博碩士論文 109324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.142.54.254
姓名 江筠漢(Yun-Han Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
(Medical Coating on Thermoplastic Polyurethane by Sequential Deposition of Photo-crosslinkable and Bio-inspired Zwitterionic Phosphocholine Copolymers)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響
★ 基於動態鍵的多功能丙烯酸交聯劑★ 連續微流道反應器中進行防污聚合物篩選
★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-12以後開放)
摘要(中) 熱塑型聚氨酯(Thermoplastic polyurethane, TPU)具有優異機械性質,被廣泛應用於各種用途,如:鞋墊、油漆塗料及手機保護殼等,而此材料亦具有良好生物相容性,因此可應用於醫療器材,例如:心導管、尿導管等等。但是聚氨酯導管具有一項缺陷,即是其表面的疏水性質,可能會造成蛋白質或是細菌的貼附,更進一步導致血栓,甚至是造成病患受到感染,因此熱塑形聚氨酯的表面修飾是一個令人重視的議題,主要目標是將表面修飾為親水性表面,並同時具有對抗蛋白質及細菌貼附的能力。在植入性的醫療器材中,器材的使用壽命也是十分重要的,所以必須利用化學性修飾使功能性高分子穩固地鍵結於表面。在此研究中,我們利用三種嵌段組成醫療性塗層: 其一,疏水性單體丙烯酸丁酯(BMA)與甲基丙烯酸月桂酯(DMA)能夠使共聚高分子物理吸附於聚胺酯表面;其二,光起始交聯單體3-甲基丙烯醯氧基-2-羥丙基-4-氧化二苯甲酮(MHPBP);其三,親水性雙離子單體2-甲基丙烯醯氧乙基磷酸膽鹼(MPC),其擁有優異的抗沾黏及生物相容性質,因此被廣泛使用。我們的表面修飾是建構在雙層塗層的架構上,含有MHPBP之高分子透過光起始之烴基插入交聯反應,扮演聚氨酯基材和MPC共聚物間的橋接夾層;第二層修飾層為功能性塗層,共聚中的主要成分MPC賦予此塗層抗沾黏特性以及潤滑度。以上提及的兩種高分子皆是透過傳統的自由基聚合反應合成,反應後之產物利用核磁共振光譜儀以及紫外光¬-可見光光譜儀進行特性分析。使用接觸角測量儀量測修飾塗層的潤濕特性;X射線光電子能譜儀及衰減全反射傅立葉轉換紅外光譜儀分析修飾塗層表面組成及接枝情形;原子力顯微鏡及掃瞄電子顯微鏡檢測塗層表面粗糙度、表面形貌及修飾厚度;拉伸測試機透過摩擦力測試量測修飾後導管之潤滑度;蛋白質及細菌貼附測試檢測塗層的抗沾黏特性。在初步的實驗中,我們調整塗層配方以及探討操作參數對塗層的影響,例如:MHPBP在PX共聚物中所佔的莫耳比例、MPC在MPC共聚物中所的莫耳比例、PX共聚物的溶解度、共聚物濃度、紫外光曝照時間以及紫外光曝照波長。以上所提及之變因會藉由改變塗層之穩定性、抗沾黏特性及潤滑度,進而影響醫療塗層的品質。因為研究中所使用塗層是透過化學鍵結進行修飾,相較於物理吸附,化學鍵結具有較良好的穩定性,因此希望此塗層在未來能夠被應用於醫療器材的製造中。
摘要(英) Thermoplastic polyurethane (TPU) is a widely used biomaterial. It was found to have some serious problems, such as thrombosis and bacterial or protein adsorption that will cause the infection of the patients due to its hydrophobic properties. Therefore, it is an important issue to modify the TPU surface with hydrophilic properties, and the properties to prevent the adsorption of bacteria and proteins. Chemical modification of functional polymers is crucial for long-term and indwelling applications for medical devices. In this work, we applied three building blocks for constructing medical coatings: First, hydrophobic monomers, butyl methacrylate (BMA), and dodecyl methacrylate (DMA), for physical adsorption of polymers on TPU. Second, photo-crosslinkable benzophenone monomer, 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP). Third, hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC), which is a widely applied zwitterionic monomer, due to its outstanding antifouling and biocompatibility. The coating strategy was established based on a two-layer scheme. The first layer as a mediate layer containing MHBPB to serve as a crosslinking adlayer between MPC copolymer