參考文獻 |
1. Love, J.C., L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): pp. 1103-1170.
2. Vericat, C., M. Vela, G. Benitez, P. Carro, and R. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev., 2010. 39(5): pp. 1805-1834.
3. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): pp. 1533-1554.
4. Sullivan, T.P. and W.T. Huck, Reactions on monolayers: organic synthesis in two dimensions. Eur. J. Org. Chem., 2003. 2003(1): pp. 17-29.
5. Wang, L., U.S. Schubert, and S. Hoeppener, Surface chemical reactions on self-assembled silane based monolayers. Chem. Soc. Rev., 2021. 50(11): pp. 6507-6540.
6. Pujari, S.P., L. Scheres, A.T. Marcelis, and H. Zuilhof, Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed., 2014. 53(25): pp. 6322-6356.
7. Witucki, G.L., A silane primer: chemistry and applications of alkoxy silanes. Journal of coatings technology, 1993. 65: pp. 57-57.
8. Ye, S.-H., Y.-S. Jang, Y.-H. Yun, V. Shankarraman, J.R. Woolley, Y. Hong, L.J. Gamble, K. Ishihara, and W.R. Wagner, Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance. Langmuir, 2013. 29(26): pp. 8320-8327.
9. Ye, S.-H., C.A. Johnson Jr, J.R. Woolley, H. Murata, L.J. Gamble, K. Ishihara, and W.R. Wagner, Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2010. 79(2): pp. 357-364.
10. Yeh, S.-B., C.-S. Chen, W.-Y. Chen, and C.-J. Huang, Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir, 2014. 30(38): pp. 11386-11393.
11. Roy, S., S. Banerjee, and P. De, Cationic Polymerization of Nonpolar Vinyl Monomers for Producing High Performance Polymers. 2016.
12. Ogata, Y., H. Seto, T. Murakami, Y. Hoshino, and Y. Miura, Affinity separation of lectins using porous membranes immobilized with glycopolymer brushes containing mannose or N-acetyl-D-glucosamine. Membranes, 2013. 3(3): pp. 169-181.
13. Gauthier, S., J. Aimé, T. Bouhacina, A. Attias, and B. Desbat, Study of grafted silane molecules on silica surface with an atomic force microscope. Langmuir, 1996. 12(21): pp. 5126-5137.
14. Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir, 2010. 26(22): pp. 16884-16889.
15. Zhang, J., J. Hoogboom, P.H. Kouwer, A.E. Rowan, and T. Rasing, Uniform N-(2-aminoethyl)(3-aminopropyl) trimethoxysilane monolayer growth in water. The Journal of Physical Chemistry C, 2008. 112(51): pp. 20105-20108.
16. Wen, K., R. Maoz, H. Cohen, J. Sagiv, A. Gibaud, A. Desert, and B.M. Ocko, Postassembly chemical modification of a highly ordered organosilane multilayer: New insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS nano, 2008. 2(3): pp. 579-599.
17. Fadeev, A.Y. and T.J. McCarthy, Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir, 1999. 15(11): pp. 3759-3766.
18. Gun, J. and J. Sagiv, On the formation and structure of self-assembling monolayers: III. Time of formation, solvent retention, and release. J. Colloid Interface Sci., 1986. 112(2): pp. 457-472.
19. Maoz, R., H. Cohen, and J. Sagiv, Specific nonthermal chemical structural transformation induced by microwaves in a single amphiphilic bilayer self-assembled on silicon. Langmuir, 1998. 14(21): pp. 5988-5993.
20. McGovern, M.E., K.M. Kallury, and M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir, 1994. 10(10): pp. 3607-3614.
21. Manifar, T., A. Rezaee, M. Sheikhzadeh, and S. Mittler, Formation of uniform self-assembly monolayers by choosing the right solvent: OTS on silicon wafer, a case study. Appl. Surf. Sci., 2008. 254(15): pp. 4611-4619.
22. Zhu, M., M.Z. Lerum, and W. Chen, How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir, 2012. 28(1): pp. 416-423.
23. Schmidt, M.W., T.L. Windus, and M.S. Gordon, Structural trends in silicon atranes. Journal of the American Chemical Society, 1995. 117(28): pp. 7480-7486.
24. Pestunovich, V., S. Kirpichenko, and M. Voronkov, Silatranes and their tricyclic analogs. The Chemistry of organic silicon compounds, 1998. 2: pp. 1447.
25. Tseng, Y.-T., H.-Y. Lu, J.-R. Li, W.-J. Tung, W.-H. Chen, and L.-K. Chau, Facile functionalization of polymer surfaces in aqueous and polar organic solvents via 3-mercaptopropylsilatrane. ACS applied materials & interfaces, 2016. 8(49): pp. 34159-34169.
