博碩士論文 110223028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.146.178.22
姓名 蔡承樺(Cheng-Hua Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 類沸石咪唑骨架材料封裝大腸桿菌對未來癌症療法應用之前期研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 微生物在生活中被廣泛應用,例如汙水處理使用各類微生物來分解有機廢物或是重金屬,利用厭氧菌來製造醇類,醫學上也有利用細菌進行治療的細菌癌症療法。但不可避免的在作用環境中總有不利於微生物生存的條件存在,像是水中可能含有抗菌劑、厭氧菌作用環境無法完全阻隔氧氣、病人體內的溶菌酶和抗生素等,都會減弱微生物的活性及存活能力。因此科學家便致力於研究有機或無機材料結合生物體的生物複合材料,來增強生物細胞對於環境壓力的適應性。
金屬有機骨架材料 (MOFs),可藉由調整金屬離子與有機配體,根據需求調整其孔洞性質、比表面積、化學穩定性等,具有相當的多樣性,因此近期常被應用於與生物系統結合之研究。
本研究藉由將類沸石咪唑骨架材料-90 (ZIF-90) 包覆大腸桿菌 (Escherichia coli, E. coli) 表面形成單一晶體包覆大腸桿菌 (E. coli@ZIF-90),以及將類沸石咪唑骨架材料-8 (ZIF-8) 合成於大腸桿菌表面形成塗層 (E. coli⊂ZIF-8)的產物,並於高溫環境中來探討E. coli@ZIF-90與E. coli⊂ZIF-8兩者不同包覆情況對提高大腸桿菌耐熱能力的影響。同時也以這兩種生物複合材料進行了與細胞癌症療法相關的體外細胞實驗:透過誘發巨噬細胞活化生成而得的多種細胞激素(Cytokines),探討這兩種生物複合材料於誘發細胞免疫反應的多寡;以及將E. coli@ZIF-90與不同pH值環境下的巨噬細胞一同培養,觀測材料是否有崩解現象及大腸桿菌釋放後與細胞是否有作用力,探討ZIF-90材料作為大腸桿菌載體的潛力。以期待未來將本研究成果應用於癌症治療之可行性以及在癌症治療領域帶來更進一步的突破。
摘要(英) Microorganisms are widely used in life. For example, decomposing organic waste in sewage, producing alcohol by anaerobic fermentation, besides, bacteria can also be used in cancer treatment called “bacteria cancer therapy”. However, there are always some factors which will threaten their survival. Antiseptics exist in water, oxygen exist in the media of anaerobic bacteria, lysozyme and antibiotics in patients. These conditions all make microorganisms deactivate. Therefore, scientists research on combining organic or inorganic materials with cells in order to enhance their adaptability toward environmental stress.
Metal organic frameworks (MOFs) have variable pore properties, specific surface area, chemical stability. Scientists can adjust these properties by changing the precursors to fit their purpose. Therefore, the development of biocomposites by combinig Metal-organic frameworks and living systems is rapidly emerging.
In this study, we successfully synthesized two kinds of biocomposites, Escherichia coli (E. coli) cells was encapsulated into single crystal zeolitic imidazolate framework-90 (ZIF-90) or been coating by zeolitic imidazolate framework-8 (ZIF-8). After these combinations, E. coli gains the ability to survive the treatment of heat. E. coli can still regrowth after removing the material. At the same time, we studied whether these E. coli biocomposites will determine the activation of macrophages. The induced expression of inflammatory cytokines was evaluated using a mouse inflammation antibody array. E. coli@ZIF-90 significantly prevented the release of inflammatory mediators from E. coli compared to free E. coli and E. coli⊂ZIF-8.
On the other hand, ZIF-90 also had the incredible performance on being a delivery carrier. We found out the bacteria phagocytosis was observed though the incubation with E. coli@ZIF-90 in pH 6.0 culture media, simulated the environments of the cancer cells compared to E. coli@ZIF-90 were no decomposed in pH 7.0 media. This study may pave the new way in the history of bacterial cancer therapy and hope this study will be the “carrier” in bacterial cancer therapy.