and TPU through photo-induced C,H insertion crosslinking (CHic). The second layer as a functional layer with the major component of MPC for fouling resistance and high lubrication. Two polymers were synthesized by conventional free radical polymerization and characterized by Nuclear Magnetic Resonance spectroscopy (NMR) and Ultraviolet–visible spectroscopy (UV-Vis). The wettability of the coatings was tested by the contact angle goniometer. The immobilization of the layers was examined by X-ray photoelectron spectroscopy (XPS) and Attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR) measurement. The roughness and the morphology of the coating layers on TPU were examined by Atomic Force Microscope (AFM). The thickness of the coating layers was analyzed by Scanning Electron Microscope (SEM). Lubrication of the coating was characterized by friction tests with the universal test machine. The antifouling properties of the coated TPU tubes were studied by protein and bacterial adsorption tests. In preliminary data, we formulated the coating solutions and discovered some key operation parameters, the molar ratio of MHBPB in the copolymer of the first layer, the solubility of co-polymers, co-polymer concentration, UV time, and UV wavelength. Those can considerably affect the quality of medical coatings in terms of stability, antifouling properties, and lubrication. In the future, due to the stability of the chemical modification, hoping that the coating process can be applied to the manufacturing of medical devices.
關鍵字(中) ★ 光起始烴基插入反應
★ 雙離子材料
★ 2-甲基丙烯醯氧乙基磷酸膽鹼
★ 醫療塗料
★ 非特異性吸附
★ 熱塑性聚氨酯
關鍵字(英) ★ photo-induced C,H insertion crosslinking
★ zwitterionic materials
★ 2-methacryloyloxyethyl phosphorylcholine (MPC)
★ medical coating
★ non-specific adsorption
★ thermoplastic polyurethane
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 xiii
化學品名詞簡稱 xiv
共聚物名詞簡稱 xiv
一、 文獻回顧 1
1-1 熱塑型聚氨酯(TPU)之應用與困境 1
1-2醫療設備相關感染 (Device-Associated Infection, DAI) 2
1-2-1生物薄膜之形成 3
1-2-2凝血級聯反應 4
1-3表面修飾之方法 5
1-3-1烴基插入交聯反應(C,H insertion crosslinking, CHic) 7
1-3-2水凝膠貼附 8
1-4使用二苯甲酮(BP)單體進行表面修飾之缺點 9
1-5具有未來展望之二苯甲酮丙烯酸酯(BPA)共聚物 9
1-6抗沾黏材料 10
1-6-1 聚乙二醇(poly(ethylene glycol), PEG) 10
1-6-2 聚乙烯吡咯烷酮(poly(vinylpyrrolidone), PVP) 11
1-6-3雙離子高分子 12
1-6-3-1 磷酸膽鹼(phosphorycholine, PC) 13
1-7 醫用親水塗料之商業性產品 17
二、 研究目的 18
三、 實驗藥品與實驗方法 20
3-1實驗藥品與設備 20
3-1-1 藥品清單 20
3-1-2 設備清單 21
3-2材料製備 22
3-2-1 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone合成 22
3-2-2 Poly(3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone-co-butyl methacrylate), P(MHPBP-co-BMA)合成 22
3-2-3 Poly(2-methacryloyloxyethyl phosphorylcholine-co-dodecyl methacrylate), P(MPC-co-DMA)合成 23
