博碩士論文 105324038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.144.123.61
姓名 張景雅(Iris Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以高分子模板製備鐵-氮摻雜奈米碳材應用於表面增強拉曼散射之影響
(Effects of Iron−Nitrogen-Doped Polymer-Templated Carbon Nanostructures for Surface-Enhanced Raman Scattering)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 近年來,在分子檢測領域上表面增強拉曼散射(Surface-enhanced Raman scattering, SERS)為一項重要的技術。本篇論文使用聚4乙烯吡啶(poly(4-vinylpyridine), P4VP)分別以旋鍍法(spin coating)及靜電紡絲法(electrospun)製備奈米薄膜及奈米纖維兩種形貌,再以低溫裂解方法鍛燒出高品質的富含氮碳奈米片(nitrogen-enriched carbon nanosheets, NECNS)以及富含氮碳奈米帶(nitrogen-enriched carbon nanoribbons, NECNR),作為表面增強拉曼散射基材,並利用鍛燒溫度及有機-無機的混摻來調控材料性質以及改變材料表面形貌,來探討其對表面增強拉曼散射-化學機制(chemical mechanism, CM)的影響。
首先,與石墨烯及高分子碳奈米片(CNS)比較,以500 oC鍛燒形成的NECNS,具有優秀的表面增強拉曼散射(SERS)性質。具有高結晶性的石墨烯雖然更有利於使R6G分子以J-聚集體方式吸附於基材上,而J-聚集體扮演重要增強拉曼訊號的活性區域。不過NECNS具有更佳的電荷傳遞能力以及偶極-偶極交互作用力,因此影響了表面增強拉曼散射性質。第二部分,在合成過程中,將醋酸亞鐵溶液中的鐵原子摻雜於碳奈米結構當中,使P4VP鏈段中吡啶環與金屬前驅物離子交互作用產生鍵結,形成富含Fe-N組成的碳奈米結構,金屬鹽的摻雜可以減少吡啶團的熱穩定性。其豐富的Fe-N結構於碳奈米片中經由化學機制使吸附染料分子的基材之拉曼訊號有顯著性的提升。第三部分,以不同種類的鐵前驅物與P4VP之間分別以配位錯合物及氫鍵的模式形成鍵結,經過鍛燒後可調控材料的碳結晶度及電荷傳遞能力,進而影響了基材對R6G的吸附能力及SERS增強的效應,其中以摻雜醋酸亞鐵(FeAc)及二茂鐵乙酸(FAA)具有最廣的溫度調控範圍,而摻雜二茂鐵甲醇(FM)在500 oC鍛燒可產生具有最佳的表面增強拉曼散射之碳材。第四部分,以靜電紡絲製備富含Fe-N鍵結的碳奈米帶,在SERS的表現與碳奈米片性質相同,因此更容易製備。在形貌調控,高比表面積的珠狀結構的表面增強拉曼散射較佳。
摘要(英) In recent years, surface-enhanced Raman scattering (SERS) is a powerful technology for molecular sensing. In this thesis, we fabricated low-temperature pyrolysis, high-quality, nitrogen-enriched carbon nanosheets (NECNS) and nitrogen-enriched carbon nanoribbons (NECNR) from spin-coated polymer thin films and electrospun poly(4-vinylpyridine) (P4VP) polymer nanofibers. The carbon nanomaterials were used as substrates for molecular sensing through SERS spectroscopy. To investigate the effect of chemical mechanism on SERS performance, the surface properties of the carbon nanomaterials were modififed by carbonization at different temperatures and by hybriding iron-based precursors. In addition to CM, morphological effects on SERS performance were also studied.
First, NECNS materials that were prepared by carbonization at 500 oC have superior SERS performance, as compared with graphene and carbon nanosheets (CNS). J-aggregates were favorred when R6G molecules adsorbed on the top of graphene. J-aggregates could enhance Raman signals. In comparison, NECNS materials have better charge transfer ability and stronger dipole-dipole interactions than graphene. Thus, the NECNS materials exhibit better SERS performance than graphene.
In the second part, as P4VP chains have functional pyridine rings available to bind with metal precursor ions through favorable interactions, iron (Fe) atoms could be incorporated into the carbon nanostructures with the aid of Fe(II) acetate. The incorporation of metal salt can decrease the thermal stability of pyridinic groups to produce carbon nanostructures having a surface enriched with Fe-N bound species, which form because the N atoms in the aromatic rings bind directly to Fe atoms. The abundant Fe-N species in these carbon nanostructures enabled a superior enhancement of Raman signals of adsorbed dye molecules through a chemical mechanism.
In the third part, different kinds of iron precursors were incorporated into P4VP chains. Iron precursors are bound with P4VP through coordinate bonding or hydrogen bonding. After carbonization, the material′s degree of graphitization and charge transfer ability can be modified by carbonized P4VP films doped with various iron precursors. These properties, in turn, affect the adsorption ability of the substrate and the effect of SERS enhancement. P4VP-FeAc and P4VP-FAA have a wide range of carbonization temperatures, while the P4VP-FM has the best surface-enhanced scattering when carbonized at 500 oC.