關鍵字(中) ★ 類沸石咪唑骨架材料
★ 大腸桿菌
★ 細菌免疫療法
★ 微生物封裝
關鍵字(英) ★ E. coli
★ ZIF-90
★ ZIF-8
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1 金屬有機骨架材料 1
1-1-2 類沸石咪唑骨架材料 3
1-1-3 類沸石咪唑骨架材料-8/-90 5
1-2 微生物 6
1-2-1 微生物 6
1-2-2 大腸桿菌 (Escherichia coli, E. coli) 6
1-2-3 質體 (Plasmid) 7
1-2-4 細菌癌症療法 (Bacterial Cancer Therapy) 8
1-3 研究動機與目的 11
第二章 實驗 13
2-1 實驗藥品及材料 13
2-2 實驗儀器 15
2-2-1 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope, FE-SEM) 16
2-2-2 X射線粉末繞射儀 (Power X-ray Diffractometer, PXRD) 17
2-2-4 攜帶式分光光度計 (Ultrospec 10 cell Density Meter) 18
2-2-5 螢光顯微鏡 (Fluorescence Microscopy) 18
2-3 實驗使用之酵素 20
2-3-1 溶菌酶 (Lysozyme) 20
2-3-2 蛋白酶 (Protease) 20
2-4 實驗步驟 21
2-4-1 大腸桿菌之培養步驟 21
2-4-2 奈米級類沸石咪唑骨架材料-8塗層之大腸桿菌 (E. coli⊂ZIF-8) 之合成步驟 22
2-4-3 微米級類沸石咪唑骨架材料-90封裝之大腸桿菌 (E. coli@ZIF-90) 之合成步驟 22
2-4-4 類沸石咪唑骨架材料-8/-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 抵禦抗生素之能力測試實驗步驟 23
2-4-5 類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 耐熱能力測試之實驗步驟 23
2-4-6 類沸石咪唑骨架材料-8封裝大腸桿菌 (E. coli⊂ZIF-8) 耐熱能力測試之實驗步驟 24
2-4-7 大腸桿菌 (E. coli) 耐熱能力測試之實驗步驟 24
2-4-8 單批微米級類沸石咪唑骨架材料-90封裝之大腸桿菌 (E. coli@ZIF-90)含有之活體E.coli數量測定 24
2-4-9 奈米級類沸石咪唑骨架材料-90合成步驟 25
2-4-10 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌 (E. coli⊂nano ZIF-90) 之合成步驟 25
2-4-11 奈米級類沸石咪唑骨架材料-90塗層之大腸桿菌再次結晶實驗之相關步驟 26
2-4-12 奈米級類沸石咪唑骨架材料-90包覆順鉑 (Cisplatin@nano ZIF-90) 之合成步驟 26
2-4-13 奈米級類沸石咪唑骨架材料-90包覆順鉑塗層之大腸桿菌 (E. coli ⊂ Cisplatin@nano ZIF-90) 之合成步驟 26
2-4-14 奈米級類沸石咪唑骨架材料-90包覆順鉑塗層之大腸桿菌再次結晶實驗之相關步驟 27
第三章 結果與討論 28
3-1 大腸桿菌生物複合材料之相關鑑定 28
3-1-1 X射線粉末繞射儀的鑑定結果 28
3-1-2 場發掃描式電子顯微鏡之成像結果 31
3-1-3 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌/微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 之抗生素耐受活性測試 33
3-1-4 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌/微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 之耐熱能力測試 35
3-1-5 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌/微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli⊂ZIF-8/E. coli@ZIF-90) 發炎反應測試 36
3-1-6微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 與巨噬細胞 Raw 264.7之吞噬作用測試 38
第四章 結論 40
參考文獻 41


圖目錄
圖 1- 1常見之MOFs的方式17 2
圖 1- 2高通量合成 2
圖 1- 3 (1) 類沸石咪唑骨架材料 ; (2) 天然沸石 3
圖 1- 4 Yaghi團隊於2008年發表之ZIFs結構 4
圖 1- 5 大腸桿菌示意圖 7
圖 1- 6 pET-28a 質體示意圖38 8
圖 1- 7 細菌癌症療法示意圖55 10

圖 2- 1 掃描式電子顯微鏡構造示意圖56 16
圖 2- 2 布拉格定律38 17
圖 2- 3 螢光顯微鏡之光路示意圖57 19

圖 3- 1 E. coli⊂ZIF-8、E. coli@ZIF-90之PXRD圖 28
圖 3- 2 nano ZIF-90之PXRD圖 29
圖 3- 3 E. coli⊂nano ZIF-90之PXRD圖 29
圖 3- 4 透過再次結晶所得之E. coli@ZIF-90之PXRD圖 30
圖 3- 5 E. coli@ZIF-90之掃描式電子顯微鏡影像 31
圖 3- 6 E. coli⊂ZIF-8之掃描式電子顯微鏡影像 32
圖 3- 7 E. coli⊂nano ZIF-90之掃描式電子顯微鏡影像 33
圖 3- 8 大腸桿菌於不同封裝方式下氨苄青黴素耐受性之測試 34
圖 3- 9 大腸桿菌於60度環境下耐熱能力之測試 35
圖 3- 10 大腸桿菌於不同狀況下誘發各種細胞激素生成之相對濃度長條圖 37
圖 3- 11大腸桿菌於不同狀況下誘發(a)IL-6及(b)TNF-α生成之濃度長條圖 37
圖 3- 12 E. coli@ZIF-90於不同環境中培養釋放大腸桿菌誘發巨噬細胞的吞噬作用之螢光顯微鏡影像 39

表目錄
表 2- 1 實驗藥品及材料 13
表 2- 2 實驗儀器 15
參考文獻 1. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
2. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715.
3. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
5. Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D., Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 2017, 29 (7), 2618-2625.
6. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
7. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
8. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
9. Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B., Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
10. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
11. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157.
12. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808.
13. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
14. Zhou, J.; Wang, B., Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945.
15. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
17. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
18. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
19. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
20. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
21. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
22. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
23. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
24. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186.
25. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
26. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 2008, 319 (5865), 939.
27. Bhattacharjee, S.; Jang, M.-S.; Kwon, H.-J.; Ahn, W.-S., Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications. Catalysis Surveys from Asia 2014, 18 (4), 101-127.
28. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277.
29. Dai, Y.; Johnson, J. R.; Karvan, O.; Sholl, D. S.; Koros, W. J., Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science 2012, 401-402, 76-82.
30. Xue, W.; Zhou, Q.; Li, F.; Ondon, B. S., Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. Journal of Power Sources 2019, 423, 9-17.
31. Matatagui, D.; Sainz-Vidal, A.; Gràcia, I.; Figueras, E.; Cané, C.; Saniger, J. M., Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensors and Actuators B: Chemical 2018, 274, 601-608.
32. Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions 2012, 41 (23), 6906-6909.
33. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
34. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the American Chemical Society 2020, 142 (11), 5177-5183.
35. van Leewenhoeck, A., Observations, Communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch Letter of the 9th of Octob. 1676. Here English′d: concerning Little Animals by Him Observed in Rain-Well-Sea. and Snow Water; as Also in Water Wherein Pepper Had Lain Infused. Philosophical Transactions (1665-1678) 1677, 12, 821-831.
36. Escherich, T., Klinisch-therapeutische beobachtungen aus der cholera-epidemie in Neapel. Mun Med Wochenschrift 1884, 31, 561-4.
37. Sezonov, G.; Joseleau-Petit, D.; Ari, R., Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746.
38. Addgene Depositor Full Sequence Map for pET28:GFP.
39. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-158.
40. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences 2001, 98 (26), 15155.
41. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnology and Bioengineering 2006, 94 (4), 710-721.