3-2-4 TPU基材製備 23
3-2-5 瓊脂平板制備 23
3-3 實驗方法 24
3-3-1 液態核磁共振光譜儀(1H NMR) 24
3-3-2 質譜儀分析(Mass spectrometry) 24
3-3-3 共聚物P(MHPBP-co-BMA)之溶解度分析 24
3-3-4 共聚物P(MHPBP-co-BMA)與MHPBP單反應效率與紫外光曝照 24
3-3-5 P(MHPBP-co-BMA)及P(MPC-co-DMA)之TPU導管修飾 25
3-3-6 衰減全反射傅立葉轉換紅外線光譜(Attenuated total reflectance-fourier transform infrared spectra, ATR-FTIR)分析鑑定 26
3-3-7 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 26
3-3-8 水下摩擦力測試 26
3-3-9 水接觸角測定 (Contact angle meter) 27
3-3-10 蛋白質貼附測試 (Protein Adsorption Test) 28
3-3-11 抗細菌貼附測試 (Bacteria attachment Test) 29
3-3-12 原子力顯微鏡 (Atomic Force Microscope, AFM) 29
3-3-13 掃描電子顯微鏡 (Scanning Electron Microscope, SEM) 30
四、 結果討論 31
4-1 單體合成性質鑑定 31
4-1-1 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone, MHPBP之1H NMR光譜鑑定 31
4-1-2 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone, MHPBP之質譜分析33
4-2 共聚物性質鑑定 34
4-2-1 Poly(3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone-co-butyl methacrylate), P(MHPBP-co-BMA)之1H NMR鑑定 34
4-2-2 溶劑對共聚物Poly(MHPBP-co-BMA)合成之影響 36
4-2-3 Poly(2-methacryloyloxyethyl phosphorylcholine-co-dodecyl methacrylate), P(MPC-co-DMA) 之1H NMR鑑定 37
4-2-4 共聚物Poly(MHPBP-co-BMA)在不同比例混合溶劑中的溶解度測試 39
4-3 紫外光波長及光照時間對MHPBP單體及其共聚物使用效率影響 40
4-4 浸塗修飾表面潤滑度分析 43
4-4-1 P(MHB)及P(MD)之單體組成比例對水下潤滑度的影響 43
4-4-2 塗層濃度對塗層潤滑度的影響 46
4-4-3 橋接高分子MH對潤滑度及耐磨性的影響 49
4-4-4紫外光曝照時間對導管修飾的影響 50
4-5 修飾表面親水性分析 53
4-6 導管表面修飾組成分析 54
4-6-1 導管表面之衰減全反射傅立葉轉換紅外線光譜(FTIR)分析 54
4-6-2 X射線光電子能譜儀表面元素分析 56
4-7修飾層表面形貌 58
4-7-1 原子力顯微鏡表面形貌及粗糙度測試 58
4-7-2 掃描電子顯微鏡塗層厚度量測 59
4-8 修飾表面抗貼附測試 60
4-8-1 導管表面蛋白質貼附測試 60
4-8-2 導管表面細菌貼附測試 61
五、 結論 64
六、 未來展望 65
七、 參考文獻 66
參考文獻 1. Joseph, J., et al., Biomedical applications of polyurethane materials and coatings. Transactions of the IMF, 2018. 96(3): pp. 121-129.
2. Burke, A. and N. Hasirci, Polyurethanes in biomedical applications. Biomaterials, 2004: pp. 83-101.
3. Akindoyo, J.O., et al., Polyurethane types, synthesis and applications–a review. Rsc Advances, 2016. 6(115): pp. 114453-114482.
4. Ricardo, S.I., et al., A glance at antimicrobial strategies to prevent catheter-associated medical infections. ACS Infectious Diseases, 2020. 6(12): pp. 3109-3130.
5. Pandiyarajan, C., et al., Influence of the Molecular Structure of Surface‐A ttached Poly (N‐alkyl Acrylamide) Coatings on the Interaction of Surfaces with Proteins, Cells and Blood Platelets. Macromolecular Bioscience, 2013. 13(7): pp. 873-884.
6. Jones, D.S., C.P. Garvin and S.P. Gorman, Relationship between biomedical catheter surface properties and lubricity as determined using textural analysis and multiple regression analysis. Biomaterials, 2004. 25(7-8): pp. 1421-1428.