Finally, nitrogen-enriched carbon nanoribbons (NECNR) were prepared by electrospun P4VP polymer. Iron acetate (FeAc) was incorporated into the NECNR to enrich the Fe-N bond. Sample preparation is easy because the performance in SERS is the same as that of nitrogen-enriched carbon nanosheets (NECNS). A bead-like structure with a high specific surface area has better SERS performance in terms of morphology control.
關鍵字(中) ★ 表面增強拉曼散射
★ 化學機制
★ 鐵-氮摻雜
★ 高分子模板
★ 碳奈米結構
關鍵字(英) ★ Surface-enhanced Raman scattering (SERS)
★ chemical mechanism
★ Fe-N doping
★ polymer templated
★ carbon nanostructures
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XX
第1章 緒論 1
1-1 拉曼光譜學簡介 1
1-2 表面增強拉曼散射簡介及其原理與機制介紹 2
1-2-1 電磁機制 (Electromagnetic mechanism, EM) 6
1-2-2 共振效應及化學機制(Chemical mechanism, CM) 9
1-3 石墨烯材料作為表面增強拉曼散射基材探討 21
1-3-1 第一層效應(First layer effect) 23
1-3-2 石墨烯厚度 24
1-4 雜原子摻雜碳材作為表面增強拉曼散射基材探討 25
1-4-1 氮原子摻雜 25
1-4-2 氧原子摻雜 29
1-4-3 氧化鐵摻雜 30
1-5 嵌段共聚物自組裝行為及其表面增強拉曼散射探討 31
1-5-1 嵌段共聚物自組裝行為 31
1-5-2 嵌段共聚物製備多層級孔洞奈米結構 33
1-5-3 嵌段共聚物作為表面增強拉曼散射基材之探討 36
1-6 靜電紡絲原理及其表面增強拉曼散射探討 38
1-6-1 靜電紡絲原理 38
1-6-2 靜電紡絲作為表面增強拉曼散射基材之探討 39
1-7 非貴金屬材料在表面增強拉曼散射之應用 41
1-8 研究動機 43
第2章 實驗方法 44
2-1 實驗藥品 44
2-2 實驗步驟 45
2-3 實驗儀器 48
2-3-1 熱重分析儀 48
2-3-2 輕敲式原子力顯微鏡 48
2-3-3 X光光電子能譜儀 49
2-3-4 紫外光可見光光譜儀 49
2-3-5 X光吸收近邊緣結構 49
2-3-6 紫外光電子能譜儀 50
2-3-7 X光繞射儀 51
2-3-8 拉曼光譜儀 51
2-4 染料分子簡介 52
2-4-1 羅丹明6G (Rhodamine 6G, R6G) 52
2-4-2 結晶紫 (Crystal violet, CV) 53
2-5 Raman光譜分析 55
2-5-1 Graphite特徵峰 55
2-5-2 石墨化程度(degree of graphitization)與碳排列有序程度 56
2-6 UV-vis光譜分析 57
2-6-1 Tauc plot光學能隙計算 57
第3章 結果與討論 58
3-1 二維奈米碳材對表面增強拉曼散射之影響 58
3-1-1 聚4乙烯吡啶製備富含氮碳奈米片與表面增強拉曼散射分析 58
3-1-2 二維奈米碳材之結構分析及表面增強拉曼散射之影響 62
3-2 鐵前驅物摻雜富含氮碳奈米片之結構特徵與表面增強拉曼散射分析 74
3-2-1 結構特徵分析 75
3-2-2 表面增強拉曼散射(SERS)性質分析 79
3-2-3 濃度效應與增強因子(Enhancement factor)計算 81
3-2-4 分子吸附能力之量測 83
3-2-5 元素組態分析 85
3-2-6 光學性質與電子結構分析 90
3-2-7 SERS底基材效應探討 94
3-2-8 SERS穩定性與均勻性探討 95
3-3 不同鐵前驅物對表面增強拉曼散射之探討 97
3-3-1 特徵結構分析 97
3-3-2 表面增強拉曼散射(SERS)性質分析 104
3-3-3 R6G吸附分析 106
3-4 鐵前驅物摻雜富含氮碳奈米帶之結構特徵與表面增強拉曼散射分析 112
3-4-1 特徵結構分析 113
3-4-2 元素組態分析 115
3-4-3 表面增強拉曼散射(SERS)性質分析 118
3-4-4 形貌對表面增強拉曼散射之影響 119
第4章 結論 121
第5章 參考文獻 124
附錄 137
參考文獻 [1] Raman, C. V., Krishnan, K. S., “A New Type of Secondary Radiation “, Nature, 1928, 121, 501-502.
[2] Meyer, S. A., Ru, E. C. L., and Etchegoin, P. G., “Quantifying Resonant Raman Cross Sections with SERS”, The Journal of Physical Chemistry A, 2010, 114(17), 5515-5519.
[3] Xie, L., Ling, X., Fang, Y., Zhang, J., and Liu, Z., “Graphene as a Substrate to Suppress Fluorescence in Resonance Raman Spectroscopy”, Journal of the American Chemical Society, 2009, 131(29), 9890-9891.