26. Huang, C.-J. and Y.-Y. Zheng, Controlled silanization using functional silatrane for thin and homogeneous antifouling coatings. Langmuir, 2018. 35(5): pp. 1662-1671.
27. Adamovich, S.N., E.N. Oborina, A.M. Nalibayeva, and I.B. Rozentsveig, 3-Aminopropylsilatrane and Its Derivatives: A Variety of Applications. Molecules, 2022. 27(11): pp. 3549.
28. Huang, K.-W., C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as a linker for nanoparticle-based plasmon resonance sensors. Sensors and Actuators B: Chemical, 2012. 163(1): pp. 207-215.
29. Bae, J., D.S. Kim, H. Yoo, E. Park, Y.-G. Lim, M.-S. Park, Y.-J. Kim, and H. Kim, High-Performance Si/SiO x Nanosphere Anode Material by Multipurpose Interfacial Engineering with Black TiO2–x. ACS applied materials & interfaces, 2016. 8(7): pp. 4541-4547.
30. Zheng, G., Y. Xiang, L. Xu, H. Luo, B. Wang, Y. Liu, X. Han, W. Zhao, S. Chen, and H. Chen, Controlling surface oxides in Si/C nanocomposite anodes for high‐performance Li‐ion batteries. Advanced Energy Materials, 2018. 8(29): pp. 1801718.
31. Chen, S.-W., T.T.A. Hong, C.-T. Chiang, L.-K. Chau, and C.-J. Huang, Versatile Thiol-and Amino-Functionalized Silatranes for in-situ polymerization and Immobilization of Gold Nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022. 132: pp. 104129.
32. Ortega-Peña, S. and E. Hernández-Zamora, Microbial biofilms and their impact on medical areas: physiopathology, diagnosis and treatment. Boletin medico del Hospital Infantil de Mexico, 2018. 75(2): pp. 79-88.
33. Bixler, G.D. and B. Bhushan, Biofouling: lessons from nature. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012. 370(1967): pp. 2381-2417.
34. Weinstein, R.A. and R.O. Darouiche, Device-associated infections: a macroproblem that starts with microadherence. Clinical infectious diseases, 2001. 33(9): pp. 1567-1572.
35. Magill, S.S., J.R. Edwards, W. Bamberg, Z.G. Beldavs, G. Dumyati, M.A. Kainer, R. Lynfield, M. Maloney, L. McAllister-Hollod, and J. Nadle, Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine, 2014. 370(13): pp. 1198-1208.
36. Xie, D., L. Howard, and R. Almousa, Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. J. Biomater. Appl., 2018. 33(3): pp. 340-351.
37. Osinaga, P.W., R.H.M. Grande, R.Y. Ballester, M.R.L. Simionato, C.R.M.D. Rodrigues, and A. Muench, Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent. Mater., 2003. 19(3): pp. 212-217.
38. Roohpour, N., A. Moshaverinia, J.M. Wasikiewicz, D. Paul, M. Wilks, M. Millar, and P. Vadgama, Development of bacterially resistant polyurethane for coating medical devices. Biomedical materials, 2012. 7(1): pp. 015007.
39. Yuan, S., Y. Li, S. Luan, H. Shi, S. Yan, and J. Yin, Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion. Journal of Materials Chemistry B, 2016. 4(6): pp. 1081-1089.
40. Lin, P., C.-W. Lin, R. Mansour, and F. Gu, Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron., 2013. 47: pp. 451-460.
41. Leckband, D. and J. Israelachvili, Intermolecular forces in biology. Quarterly reviews of biophysics, 2001. 34(2): pp. 105-267.
42. Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama, and G.M. Whitesides, A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): pp. 5605-5620.
43. Roberts, M., M. Bentley, and J. Harris, Chemistry for peptide and protein PEGylation. Advanced drug delivery reviews, 2002. 54(4): pp. 459-476.
44. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): pp. 9604-9608.
45. Harris, J.M., Introduction to biotechnical and biomedical applications of poly (ethylene glycol), in Poly (ethylene glycol) Chemistry. 1992, Springer. pp. 1-14.
46. Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): pp. 5283-5293.
47. Wieland, B., J.P. Lancaster, C.S. Hoaglund, P. Holota, and W.J. Tornquist, Electrochemical and infrared spectroscopic quantitative determination of the platinum-catalyzed ethylene glycol oxidation mechanism at CO adsorption potentials. Langmuir, 1996. 12(10): pp. 2594-2601.
48. Zwaal, R.F. and A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, The Journal of the American Society of Hematology, 1997. 89(4): pp. 1121-1132.
49. Holmlin, R.E., X. Chen, R.G. Chapman, S. Takayama, and G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): pp. 2841-2850.
50. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978. 35: pp. 423-427.
51. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J., 1990. 22(5): pp. 355-360.