7. Saint, S., et al., A program to prevent catheter-associated urinary tract infection in acute care. New England Journal of Medicine, 2016. 374(22): pp. 2111-2119.
8. Shah, H., et al., Intravascular catheter-related bloodstream infection. The Neurohospitalist, 2013. 3(3): pp. 144-151.
9. Trautner, B.W. and R.O. Darouiche, Catheter-associated infections: pathogenesis affects prevention. Archives of internal medicine, 2004. 164(8): pp. 842-850.
10. Weinstein, R.A. and R.O. Darouiche, Device-associated infections: a macroproblem that starts with microadherence. Clinical infectious diseases, 2001. 33(9): pp. 1567-1572.
11. Umscheid, C.A., et al., Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infection Control & Hospital Epidemiology, 2011. 32(2): pp. 101-114.
12. Crouzet, M., et al., Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC microbiology, 2014. 14(1): pp. 1-12.
13. Donlan, R.M., Biofilm formation: a clinically relevant microbiological process. Clinical infectious diseases, 2001. 33(8): pp. 1387-1392.
14. Cadieux, P.A., et al. Implications of biofilm formation on urological devices. in AIP Conference Proceedings. 2008. American Institute of Physics.
15. Aiyelabegan, H.T. and E. Sadroddiny, Fundamentals of protein and cell interactions in biomaterials. Biomedicine & Pharmacotherapy, 2017. 88: pp. 956-970.
16. Brisbois, E.J., Novel Nitric Oxide (NO)-Releasing Polymers and Their Biomedical Applications. 2014, University of Michigan.
17. Ngo, B.K.D. and M.A. Grunlan, Protein resistant polymeric biomaterials. 2017, ACS Publications.
18. Minko, S., Grafting on solid surfaces:“grafting to” and “grafting from” methods, in Polymer surfaces and interfaces. 2008, Springer. pp. 215-234.
19. Yu, L.Y., et al. Review of polymer surface modification method. in Materials Science Forum. 2016. Trans Tech Publ.
20. Ma, H., R.H. Davis and C.N. Bowman, A novel sequential photoinduced living graft polymerization. Macromolecules, 2000. 33(2): pp. 331-335.
21. Matsuda, T. and T. Sugawara, Development of surface photochemical modification method for micropatterning of cultured cells. Journal of biomedical materials research, 1995. 29(6): pp. 749-756.
22. Chen, G., Y. Ito and Y. Imanishi, Micropattern immobilization of a pH-sensitive polymer. Macromolecules, 1997. 30(22): pp. 7001-7003.
23. Ito, Y., et al., Patterned immobilization of thermoresponsive polymer. Langmuir, 1997. 13(10): pp. 2756-2759.
24. Yang, S.Y. and M.F. Rubner, Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. Journal of the American Chemical Society, 2002. 124(10): pp. 2100-2101.
25. Ye, T. and M.A. McKervey, Organic synthesis with. alpha.-diazo carbonyl compounds. Chemical reviews, 1994. 94(4): pp. 1091-1160.
26. Kirmse, W., 100 years of the Wolff rearrangement. European Journal of Organic Chemistry, 2002. 2002(14): pp. 2193-2256.
27. Bogdanova, A. and V.V. Popik, Experimental and theoretical investigation of reversible interconversion, thermal reactions, and wavelength-dependent photochemistry of diazo meldrum′s acid and its diazirine isomer, 6, 6-Dimethyl-5, 7-dioxa-1, 2-diaza-spiro [2, 5] oct-1-ene-4, 8-dione1. Journal of the American Chemical Society, 2003. 125(46): pp. 14153-14162.
28. Jones Jr, M., W. Ando and A. Kulczycki Jr, The photosensitized decomposition of methyl diazomalonate. Tetrahedron Letters, 1967. 8(15): pp. 1391-1396.
29. Turro, N.J., Modern molecular photochemistry. 1991: University science books.
30. Sigrist, H., et al., Surface immobilization of biomolecules by light. Optical Engineering, 1995. 34(8): pp. 2339-2348.