[4] Long, D. A., “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules”, West Sussex, England: John Wiley & Sons Ltd., 2002.
[5] Matousek, P., Towrie, M., Ma, C., Kwok, W. M., Phillips, D., Toner, W. T., and Parker, A. W., “Fluorescence Suppression in Resonance Raman Spectroscopy Using a High‐Performance Picosecond Kerr gate”, Journal of Raman Spectroscopy, 2001, 32(12), 983-988.
[6] McCamant, D. W., Kukura, P., Yoon, S., and Mathies, R. A., “Femtosecond Broadband Stimulated Raman Spectroscopy: Apparatus and Methods”, Review of Scientific Instruments, 2004, 75(11), 4971-4980.
[7] Begley, R. F., Harvey, A. B., and Byer, R. L., “Coherent Anti‐Stokes Raman Spectroscopy”, Applied Physics Letters, 1974, 25(7), 387-390.
[8] Fleischmann, M., Hendra, P. J., McQuillan, A. J., “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chemical Physics Letters, 1974, 26(2), 163-166.
[9] McQuillan, A. J., “The Discovery of Surface-Enhanced Raman Scattering”, Notes and Records of the Royal Society, 2009, 63(1), 105-109.
[10] Van Duyne, R. P., “Laser Excitation of Raman Scattering from Adsorbed Molecules on Electrode Surfaces”, Chemical and Biochemical Applications of Lasers, 1979, 4, 101.
[11] King, F. W., Van Duyne, R. P., and Schatz, G. C., “Theory of Raman Scattering by Molecules Adsorbed on Electrode Surfaces”, The Journal of Chemical Physics, 1978, 69(10), 4472-4481.
[12] Campion, A., and Kambhampati, P., “Surface-Enhanced Raman Scattering” Chemical Society Reviews, 1998, 27(4), 241-250.
[13] Lombardi, J. R., and Birke, R. L., “A Unified View of Surface-Enhanced Raman Scattering”, Accounts of Chemical Research, 2009, 42(6), 734-742.
[14] Willets, K. A., and Van Duyne, R. P., “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annual Review of Physical Chemistry, 2007, 58, 267-297.
[15] Alvarez-Puebla, R. A., “Effects of the Excitation Wavelength on the SERS Spectrum”, The Journal of Physical Chemistry Letters, 2012, 3(7), 857-866.
[16] Ko, H., Singamaneni, S., and Tsukruk, V. V., “Nanostructured Surfaces and Assemblies as SERS Media”, Small, 2008, 4(10), 1576-1599.
[17] Jain, P. K., and El-Sayed, M. A., “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing”, Nano Letters, 2008, 8(12), 4347-4352.
[18] Shorie, M., Kumar, V., Kaur, H., Singh, K., Tomer, V. K., and Sabherwal, P., “Plasmonic DNA Hotspots Made from Tungsten Disulfide Nanosheets and Gold Nanoparticles for Ultrasensitive Aptamer-Based SERS Detection of Myoglobin”, Microchimica Acta, 2018, 185(3), 158.
[19] Nie, S., and Emory, S. R., “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 1997, 275(5303), 1102-1106.
[20] Zhang, N., Tong, L., and Zhang, J., “Graphene-Based Enhanced Raman Scattering toward Analytical Applications”, Chemistry of Materials, 2016, 28(18), 6426-6435.
[21] Huang, Y. F., Zhu, H. P., Liu, G. K., Wu, D. Y., Ren, B., and Tian, Z. Q., “When the Signal Is Not from the Original Molecule To Be Detected: Chemical Transformation of para-Aminothiophenol on Ag during the SERS Measurement”, Journal of the American Chemical Society, 2010, 132(27), 9244-9246.
[22] Le Ru, E., and Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects, 2008, Elsevier.
[23] Lai, H., Xu, F., Zhang, Y., and Wang, L., “Recent Progress on Graphene-Based Substrates for Surface-enhanced Raman Scattering Application”, Journal of Materials Chemistry B, 2018, 6(24), 4008-4028.
[24] Yamada, H., and Yamamoto, Y., “Surface Enhanced Raman Scattering (SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors”, Surface Science, 1983, 134(1), 71-90.
[25] Alessandri, I., and Lombardi, J. R., “Enhanced Raman Scattering with Dielectrics”, Chemical Reviews, 2016, 116(24), 14921-14981.
[26] Wang, X., Shi, W., She, G., and Mu, L., “Using Si and Ge Nanostructures as Substrates for Surface-Enhanced Raman Scattering Based on Photoinduced Charge Transfer Mechanism” Journal of the American Chemical Society, 2011, 133(41), 16518-16523.
[27] Yang, L., Jiang, X., Ruan, W., Zhao, B., Xu, W., and Lombardi, J. R., “Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution”, The Journal of Physical Chemistry C, 2008, 112(50), 20095-20098.
[28] Cong, S., Yuan, Y., Chen, Z., Hou, J., Yang, M., Su, Y., Zhang, Y., Li, L., Li, Q., Geng, F., and Zhao, Z., “Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies”, Nature Communications, 2015, 6, 7800.