52. Chen, S.-H., Y. Chang, and K. Ishihara, Reduced blood cell adhesion on polypropylene substrates through a simple surface zwitterionization. Langmuir, 2017. 33(2): pp. 611-621.
53. Azuma, T., R. Ohmori, Y. Teramura, T. Ishizaki, and M. Takai, Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine-and ethylene glycol-based surface modification for preventing protein and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2017. 159: pp. 655-661.
54. Feng, W., S. Zhu, K. Ishihara, and J.L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly (2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir, 2005. 21(13): pp. 5980-5987.
55. Graziola, F., F. Girardi, R. Di Maggio, E. Callone, E. Miorin, M. Negri, K. Müller, and S. Gross, Three-components organic–inorganic hybrid materials as protective coatings for wood: Optimisation, synthesis, and characterisation. Prog. Org. Coat., 2012. 74(3): pp. 479-490.
56. Mohseni, M., S. Bastani, and A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Prog. Org. Coat., 2014. 77(7): pp. 1191-1199.
57. Mimura, S., H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Inoue, Optical properties of organic–inorganic hybrid thin films containing polysilane segments prepared from polysilane–methacrylate copolymers. J. Organomet. Chem., 2000. 611(1-2): pp. 40-44.
58. Matsumura, H., M. Kawahara, T. Tanaka, and M. Atsuta, A new porcelain repair system with a silane coupler, ferric chloride, and adhesive opaque resin. Journal of Dental Research, 1989. 68(5): pp. 813-818.
59. Tham, W., W. Chow, and Z.M. Ishak, The effect of 3‐(trimethoxysilyl) propyl methacrylate on the mechanical, thermal, and morphological properties of poly (methyl methacrylate)/hydroxyapatite composites. J. Appl. Polym. Sci., 2010. 118(1): pp. 218-228.
60. Lewis, R.A., Hawley′s condensed chemical dictionary. 2016: John Wiley & Sons.
61. Maçon, A.L., S.J. Page, J.J. Chung, N. Amdursky, M.M. Stevens, J.V. Weaver, J.V. Hanna, and J.R. Jones, A structural and physical study of sol–gel methacrylate–silica hybrids: intermolecular spacing dictates the mechanical properties. Physical Chemistry Chemical Physics, 2015. 17(43): pp. 29124-29133.
62. Cakic, S., C. Lacnjevac, G. Nikolic, J. Stamenkovic, M.B. Rajkovic, M. Gligoric, and M. Barac, Spectroscopic characteristics of highly selective manganese catalysis in acqueous polyurethane systems. Sensors, 2006. 6(11): pp. 1708-1720.
63. Coffinier, Y., G. Piret, M.R. Das, and R. Boukherroub, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. Comptes Rendus Chimie, 2013. 16(1): pp. 65-72.
64. Xu, H., M.M. Ferreira, and S.C. Heilshorn, Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab on a Chip, 2014. 14(12): pp. 2047-2056.
65. Zhu, K., D. Hou, Y. Fei, B. Peng, Z. Wang, W. Xu, B. Zhu, L.-L. Li, and H. Wang, Thermosensitive Hydrogel Interface Switching from Hydrophilic Lubrication to Infection Defense. ACS Applied Bio Materials, 2019. 2(8): pp. 3582-3590.
66. Acton, B.O., G.G. Ting, P.J. Shamberger, F.S. Ohuchi, H. Ma, and A.K.-Y. Jen, Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. ACS applied materials & interfaces, 2010. 2(2): pp. 511-520.
67. Mittler-Neher, S., J. Spinke, M. Liley, G. Nelles, M. Weisser, R. Back, G. Wenz, and W. Knoll, Spectroscopic and surface-analytical characterization of self-assembled layers on Au. Biosens. Bioelectron., 1995. 10(9-10): pp. 903-916.
68. Dos Santos, F.C., S.V. Harb, M.-J. Menu, V. Turq, S.H. Pulcinelli, C.V. Santilli, and P. Hammer, On the structure of high performance anticorrosive PMMA–siloxane–silica hybrid coatings. RSC advances, 2015. 5(129): pp. 106754-106763.
69. Blasco, E., J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner‐Kowollik, and M. Wegener, Fabrication of conductive 3D gold‐containing microstructures via direct laser writing. Adv. Mater., 2016. 28(18): pp. 3592-3595.
70. Ravi, S., S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim, J.-W. Ahn, and W.-S. Ahn, EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018. 67: pp. 210-218.
71. Ederer, J., P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz, and O. Pop-Georgievski, Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC advances, 2017. 7(21): pp. 12464-12473.
72. Fu, Y., H. Du, S. Zhang, and W. Huang, XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering: A, 2005. 403(1-2): pp. 25-31.