31. Chevolot, Y., et al., Synthesis and characterization of a photoactivatable glycoaryldiazirine for surface glycoengineering. Bioconjugate chemistry, 1999. 10(2): pp. 169-175.
32. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): pp. 1533-1554.
33. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): pp. 1103-1170.
34. Dorman, G. and G.D. Prestwich, Benzophenone photophores in biochemistry. Biochemistry, 1994. 33(19): pp. 5661-5673.
35. Prucker, O., T. Brandstetter and J. Rühe, Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases, 2018. 13(1): pp. 010801.
36. Yang, J., et al., Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Advanced Functional Materials, 2020. 30(2): pp. 1901693.
37. Sanderson, R., Chemical bonds and bonds energy. Vol. 21. 2012: Elsevier.
38. Hydrogen Bonding. Available from: https://www.chem.purdue.edu/gchelp/liquids/hbond.html.
39. Braccini, I. and S. Pérez, Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001. 2(4): pp. 1089-1096.
40. Berg, J.M., J.L. Tymoczko and L. Stryer, Biochemistry (Loose-Leaf). 2007: Macmillan.
41. Israelachvili, J. and R. Pashley, The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 1982. 300(5890): pp. 341-342.
42. Jorgensen, W.L. and D.L. Severance, Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. Journal of the American Chemical Society, 1990. 112(12): pp. 4768-4774.
43. Dougherty, D.A., The cation− π interaction. Accounts of chemical research, 2013. 46(4): pp. 885-893.
44. Houk, K., et al., Binding affinities of host–guest, protein–ligand, and protein–transition‐state complexes. Angewandte Chemie International Edition, 2003. 42(40): pp. 4872-4897.
45. Rose, S., et al., Nanoparticle solutions as adhesives for gels and biological tissues. Nature, 2014. 505(7483): pp. 382-385.
46. Yu, Y., et al., Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Advanced Materials, 2019. 31(7): pp. 1807101.
47. Wang, Y., et al., Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Analytical Chemistry, 2005. 77(23): pp. 7539-7546.
48. Schneider, M.H., Y. Tran and P. Tabeling, Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir, 2011. 27(3): pp. 1232-1240.
49. Li, J., et al., Tough adhesives for diverse wet surfaces. Science, 2017. 357(6349): pp. 378-381.
50. Rhodes, M., et al., Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 2007. 45(5): pp. 843-851.
51. Lin, X., K. Fukazawa and K. Ishihara, Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS applied materials & interfaces, 2015. 7(31): pp. 17489-17498.
52. Lee, J.H., H.B. Lee and J.D. Andrade, Blood compatibility of polyethylene oxide surfaces. Progress in polymer science, 1995. 20(6): pp. 1043-1079.
53. Francolini, I., et al., Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers. International Journal of Molecular Sciences, 2019. 20(4): pp. 1001.
54. Lowe, S., N.M. O′Brien-Simpson and L.A. Connal, Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates. Polymer Chemistry, 2015. 6(2): pp. 198-212.
55. Gombotz, W.R., et al., Protein adsorption to poly (ethylene oxide) surfaces. Journal of biomedical materials research, 1991. 25(12): pp. 1547-1562.
56. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG− DOPA. Langmuir, 2005. 21(2): pp. 640-646.
57. Ding, X., et al., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials, 2012. 33(28): pp. 6593-6603.
58. Mizrahi, B., et al., Long-lasting antifouling coating from multi-armed polymer. Langmuir, 2013. 29(32): pp. 10087-10094.
59. Franco, P. and I. De Marco, The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 2020. 12(5): pp. 1114.
60. Kurakula, M. and G.K. Rao, Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 2020. 60: pp. 102046.
61. Teodorescu, M. and M. Bercea, Poly (vinylpyrrolidone)–a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 2015. 54(9): pp. 923-943.
62. Awasthi, R., et al., Poly (vinylpyrrolidone), in Engineering of Biomaterials for Drug Delivery Systems. 2018, Elsevier. pp. 255-272.