[29] Lin, J., Shang, Y., Li, X., Yu, J., Wang, X., and Guo, L., “Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle”, Advanced Materials, 2017, 29(5), 1604797.
[30] Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M. S., Zhang, J., and Liu, Z., “Can Graphene be used as a Substrate for Raman Enhancement?”, Nano Letters, 2009, 10(2), 553-561.
[31] Guthmuller, J., and Champagne, B., “Resonance Raman Scattering of Rhodamine 6G as Calculated by Time-Dependent Density Functional Theory:  Vibronic and Solvent Effects”, The Journal of Physical Chemistry A, 2008, 112(14), 3215-3223.
[32] Dieringer, J. A., Wustholz, K. L., Masiello, D. J., Camden, J. P., Kleinman, S. L., Schatz, G. C., and Van Duyne, R. P., “Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule”, Journal of the American Chemical Society, 2009, 131(2), 849-854.
[33] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306(5696), 666-669.
[34] Ling, X., Moura, L. G., Pimenta, M. A., and Zhang, J., “Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering”, The Journal of Physical Chemistry C, 2012, 116(47), 25112-25118.
[35] Xu, H., Xie, L., Zhang, H., and Zhang, J., “Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene”, 2011, ACS Nano, 5(7), 5338-5344.
[36] Yoon, J. C., Hwang, J., Thiyagarajan, P., Ruoff, R. S., and Jang, J. H., “Highly Enhanced Raman Scattering on Carbonized Polymer Films”, ACS Applied Materials & Interfaces, 2017, 9(25), 21457-21463.
[37] Ling, X., Fang, W., Lee, Y. H., Araujo, P. T., Zhang, X., Rodriguez-Nieva, J. F., Lin, Y., Zhang, J., Kong, J., and Dresselhaus, M. S., “Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2”, Nano Letters., 2014, 14 (6), 3033-3040.
[38] Ling, X., Wu, J., Xu, W., and Zhang, J., “Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy”, Small, 2012, 8(9), 1365-1372.
[39] Huang, C., Kim, M., Wong, B. M., Safron, N. S., Arnold, M. S., and Gopalan, P., “Raman Enhancement of a Dipolar Molecule on Graphene”, The Journal of Physical Chemistry C, 2014, 118(4), 2077-2084.
[40] Joo, Y., Kim, M., Kanimozhi, C., Huang, P., Wong, B. M., Singha Roy, S., Arnold, M. S., and Gopalan, P., “Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering”, The Journal of Physical Chemistry C, 2016, 120(25), 13815-13824.
[41] Zhang, M., Leng, Y., Huang, J., Yu, J., Lan, Z., and Huang, C., “Surface-Enhanced Raman Scattering of Dipolar Molecules by the Graphene Fermi Surface Modulation with Different Dipole Moments”, Applied Surface Science, 2017, 425, 654-662.
[42] Ling, X., Huang, S., Deng, S., Mao, N., Kong, J., Dresselhaus, M. S., and Zhang, J., “Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials”, Accounts of Chemical Research, 2015, 48(7), 1862-1870.
[43] Ling, X., and Zhang, J., “First‐Layer Effect in Graphene‐Enhanced Raman Scattering”, Small, 2010, 6(18), 2020-2025.
[44] Ling, X., Wu, J., Xie, L., and Zhang, J., “Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering”, The Journal of Physical Chemistry C, 2013, 117(5), 2369-2376.
[45] Huang, S., Ling, X., Liang, L., Song, Y., Fang, W., Zhang, J., Kong, J., Meunier, V., and Dresselhaus, M. S., “Molecular Selectivity of Graphene-Enhanced Raman Scattering”, Nano Letters, 2015, 15(5), 2892-2901.
[46] Carboni, D., Jiang, Y., Faustini, M., Malfatti, L., and Innocenzi, P., “Improving the Selective Efficiency of Graphene-Mediated Enhanced Raman Scattering through Molecular Imprinting”, ACS Applied Materials & Interfaces, 2016, 8(49), 34098-34107.
[47] Lv, R., Li, Q., Botello-Méndez, A. R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elías, A. L., Cruz-Silva, R., Gutiérrez, H. R., Kim, Y. A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J. C., Pan, M., and Terrones, M., “Nitrogen-Doped Graphene: Beyond Single Substitution and Enhanced Molecular Sensing”, Scientific Reports, 2012, 2, 586.
[48] Feng, S., dos Santos, M. C., Carvalho, B. R., Lv, R., Li, Q., Fujisawa, K., Elías, A. L., Lei, Y., Perea-López, N., Endo, M., Pan, M., Pimenta, M. A., and Terrones, M., “Ultrasensitive Molecular Sensor Using N-Doped Graphene through Enhanced Raman Scattering”, Science Advances, 2016, 2(7), e1600322.
[49] Lv, R., Dos Santos, M. C., Antonelli, C., Feng, S., Fujisawa, K., Berkdemir, A., Cruz-Silva, R., Elías, A. L., Perea-López, N., López‐Urías, F., Terrones, H., and Terrones, H. “Large‐Area Si‐Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing”, Advanced Materials, 2014, 26(45), 7593-7599.