42. Leschner, S.; Westphal, K.; Dietrich, N.; Viegas, N.; Jablonska, J.; Lyszkiewicz, M.; Lienenklaus, S.; Falk, W.; Gekara, N.; Loessner, H.; Weiss, S., Tumor Invasion of Salmonella enterica Serovar Typhimurium Is Accompanied by Strong Hemorrhage Promoted by TNF-α. PLOS ONE 2009, 4 (8), e6692.
43. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Research 1989, 49 (23), 6449.
44. Middlebrook, J. L.; Dorland, R. B., Bacterial toxins: cellular mechanisms of action. Microbiol Rev 1984, 48 (3), 199-221.
45. Lee, C. H.; Lin, S. T.; Liu, J. J.; Chang, W. W.; Hsieh, J. L.; Wang, W. K., Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Therapy 2014, 21 (3), 309-316.
46. Sznol, M.; Lin, S. L.; Bermudes, D.; Zheng, L. M.; King, I., Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000, 105 (8), 1027-1030.
47. Phan, T. X.; Nguyen, V. H.; Duong, M. T.-Q.; Hong, Y.; Choy, H. E.; Min, J.-J., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiology and Immunology 2015, 59 (11), 664-675.
48. Sfondrini, L.; Rossini, A.; Besusso, D.; Merlo, A.; Tagliabue, E.; Mènard, S.; Balsari, A., Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer. The Journal of Immunology 2006, 176 (11), 6624.
49. Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M., Bacteria-Induced Gap Junctions in Tumors Favor Antigen Cross-Presentation and Antitumor Immunity. Science Translational Medicine 2010, 2 (44), 44ra57.
50. Flentie, K.; Kocher, B.; Gammon, S. T.; Novack, D. V.; McKinney, J. S.; Piwnica-Worms, D., A Bioluminescent Transposon Reporter-Trap Identifies Tumor-Specific Microenvironment-Induced Promoters in <em>Salmonella</em> for Conditional Bacterial-Based Tumor Therapy. Cancer Discovery 2012, 2 (7), 624.
51. Jiang, S.-N.; Park, S.-H.; Lee, H. J.; Zheng, J. H.; Kim, H.-S.; Bom, H.-S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S.-C.; Ntziachristos, V.; Choy, H. E.; Min, J.-J., Engineering of Bacteria for the Visualization of Targeted Delivery of a Cytolytic Anticancer Agent. Molecular Therapy 2013, 21 (11), 1985-1995.
52. Guan, G.-f.; Zhao, M.; Liu, L.-m.; Jin, C.-s.; Sun, K.; Zhang, D.-j.; Yu, D.-j.; Cao, H.-w.; Lu, Y. q.; Wen, L.-j., Salmonella typhimurium Mediated Delivery of Apoptin in Human Laryngeal Cancer. International Journal of Medical Sciences 2013, 10 (12), 1639-1648.
53. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant Escherichia coli Expressing Invasin Targets the Peyer′s Patches: the Basis for a Bacterial Formulation for Oral Vaccination. Molecular Therapy 2006, 14 (2), 183-191.
54. Cunningham, C.; Nemunaitis, J., A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Human gene therapy 2001, 12 12, 1594-6.
55. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor‑targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014, 8 (6), 2359-2366.
56. Kudryavtsev, A.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Piat, N., Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31.
57. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
58. Handbook of Detection of Enzymes on Electrophoretic Gels, Second Edition By Gennady P. Manchenko (Institute of Marine Biology, Russian Academy of Science). CRC Press LLC:  Boca Raton. 2003. . Journal of the American Chemical Society 2003, 125 (33), 10145-10145.
59. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances 2014, 4 (95), 52883-52886.
60. Zabel, U.; Schreck, R.; Baeuerle, P. A., DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. Journal of Biological Chemistry 1991, 266 (1), 252-260.
61. Billack, B., Macrophage activation: role of toll-like receptors, nitric oxide, and nuclear factor kappa B. Am J Pharm Educ 2006, 70 (5), 102-102.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明