63. Jang, H., et al., Thermally crosslinked biocompatible hydrophilic polyvinylpyrrolidone coatings on polypropylene with enhanced mechanical and adhesion properties. Macromolecular Research, 2018. 26(2): pp. 151-156.
64. Kuźmińska, A., et al., Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids and Surfaces B: Biointerfaces, 2020. 192: pp. 111066.
65. Kanagaraj, P., et al., Effects of polyvinylpyrrolidone on the permeation and fouling-resistance properties of polyetherimide ultrafiltration membranes. Industrial & Engineering Chemistry Research, 2015. 54(17): pp. 4832-4838.
66. Butruk, B., M. Trzaskowski and T. Ciach, Polyvinylpyrrolidone-based coatings for polyurethanes–the effect of reagent concentration on their chosen physical properties. Chemical and Process Engineering, 2012. 33(4).
67. Li, M., B. Zhuang and J. Yu, Functional Zwitterionic Polymers on Surface: Structures and Applications. Chemistry–An Asian Journal, 2020. 15(14): pp. 2060-2075.
68. Blackman, L.D., et al., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 2019. 48(3): pp. 757-770.
69. Schlenoff, J.B., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir, 2014. 30(32): pp. 9625-9636.
70. Zheng, L., et al., Applications of zwitterionic polymers. Reactive and Functional Polymers, 2017. 118: pp. 51-61.
71. Noishiki, Y., Biochemical response to Dacron vascular prosthesis. Journal of Biomedical Materials Research, 1976. 10(5): pp. 759-767.
72. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978. 35: pp. 423-427.
73. Ishihara, K., Successful development of biocompatible polymers designed by natures original inspiration. Procedia Chemistry, 2012. 4: pp. 34-38.
74. Ishihara, K. and K. Fukazawa, 2-Methacryloyloxyethyl phosphorylcholine polymers, in Phosphorus-Based Polymers. 2014. pp. 68-96.
75. Zhang, Y., et al., Fundamentals and applications of zwitterionic antifouling polymers. Journal of Physics D: Applied Physics, 2019. 52(40): pp. 403001.
76. Ishihara, K., et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials, 1999. 20(17): pp. 1545-1551.
77. Iwasaki, Y., et al., Semi‐interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Journal of biomedical materials research, 2000. 52(4): pp. 701-708.
78. Yumoto, H., et al., Anti‐inflammatory and protective effects of 2‐methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells. Journal of Biomedical Materials Research Part A, 2015. 103(2): pp. 555-563.
79. Hirota, K., et al., Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS microbiology letters, 2005. 248(1): pp. 37-45.
80. Lewis, A.L., et al., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials, 2001. 22(2): pp. 99-111.
81. Damodaran, K. and K.M. Merz Jr, Head group-water interactions in lipid bilayers: a comparison between DMPC-and DLPE-based lipid bilayers. Langmuir, 1993. 9(5): pp. 1179-1183.
82. Finer, E.G. and A. Darke, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chemistry and Physics of Lipids, 1974. 12(1): pp. 1-16.
83. Damodaran, K. and K.M. Merz Jr, A comparison of DMPC-and DLPE-based lipid bilayers. Biophysical journal, 1994. 66(4): pp. 1076-1087.
84. Kitano, H., et al., Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. The Journal of Physical Chemistry B, 2000. 104(47): pp. 11425-11429.
85. Kitano, H., K. Takaha and M. Gemmei-Ide, Raman spectroscopic study of the structure of water in aqueous solutions of amphoteric polymers. Physical Chemistry Chemical Physics, 2006. 8(10): pp. 1178-1185.
86. Goda, T., et al., Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer, 2006. 47(4): pp. 1390-1396.
87. Morisaku, T., et al., Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer, 2008. 49(21): pp. 4652-4657.
88. Ishihara, K., et al., The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials science, Polymer edition, 2017. 28(10-12): pp. 884-899.
89. Ishihara, K., Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. Journal of Biomedical Materials Research Part A, 2019. 107(5): pp. 933-943.