[50] Yu, X., Cai, H., Zhang, W., Li, X., Pan, N., Luo, Y., Wang, X., and Hou, J. G., “Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets”, ACS Nano, 2011, 5(2), 952-958.
[51] Yin, F., Wu, S., Wang, Y., Wu, L., Yuan, P., and Wang, X., “Self-Assembly of Mildly Reduced Graphene Oxide Monolayer for Enhanced Raman Scattering”, Journal of Solid State Chemistry, 2016, 237, 57-63.
[52] Huh, S., Park, J., Kim, Y. S., Kim, K. S., Hong, B. H., and Nam, J. M., “UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering”, ACS Nano, 2011, 5(12), 9799-9806.
[53] Wu, P., Qian, Y., Du, P., Zhang, H., and Cai, C., “Facile Synthesis of Nitrogen-Doped Graphene for Measuring the Releasing Process of Hydrogen Peroxide from Living Cells”, Journal of Materials Chemistry, 2012, 22(13), 6402-6412.
[54] Hung, C. T., Yu, N., Chen, C. T., Wu, P. H., Han, X., Kao, Y. S., Liu, T. C., Chu, Y., Deng, F., Zheng, A., and Liu, S. B., “Highly Nitrogen-Doped Mesoscopic Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions”, Journal of Materials Chemistry A, 2014, 2(47), 20030-20037.
[55] Sun, Y. S., Lin, C. F., and Luo, S. T., “Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering”, The Journal of Physical Chemistry C, 2017, 121(27), 14795-14802.
[56] Lin, C. F., "Nitrogen-Enriched Carbons Fabrication and Application on Surface Enhanced Raman Scattering Substrate", Master′s Thesis of Department of Chemical and Materials Engineering, Taoyuan, National Central University, 2016.
[57] Tai, S. T., "Ab Initio Study of Oxygen Reduction Reaction & Raman Enhancement Potential of Nitrogen-Doped Graphene", Master′s Thesis of Department of Chemical and Materials Engineering, Taoyuan, National Central University, 2018.
[58] Zhang, L., Bao, Z., Yu, X., Dai, P., Zhu, J., Wu, M., Li, G., Liu, X., Sun, Z., and Chen, C., “Rational Design of α-Fe2O3/Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants”, ACS Applied Materials & Interfaces, 2016, 8(10), 6431-6438.
[59] Bates, F. S., and Fredrickson, G. H., “Block Copolymers-Designer Soft Materials”, Physics Today, 2000, 52(2), 32-38.
[60] Mai, Y., and Eisenberg, A., “Self-Assembly of Block Copolymers”, Chemical Society Reviews, 2012, 41(18), 5969-5985.
[61] Gao, Z., and Eisenberg, A., “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules, 1993, 26(26), 7353-7360.
[62] Meng, Y., Gu, D., Zhang, F., Shi, Y., Cheng, L., Feng, D., Wu, Z., Chen, Z., Wan, Y., Stein, A., and Zhao, D., “A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly”, Chemistry of Materials, 2006, 18(18), 4447-4464.
[63] Chuenchom, L., Kraehnert, R., and Smarsly, B. M. “Recent Progress in Soft-Templating of Porous Carbon Materials”, Soft Matter, 2012, 8(42), 10801-10812.
[64] Kowalewski, T., Tsarevsky, N. V., and Matyjaszewski, K., “Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile”, Journal of the American Chemical Society, 2002, 124(36), 10632-10633.
[65] Zhong, M., Kim, E. K., McGann, J. P., Chun, S. E., Whitacre, J. F., Jaroniec, M., Matyjaszewski, K., and Kowalewski, T. “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Chemical Society, 2012, 134(36), 14846-14857.
[66] Kopeć, M., Yuan, R., Gottlieb, E., Abreu, C. M., Song, Y., Wang, Z., Coehlho, J. F., Matyjaszewski, K., Kowalewski, T., “Polyacrylonitrile-b-poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure”, Macromolecules, 2017, 50(7), 2759-2767.
[67] Sun, Y. S., Lin, C. F., Luo, S. T., and Su, C. Y. “Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing”, ACS Applied Materials & Interfaces, 2017, 9(37), 31235-31244.
[68] Junisu, B. A., " Block-Copolymer Templated Gold Nanostructures for Molecular Sensing through SERS Spectroscopy”, Master′s Thesis of Department of Chemical and Materials Engineering, Taoyuan, National Central University, Taoyuan, National Central University, 2019.
[69] Junisu, B. A., and Sun, Y. S., “Three-Dimensional Interconnected Network of Gold Nanostructures for Molecular Sensing via Surface-Enhanced Raman Scattering Spectroscopy”, ACS Applied Nano Materials, 2020, 3(8), 7950-7962.
[70] Li, Y., Yu, J., and Ding, B. “Facile and Ultrasensitive Sensors Based on Electrospinning-Netting Nanofibers/Nets”, In Electrospinning for High Performance Sensors, 2015, Springer, Cham, pp.1-34.
