 8 (8), 461.
79. Kirchner, H.; Osler, M. E.; Krook, A.; Zierath, J. R., Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends in cell biology 2013, 23 (5), 203-209.
80. Distefano, J. K.; Watanabe, R. M., Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals (Basel, Switzerland) 2010, 3 (8), 2610-2646.
81. Hollander, P., Safety profile of acarbose, an alpha-glucosidase inhibitor. Drugs 1992, 44 Suppl 3, 47-53.
82. Bailey, C. J.; Turner, R. C., Metformin. New England Journal of Medicine 1996, 334 (9), 574-579.
83. Wehash, F. E.; Abpo-Ghanema, I. I.; Saleh, R., Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with cidophage®. World Academy of Science, Engineering and Technology 2012, 64, 1206-1214.
84. Mohammady, I.; Elattar, S.; Mohamed, S.; Ewais, M., An Evaluation of Anti-Diabetic and Anti-Lipidemic Properties of Momordica Charantia (Bitter Melon) Fruit Extract in Experimentally Induced Diabetes. life science journal 2012, 9, 363-374.
85. Desai, S., An Important Lead compound from Momordica charantia for the Treatment of Diabetes. Journal of Pharmacognosy and Phytochemistry 2015, 3, 87-90.
86. Lolitka, M. M.; and Rajarama Rao MR., Note on a hypoglycaemic principle isolated from the fruits of Momordica charantia. Journal of University of Bombay 1962, 29, 223-224.
87. Cuong, D. M.; Jeon, J.; Morgan, A. M. A.; Kim, C.; Kim, J. K.; Lee, S. Y.; Park, S. U., Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia). Journal of Agricultural and Food Chemistry 2017, 65 (33), 7240-7249.
88. Ahamad, J.; Mir, S. R.; Amin, S., Antihyperglycemic activity of charantin isolated from fruits of Momordica charantia Linn. International Research Journal of Pharmacy 2019, 10, 61-64.
89. Fuangchan, A.; Sonthisombat, P.; Seubnukarn, T.; Chanouan, R.; Chotchaisuwat, P.; Sirigulsatien, V.; Ingkaninan, K.; Plianbangchang, P.; Haines, S. T., Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol 2011, 134 (2), 422-428.
90. Iseki, K.; Ikemiya, Y.; Inoue, T.; Iseki, C.; Kinjo, K.; Takishita, S., Significant hyperuricaemia as a risk factor for developing ESRD in a screened cohort. American journal of kidney diseases: the official journal of the National Kidney Foundation 2004, 44, 642-650.
91. Abu Bakar, F. I.; Abu Bakar, M. F.; Rahmat, A.; Abdullah, N.; Sabran, S. F.; Endrini, S., Anti-gout Potential of Malaysian Medicinal Plants. Frontiers in pharmacology 2018, 9, 261.
92. Feng, S.; Wu, S.; Xie, F.; Yang, C. S.; Shao, P., Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends in Food Science & Technology 2022, 123, 87-102.
93. Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, H.; Fujishiro, M.; Ono, H.; Asano, T., Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediators of inflammation 2016, 2016, 8603164.
94. Furuhashi, M., New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. American journal of physiology. Endocrinology and metabolism 2020, 319 (5), E827-e834.
95. Singh, J. V.; Bedi, P. M. S.; Singh, H.; Sharma, S., Xanthine oxidase inhibitors: patent landscape and clinical development (2015-2020). Expert opinion on therapeutic patents 2020, 30 (10), 769-780.
96. Mo, S. F.; Zhou, F.; Lv, Y. Z.; Hu, Q. H.; Zhang, D. M.; Kong, L. D., Hypouricemic action of selected flavonoids in mice: structure-activity relationships. Biological & pharmaceutical bulletin 2007, 30 (8), 1551-1556.
97. Wang, Y.; Zhang, G.; Pan, J.; Gong, D., Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. Journal of Agricultural and Food Chemistry 2015, 63 (2), 526-34.
98. Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M. J.; Delogu, F.; Kumar, A., Coumarin derivatives as promising xanthine oxidase inhibitors. International journal of biological macromolecules 2018, 120 (Pt A), 1286-1293.
99. Prabhala, P.; Sutar, S. M.; Savanur, H. M.; Joshi, S. D.; Kalkhambkar, R. G., In vitro antimicrobial combat, molecular modelling and structure activity relationship studies of novel class of aryl-ethyne tethered coumarin analogues and some 3-aryl coumarin derivatives. European Journal of Medicinal Chemistry Reports 2022, 5, 100048.
100. Patil, S. B., Medicinal significance of novel coumarin analogs: Recent studies. Results in Chemistry 2022, 4, 100313.
101. Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M. K.; Mahajan, G. B.; Kim, H., Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Research International 2016, 81, 1-16.
102. Harrison, D. E. F., Mixed Cultures in Industrial Fermentation Processes. In Advances in Applied Microbiology, Perlman, D., Ed. Academic Press: 1978; Vol. 24, pp 129-164.
103. George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F. J.; Revol-Junelles, A. M.; Borges, F.; Foligné, B., Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Frontiers in microbiology 2018, 9, 2899.
104. Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W., Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in bioengineering and biotechnology 2021, 9, 612285.
105. Lee, N. K.; Paik, H. D., Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds. Journal of microbiology and biotechnology 2017, 27 (5), 869-877.
106. Yunes, R. A.; Poluektova, E. U.; Dyachkova, M. S.; Klimina, K. M.; Kovtun, A. S.; Averina, O. V.; Orlova, V. S.; Danilenko, V. N., GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 2016, 42, 197-204.
107. Bao, W.; Huang, X.; Liu, J.; Han, B.; Chen, J., Influence of Lactobacillus brevis on metabolite changes in bacteria-fermented sufu. Journal of food science 2020, 85 (1), 165-172.
108. Di Cagno, R.; Mazzacane, F.; Rizzello, C. G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M., Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied microbiology and biotechnology 2010, 86 (2), 731-741.
109. Mamlouk, D.; Gullo, M., Acetic Acid bacteria: physiology and carbon sources oxidation. Indian journal of microbiology 2013, 53 (4), 377-384.
110. Qiu, X.; Zhang, Y.; Hong, H., Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021, 11.
111. He, Y.; Xie, Z.; Zhang, H.; Liebl, W.; Toyama, H.; Chen, F., Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Frontiers in microbiology 2022, 13, 879246.
112. Gullo, M.; Sola, A.; Zanichelli, G.; Montorsi, M.; Messori, M.; Giudici, P., Increased production of bacterial cellulose as starting point for scaled-up applications. Applied microbiology and biotechnology 2017, 101 (22), 8115-8127.
113. Chen, R. J.; Chen, M. H.; Chen, Y. L.; Hsiao, C. M.; Chen, H. M.; Chen, S. J.; Wu, M. D.; Yech, Y. J.; Yuan, G. F.; Wang, Y. J., Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study. Journal of food and drug analysis 2017, 25 (3), 597-606.
114. Wu, M.-D.; Cheng, M.-J.; Chen, Y.-L.; Chen, M.-H.; Chen, S.-J.; Yu, L.-W.; Hsu, H.-Y., Identification of Components from Acetobacter pasteurianus and their Xanthine Oxidase Inhibitory Activity. Chemistry of Natural Compounds 2020, 56(6), 1-2.
115. Parapouli, M.; Vasileiadis, A.; Afendra, A. S.; Hatziloukas, E., Saccharomyces cerevisiae and its industrial applications. AIMS microbiology 2020, 6 (1), 1-31.
116. Nandy, S. K.; Srivastava, R. K., A review on sustainable yeast biotechnological processes and applications. Microbiological Research 2018, 207, 83-90.
117. Vieira, E. F.; Delerue-Matos, C., Exploitation of Saccharomyces cerevisiae Enzymes in Food Processing and Preparation of Nutraceuticals and Pharmaceuticals. In Microbial Enzymes: Roles and Applications in Industries, Arora, N. K.; Mishra, J.; Mishra, V., Eds. Springer Singapore: Singapore, 2020; pp 41-62.
118. Walker, G.M.; Stewart, G.G., Saccharomyces cerevisiae in the Production of Fermented Beverages, Beverages, 2016, 2(4), 10-12.
119. Cheng, C. P.; Tsai, S. W.; Chiu, C. P.; Pan, T. M.; Tsai, T. Y., The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. Journal of the science of food and agriculture 2013, 93 (5), 1219-25.
120. Chen, Y.-M.; Shih, T.-W.; Chiu, C. P.; Pan, T.-M.; Tsai, T.-Y., Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. Journal of Functional Foods 2013, 5 (1), 395-405.
121. Marazza, J. A.; LeBlanc, J. G.; de Giori, G. S.; Garro, M. S., Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods 2013, 5 (4), 1848-1853.
122. Chien, H. L.; Huang, H. Y.; Chou, C. C., Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food microbiology 2006, 23 (8), 772-778.
123. Harrison, D. E. F., Mixed Cultures in Industrial Fermentation Processes. In Advances in Applied Microbiology, Perlman, D., Ed. Academic Press: 1978; Vol. 24, pp 129-164.