73. Ramin, M.A., G. Le Bourdon, K. Heuze, M. Degueil, T. Buffeteau, B. Bennetau, and L. Vellutini, Epoxy-terminated self-assembled monolayers containing internal urea or amide groups. Langmuir, 2015. 31(9): pp. 2783-2789.
74. Zhang, H., C. Bian, J.K. Jackson, F. Khademolhosseini, H.M. Burt, and M. Chiao, Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification. ACS applied materials & interfaces, 2014. 6(12): pp. 9126-9133.
75. Salon, M.-C.B., M. Abdelmouleh, S. Boufi, M.N. Belgacem, and A. Gandini, Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. J. Colloid Interface Sci., 2005. 289(1): pp. 249-261.
76. Meillan, M., T. Buffeteau, G. Le Bourdon, L. Thomas, M. Degueil, K. Heuzé, B. Bennetau, and L. Vellutini, Mixed Self‐Assembled Monolayers with Internal Urea Group on Silica Surface. ChemistrySelect, 2017. 2(35): pp. 11868-11874.
77. Lindberg, R., G. Sundholm, G. Øye, and J. Sjöblom, A new method for following the kinetics of the hydrolysis and condensation of silanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 135(1-3): pp. 53-58.
78. Torry, S., A. Campbell, A. Cunliffe, and D. Tod, Kinetic analysis of organosilane hydrolysis and condensation. Int. J. Adhes. Adhes., 2006. 26(1-2): pp. 40-49.
79. Ogasawara, T., A. Yoshino, H. Okabayashi, and C. O′Connor, Polymerization process of the silane coupling agent 3-aminopropyltriethoxy silane–1H NMR spectra and kinetics of ethanol release. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 180(3): pp. 317-322.
80. Huber, M.P., S. Kelch, and H. Berke, FTIR investigations on hydrolysis and condensation reactions of alkoxysilane terminated polymers for use in adhesives and sealants. Int. J. Adhes. Adhes., 2016. 64: pp. 153-162.
81. Lee, A.S., S.-S. Choi, K.-Y. Baek, and S.S. Hwang, Hydrolysis kinetics of a sol-gel equilibrium yielding ladder-like polysilsesquioxanes. Inorg. Chem. Commun., 2016. 73: pp. 7-11.
82. Chen, S.-L., P. Dong, G.-H. Yang, and J.-J. Yang, Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Industrial & engineering chemistry research, 1996. 35(12): pp. 4487-4493.
83. Zhai, Q., C. Zhou, S. Zhao, C. Peng, and Y. Han, Kinetic study of alkoxysilane hydrolysis under acidic conditions by Fourier transform near infrared spectroscopy combined with partial least-squares model. Industrial & Engineering Chemistry Research, 2014. 53(35): pp. 13598-13609.
84. Bogush, G. and C. Zukoski Iv, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci., 1991. 142(1): pp. 1-18.
85. Bogush, G. and C. Zukoski Iv, Uniform silica particle precipitation: An aggregative growth model. J. Colloid Interface Sci., 1991. 142(1): pp. 19-34.
86. Savard, S., L.P. Blanchard, J. Léonard, and R. Prud′Homme, Hydrolysis and condensation of silanes in aqueous solutions. Polym. Compos., 1984. 5(4): pp. 242-249.
87. Yanagisawa, Y., Y. Nan, K. Okuro, and T. Aida, Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science, 2018. 359(6371): pp. 72-76.
88. Malcolm, P.S., Polymer chemistry: an introduction. 1990, Oxford University Press, New York.
89. Münch, A.S., M. Wölk, M. Malanin, K.-J. Eichhorn, F. Simon, and P. Uhlmann, Smart functional polymer coatings for paper with anti-fouling properties. Journal of Materials Chemistry B, 2018. 6(5): pp. 830-843.
90. Xu, Y., M. Takai, and K. Ishihara, Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009. 30(28): pp. 4930-4938.
91. Marshall, A., P. Munro, and G. Trägårdh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review. Desalination, 1993. 91(1): pp. 65-108.
92. Rana, D. and T. Matsuura, Surface modifications for antifouling membranes. Chemical reviews, 2010. 110(4): pp. 2448-2471.
93. Singha, P., J. Pant, M.J. Goudie, C.D. Workman, and H. Handa, Enhanced antibacterial efficacy of nitric oxide releasing thermoplastic polyurethanes with antifouling hydrophilic topcoats. Biomaterials science, 2017. 5(7): pp. 1246-1255.
94. Rechendorff, K., M.B. Hovgaard, M. Foss, V. Zhdanov, and F. Besenbacher, Enhancement of protein adsorption induced by surface roughness. Langmuir, 2006. 22(26): pp. 10885-10888.
95. Akkas, T., C. Citak, A. Sirkecioglu, and F.S. Güner, Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly (ethylene glycol). Polym. Int., 2013. 62(8): pp. 1202-1209. |