[71] Camposeo, A., Spadaro, D., Magrì, D., Moffa, M., Gucciardi, P. G., Persano, L., Maragò, O. M., and Pisignano, D, “Surface-Enhanced Raman Spectroscopy in 3D Electrospun Nanofiber Mats Coated with Gold Nanorods”, Analytical and Bioanalytical Chemistry, 2016, 408(5), 1357-1364.
[72] Zhang, L., Gong, X., Bao, Y., Zhao, Y., Xi, M., Jiang, C., and Fong, H., “Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering”, Langmuir, 2012, 28(40), 14433-14440.
[73] Zhao, Y., Sun, L., Xi, M., Feng, Q., Jiang, C., and Fong, H., “Electrospun TiO2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering”, ACS Applied Materials & Interfaces, 2014, 6(8), 5759-5767.
[74] Cheng, H., Zhao, Y., Fan, Y., Xie, X., Qu, L., and Shi, G., “Graphene-Quantum-Dot Assembled Nanotubes: A New Platform for Efficient Raman Enhancement”, ACS Nano, 2012, 6(3), 2237-2244.
[75] Zheng, T., Feng, E., Wang, Z., Gong, X., and Tian, Y., “Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO2 Nanocomposites and Application to Real-Time Monitoring of Telomerase Activity in Differentiation of Stem Cells”, ACS Applied Materials & Interfaces, 2017, 9(42), 36596-36605.
[76] Huang, S., Pandey, R., Barman, I., Kong, J., and Dresselhaus, M., “Raman Enhancement of Blood Constituent Proteins Using Graphene”, ACS Photonics, 2018, 5(8), 2978-2982.
[77] Chowdhury, A. R. H., Tan, B., and Venkatakrishnan, K. “SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts”, ACS Applied Materials & Interfaces, 2018, 10(42), 35715-35733.
[78] Chowdhury, A. R. H., Tavangar, A., Tan, B., and Venkatakrishnan, K. “Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion”, Scientific Reports, 2017, 7, 44250.
[79] Watts, B., Thomsen, L., and Dastoor, P. C., “Methods in Carbon K-edge NEXAFS: Experiment and Analysis”, Journal of Electron Spectroscopy and Related Phenomena, 2006, 151(2), 105-120.
[80] Schlaf, R., “Tutorial on Work Function”, USF Surface Science Laboratory, 2007.
[81] Shen, K., and Gondal, M. A., “Removal of Hazardous Rhodamine Dye from Water by Adsorption onto Exhausted Coffee Ground”, Journal of Saudi Chemical Society, 2017, 21, 120-127.
[82] Jensen, L., and Schatz, G. C., “Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory”, The Journal of Physical Chemistry A, 2006, 110(18), 5973-5977.
[83] Mani, S., and Bharagava, R. N., “Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety”, In Reviews of Environmental Contamination and Toxicology, 2016, Springer, Cham, pp.71-104.
[84] Canamares, M. V., Chenal, C., Birke, R. L., and Lombardi, J. R., “DFT, SERS, and Single-Molecule SERS of Crystal Violet”, The Journal of Physical Chemistry C, 2008, 112(51), 20295-20300.
[85] Maldonado, S., Morin, S., and Stevenson, K. J., “Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping”, Carbon, 2006, 44(8), 1429-1437.
[86] Maldonado, S., and Stevenson, K. J., “Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes”, The Journal of Physical Chemistry B, 2005, 109(10), 4707-4716.
[87] Tuinstra, F., and Koenig, J. L., “Raman Spectrum of Graphite”, The Journal of Chemical Physics, 1970, 53(3), 1126-1130.
[88] Ferrari, A. C., and Robertson, J., “Interpretation of Raman Spectra of Disordered and Amorphous Carbon”, Physical Review B, 2000, 61(20), 14095.
[89] Tauc, J., “Optical Properties and Electronic Structure of Amorphous Ge and Si”, Materials Research Bulletin, 1968, 3(1), 37-46.
[90] Harnish, B., Robinson, J. T., Pei, Z., Ramström, O., and Yan, M., “UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces”, Chemistry of Materials, 2005, 17(16), 4092-4096.
[91] Yan, M., and Harnish, B., “A Simple Method for the Attachment of Polymer Films on Solid Substrates”, Advanced Materials, 2003, 15(3), 244-248.
[92] Liou, J. Y., and Sun, Y. S., “Tailor-Made Dimensions of Diblock Copolymer Truncated Micelles on a Solid by UV Irradiation”, Soft Matter, 2015, 11(36), 7119-7129.
[93] Zhao, S., Surwade, S. P., Li, Z., and Liu, H., “Photochemical Oxidation of CVD-grown Single Layer Graphene”, Nanotechnology, 2012, 23, 355703
[94] Venkateswarlu, P., George, M. C., Rao, Y. V., Jagannath, H., Chakrapani, G., and Miahnahri, A., “Transient Excited Singlet State Absorption in Rhodamine 6G”, Pramana, 1987, 28, 59-71.
[95] Thrall, E. S., Crowther, A. C., Yu, Z., and Brus, L. E., “R6G on Graphene: High Raman Detection Sensitivity, Yet Decreased Raman Cross-Section”, Nano Letter, 2012, 12(3), 1571–1577.