124. Jin, X.; Chen, W.; Chen, H.; Chen, W.; Zhong, Q., Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as Starter Culture to Produce Mango Slurry: Microbiological, Chemical Parameters and Antioxidant Activity. Molecules (Basel, Switzerland) 2019, 24 (23), 4349.
125. Chen, Y.; Huang, Y.; Bai, Y.; Fu, C.; Zhou, M.; Gao, B.; Wang, C.; Li, D.; Hu, Y.; Xu, N., Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT 2017, 84, 753-763.
126. Jayabalan, R.; Malbaša, R. V.; Lončar, E. S.; Vitas, J. S.; Sathishkumar, M., A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive reviews in food science and food safety 2014, 13 (4), 538-550.
127. Baú, T. R.; Garcia, S.; Ida, E. I., Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. International journal of food sciences and nutrition 2015, 66 (8), 845-50.
128. Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Yin, L.; Wang, Z.; Li, X.; Zhou, J., Kombucha fermentation enhances the health-promoting properties of soymilk beverage. Journal of Functional Foods 2019, 62, 103549.
129. Ni, C.; Li, X.; Wang, L.; Li, X.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W., Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food and function 2021, 12,7054-7067
130. Miller, G. L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 1959, 31 (3), 426-428.
131. Marulanda-Buitrago, P.-A.; Marulanda, V., Production of reducing sugars from lignocellulosic Kikuyu grass residues by hydrolysis using subcritical water in batch and semibatch reactors. CT y F - Ciencia, Tecnologia y Futuro 2017, 7, 137-146.
132. Marazza, J. A.; LeBlanc, J. G.; de Giori, G. S.; Garro, M. S., Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods 2013, 5 (4), 1848-1853.
133. Wang, Z.; Yan, M.; Chen, X.; Li, D.; Qin, L.; Li, Z.; Yao, J.; Liang, X., Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochemical Engineering Journal 2013, 79, 41-45.
134. Apostolidis, E.; Kwon, Y. I.; Ghaedian, R.; Shetty, K., Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnology 2007, 21, 217-236.
135. Wang, S.; Tang, F.; Yue, Y.; Yao, X.; Wei, Q.; Yu, J., Simultaneous determination of 12 coumarins in bamboo leaves by HPLC. Journal of AOAC International 2013, 96 (5), 942-946.
136. Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, Academic Press: 1999; Vol. 299, pp 152-178.
137. Molyneux, P., The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. 2003, 26(2), 211-219.
138. Gu, Y.; Yang, X.; Shang, C.; Thao, T. T. P.; Koyama, T., Correction: Inhibition and interactions of alpha-amylase by daucosterol from the peel of Chinese water chestnut (Eleocharis dulcis). Food and function 2021, 12 (19), 9503.
139. Umamaheswari, M.; AsokKumar, K.; Somasundaram, A.; Sivashanmugam, T.; Subhadradevi, V.; Ravi, T. K., Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol 2007, 109 (3), 547-551.
140. Chen, S.J.; Chen, Y.L.; Chen, Hsu, H.Y.; Chen, K.P.; Liao, C.M.; Yech, Y.J., Novel acetobacter and gluconacetobacter strains and their metabolites for use in inhibiting xanthine oxidase. United States Patent Application Publication 2016 US20160051596A
141. Chen, S.J.; Chen, Y.L.; Chen, Hsu; Wann, S.Y.; Chen, M.H.; Yu,L.W., Strain of Lactobacillus rhamnosus and its metabolites for use in inhibiting xanthine oxidase and treating gout. United States Patents 2017 9636368B2
142. McCue, P. P.; Shetty, K., Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry 2005, 40 (5), 1791-1797.
143. Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S., Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry 2007, 103, 381-388.
144. Nguyen, N. K.; Nguyen, P. B.; Nguyen, H. T.; Le, P. H., Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT - Food Science and Technology 2015, 64 (2), 1149-1155.
145. Gomes, R. J.; Borges, M. F.; Rosa, M. F.; Castro-Gómez, R. J. H.; Spinosa, W. A., Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food technology and biotechnology 2018, 56 (2), 139-151.
146. Casey, E.; Sedlak, M.; Ho, N. W.; Mosier, N. S., Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS yeast research 2010, 10 (4), 385-93.
147. Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M., Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods 2019, 52, 81-89.
148. 劉庭萱, "探討利用 Lactobacillus plantarum 發酵 Momordica charantia 山苦瓜對其降血糖及其他生物活性之影響," vol. 國立中央大學化材所, 2020.
149. 彭文正, "探討以 Lactobacillus buchneri 發酵巴西蘑菇 並產生 γ-氨基丁酸之研究," 碩士, vol. 國立中央大學化材所, 2020.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明