90. Global Hydrophilic Coatings Market 2017-2021 With Aculon, Biocoat, Harland Medical Systems, Hydromer & DSM Dominating - Research and Markets. 2017; Available from: https://www.businesswire.com/news/home/20170914005882/en/Global-Hydrophilic-.
91. Global Hydrophilic Coatings Industry Analysis 2020-2027 - ResearchAndMarkets.com. 2020; Available from: https://www.businesswire.com/news/home/20200708005458/en/Global-Hydrophilic-Coatings-Industry-Analysis-2020-2027---ResearchAndMarkets.com.
92. DSM ComfortCoat® hydrophilic coating enhances the capabilities of EPflex medical guidewires. 2012; Available from: https://www.dsm.com/biomedical/en_US/media-events/press-releases/2012/2012-01-31-dsm-comfortcoat-hydrophilic-coating-enhances-capabilities-epflex-medical-guidewires.html.
93. Lubricent® UV-UV CURABLE HYDROPHILIC COATINGS. Available from: https://harlandmedical.com/products-and-services/coating-solutions/lubricent/.
94. LUBRIMATRIX™ SURFACE TREATMENT FOR INTRAOCULAR LENS (IOL) INJECTORS. Available from: https://www.astp.com/lubrimatrix.
95. LUBRILAST™ LUBRICIOUS HYDROPHILIC MEDICAL COATING. Available from: https://www.astp.com/lubrilast.
96. Srivastava, A. and A. Tripathi, Photopolymerization of n-butyl methacrylate in solutions initiated by diphenyl ditelluride. Designed monomers and polymers, 2008. 11(1): pp. 83-95.
97. Ito, K., et al., Solvent effects in radical copolymerization between hydrophilic and hydrophobic monomers; 2-hydroxyethyl methacrylate and lauryl methacrylate. Polymer journal, 1985. 17(6): pp. 761-766.
98. Ohshio, M., K. Ishihara and S.-i. Yusa, Self-association behavior of cell membrane-inspired amphiphilic random copolymers in water. Polymers, 2019. 11(2): pp. 327.
99. Yu, L., et al., High-antifouling polymer brush coatings on nonpolar surfaces via adsorption-cross-linking strategy. ACS applied materials & interfaces, 2017. 9(51): pp. 44281-44292.
100. Riga, E.K., et al., On the limits of benzophenone as cross-linker for surface-attached polymer hydrogels. Polymers, 2017. 9(12): pp. 686.
101. Liu, Q., et al., Covalent grafting of antifouling phosphorylcholine-based copolymers with antimicrobial nitric oxide releasing polymers to enhance infection-resistant properties of medical device coatings. Langmuir, 2017. 33(45): pp. 13105-13113.
102. UV Cutoff. Available from: https://macro.lsu.edu/HowTo/solvents/UV%20Cutoff.htm.
103. Imtiaz, M., et al., Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017. 724: pp. 296-305.
104. Borissova, A., et al., Examination of the semi-batch crystallization of benzophenone from saturated methanol solution via aqueous antisolvent drowning-out as monitored in-process using ATR FTIR spectroscopy. Crystal growth & design, 2004. 4(5): pp. 1053-1060.
105. Goda, T., et al., Photoinduced phospholipid polymer grafting on Parylene film: Advanced lubrication and antibiofouling properties. Colloids and Surfaces B: Biointerfaces, 2007. 54(1): pp. 67-73.
106. Todea, M., et al., XPS investigation of new solid forms of 5-fluorouracil with piperazine. Journal of Molecular Structure, 2018. 1165: pp. 120-125.
107. Xu, Y., M. Takai and K. Ishihara, Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009. 30(28): pp. 4930-4938.
108. Pan, F.-M. XPS 超薄薄膜分析 Ultra-Thin Film Analysis by Angled Resolved X-Ray Photoelectron Spectroscopy. Available from: https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/131/01310040.pdf.
109. Roach, P., D. Farrar and C.C. Perry, Interpretation of protein adsorption: surface-induced conformational changes. Journal of the American Chemical Society, 2005. 127(22): pp. 8168-8173.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明