[96] Zhao, J., Jensen, L., Sung, J., Zou, S., Schatz, G. C., and Van Duyne, R. P., “Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles”, Journal of the American Chemical Society, 2007, 129(24), 7647–7656.
[97] Deng, S., Xu, W., Wang, J., Ling, X., Wu, J., Xie, L., Kong, J., Dresselhaus, M. S., and Zhang, J., “Direct Measurement of the Raman Enhancement Factor of Rhodamine 6G on Graphene under Resonant Excitation”, Nano Research, 2014, 7(9), 1271-1279.
[98] Sun, B., Horvat, J., Kim, H. S., Kim, W. S., Ahn, J., and Wang, G., “Synthesis of Mesoporous α-Fe2O3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries”, The Journal of Physical Chemistry C, 2010, 114(44), 18753-18761.
[99] Liu, D., Chen, X., Hu, Y., Sun, T., Song, Z., Zheng, Y., Cao, Y., Cai, Z., Cao, M., Peng, L., Huang, Y., Du, L., Yang, W., Chen, G., Wei, D., Wee, A. T. S., and Wei, D., ” Raman Enhancement on Ultra-clean Graphene Quantum Dots Produced by Quasi-equilibrium Plasma-enhanced Chemical Vapor Deposition”, Nature Communications, 2018, 9, 193.
[100] Chen, N., Xiao, T. H., Luo, Z., Kitahama, Y., Hiramatsu, K., Kishimoto, N., Itoh, T., Cheng, Z., and Goda, K. “Porous Carbon Nanowire Array for Surface-enhanced Raman Spectroscopy”, Nature Communications, 2020, 11, 4772.
[101] Cao, S., Qu, T., Li, Y., Zhang, A., Xue, L., Zhao, Y., Zheng, L., Chen, A., and Shui, J., “Electrocatalytically Active Hollow Carbon Nanospheres Derived from PS‐b‐P4VP Micelles”, Particle & Particle Systems Characterization, 2018, 35(4), 1700404.
[102] Zhao, Y., Watanabe, K., and Hashimoto, K., “Self-Supporting Oxygen Reduction Electrocatalysts Made from a Nitrogen-Rich Network Polymer”, Journal of the American Chemical Society, 2012, 134(48), 19528-19531.
[103] Zhu, P., Song, J., Lv, D., Wang, D., Jaye, C., Fischer, D. A., Wu, T., and Chen, Y., “Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium-Sulfur Battery: An X-ray Absorption Spectroscopic Study”, The Journal of Physical Chemistry C, 2014, 118(15), 7765-7771.
[104] Latham, K. G., Simone, M. I., Dose, W. M., Allen, J. A., and Donne, S. W., “Synchrotron Based NEXAFS Study on Nitrogen Doped Hydrothermal Carbon: Insights into Surface Functionalities and Formation Mechanisms”, Carbon, 2017, 114, 566-578.
[105] Klein, R. J., Fischer, D. A., and Lenhart, J. L., “Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle”, Langmuir, 2008, 24(15), 8187-8197.
[106] Zhou, J., Duchesne, P. N., Hu, Y., Wang, J., Zhang, P., Li, Y., Regier, T., and Dai, H., “Fe-N Bonding in a Carbon Nanotube–Graphene Complex for Oxygen Reduction: An XAS Study”, Physical Chemistry Chemical Physics, 2014, 16(30), 15787-15791.
[107] Fu, N., Wei, H. M., Lin, H. L., Li, L., Ji, C. H., Yu, N. B., Chen, H. J., Han, S., and Xiao, G. Y., “Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen Doped Porous Carbon and Its CO2 Adsorption Application” ACS Applied Materials & Interfaces, 2017, 9(11), 9955-9963.
[108] Stańczyk, K., Dziembaj, R., Piwowarska, Z., and Witkowski, S., “Transformation of Nitrogen Structures in Carbonization of Model Compounds Determined by XPS”, Carbon, 1995, 33(10), 1383-1392.
[109] Boudoire, F., Toth, R., Heier, J., Braun, A., and Constable, E. C., “Hematite Nanostructuring Using Electrohydrodynamic Lithography”, Applied Surface Science, 2014, 305, 62-66.
[110] Papaefthimiou, V., Florea, I., Baaziz, W., Janowska, I., Doh, W. H., Begin, D., Blume, R., Knop-Gericke, A., Ersen, O., Pham-Huu, C., and Zafeiratos, S., “Effect of the Specific Surface Sites on the Reducibility of α-Fe2O3/graphene Composites by Hydrogen”, The Journal of Physical Chemistry C, 2013, 117(39), 20313-20319.
[111] Thakur, P., Cezar, J. C., Brookes, N. B., Choudhary, R. J., Phase, D. M., Chae, K. H., and Kumar, R. “X-Ray Absorption and Magnetic Circular Dichroism Characterization of Mo1-x FexO2 (x=0-0.05) Thin Films Grown by Pulsed Laser Ablation”, Hyperfine Interactions, 2010, 197(1-3), 95-100.
[112] Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T., and Lin, J., “Pyridinic N Doped Graphene: Synthesis, Electronic Structure, and Electrocatalytic Property”, Journal of Materials Chemistry, 2011, 21(22), 8038-8044.
[113] Choi, H. C., Park, J., and Kim, B., “Distribution and Structure of N Atoms in Multiwalled Carbon Nanotubes Using Variable-Energy X-Ray Photoelectron Spectroscopy”, The Journal of Physical Chemistry B, 2005, 109(10), 4333-4340.
[114] Ago, H., Kugler, T., Cacialli, F., Salaneck, W. R., Shaffer, M. S. P., Windle, A. H., and Friend, R. H., “Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, Journal of Physical Chemistry B, 1999, 103, 8116-8121.
[115] Usachov, D., Vilkov, O., Grüneis, A., Haberer, D., Fedorov, A., Adamchuk, V. K., Preobrajenski, A. B., Dudin, P., Barinov, A., Oehzelt, M., Laubschat, C., and Vyalikh, D. V., “Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties”, Nano Letter, 2011, 11, 5401-5407.
[116] Lee, D. H., Lee, W. J., Lee, W. J., Kim, S. O., and Kim, Y. H., “Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube”, Physical Review Letters, 2011, 106(17), 175502.
[117] Ling, X., and Zhang, J., “Interference Phenomenon in Graphene-Enhanced Raman Scattering”, The Journal of Physical Chemistry C, 2011, 115(6), 2835-2840.
[118] Goh, S. H., Lee, S. Y., Zhou, X., and Tan, K. L., “X-ray Photoelectron Spectroscopic Studies of Interactions between Poly(4-vinylpyridine) and Poly(styrenesulfonate) Salts”, Macromolecules, 1998, 31(13), 4260-4264.
[119] McMurtry, B. M., Turner, A. M., Saito, S. E., and Kaiser, R. I., “On the Formation of Niacin (Vitamin B3) and Pyridine Carboxylic Acids in Interstellar Model Ices”, Chemical Physics, 2016, 472, 173-184.
[120] Kuo, S. W., Lin, C. L., and Chang, F. C., “The Study of Hydrogen Bonding and Miscibility in Poly(vinylpyridines) with Phenolic Resin”, Polymer, 2002, 43(14), 3943-3949.
[121] Lee, J. Y., Painter, P. C., and Coleman, M. M., “Hydrogen Bonding in Polymer Blends. 4. Blends Involving Polymers Containing Methacrylic Acid and Vinylpyridine Groups”, Macromolecules, 1988, 21(4), 954-960.
[122] Zhang, X. Q., Lam, R., Xu, X., Chow, E. K., Kim, H. J., and Ho, D., “Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy”, Advanced Materials, 2011, 23(41), 4770-4775.
[123] Chi, H. Y., Hsu, H. W., Tung, S. H., and Liu, C. L., “Nonvolatile Organic Field-Effect Transistors Memory Devices Using Supramolecular Block Copolymer/Functional Small Molecule Nanocomposite Electret”, ACS Applied Materials & Interfaces, 2015, 7(10), 5663-5673.
[124] Kirkland, O., Weyher, J. L., and Lombardi, J. R., “Charge-Transfer Mapping of Nanostructured GaN/Ag Surfaces using Surface Enhanced Raman Spectroscopy”, Vibrational Spectroscopy, 2020, 110, 103106
[125] Liu, N., Kim, K., Hsu, P. C., Sokolov, A. N., Yap, F. L., Yuan, H., Chu, Y., Hwang, H. Y., and Bao, Z., “Large-Scale Production of Graphene Nanoribbons from Electrospun Polymers”, Journal of the American Chemical Society, 2014, 136(49), 17284-17291.
[126] Liu, N., Kim, K., Jeong, H. Y., Hsu, P. C., Cui, Y., and Bao, Z., “Effect of Chemical Structure on Polymer-Templated Growth of Graphitic Nanoribbons”, ACS Nano, 2015, 9(9), 9043-9049.
[127] Peak, D., and Regier, T., “Direct Observation of Tetrahedrally Coordinated Fe (III) in Ferrihydrite”, Environmental Science & Technology, 2012, 46(6), 3163-3168.
[128] Dong, H., Nyame, V., MacDiarmid, A. G., and Jones Jr, W. E., “Polyaniline/Poly (methyl methacrylate) Coaxial Fibers: The Fabrication and Effects of the Solution Properties on the Morphology of Electrospun Core Fibers”, Journal of Polymer Science Part B: Polymer Physics, 2004, 42(21), 3934-3942.
[129] Qin, J. K., " Fabrication of Carbon Nanostructures with Size-Tunable Pores for Molecular Sensing through Surface Enhanced Raman Scattering", Master′s Thesis of Department of Chemical and Materials Engineering, Taoyuan, National Central University, 2018.
[130] Demirel, G., Usta, H., Yilmaz, M., Celik, M., Alidagi, H. A., and Buyukserin, F., “Surface-Enhanced Raman Spectroscopy (SERS): An Adventure from Plasmonic Metals to Organic Semiconductors as SERS Platforms”, Journal of Materials Chemistry C, 2018, 6(20), 5314-5335.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明