博碩士論文 109324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.15.225.164
姓名 許志維(Zu-Wei Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Li7La3Zr2O12與多壁奈米碳管填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯之複合型固態電解質應用研究
(Applications of Li7La3Zr2O12 and Multi-walled Carbon Nanotubes Fillers in Poly (vinylidene fluoride)-hexafluoropropene/ Poly (propylene carbonate) Composite Electrolyte Solid-State Lithium Batteries)
相關論文
★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料★ 固相反應法製備固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 矽烷基偶合劑表面修飾策略以提高聚偏乙烯-六氟丙烯/聚碳酸亞丙酯高分子系統與鋰鑭鋯鋁氧化物無機粉末界面兼容性之鋰金屬電池應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 本研究內容中主要以聚偏氟乙烯-六氟丙烯共聚物(Poly (vinylidene fluoride)-hexafluoropropylene,PVDF-HFP)為高分子主體,並利用聚碳酸亞丙酯(Poly (propylene carbonate),PPC)進行混摻,雙層式高分子層間再配合添加微量的離子液體,並加入參雜不同金屬之Li7La3Zr2O12 (LLZO)以及多壁奈米碳管(MWCNTs)形成複合型類固態電解質,探討高分子中加入奈米填料對於材料以及電化學性質的影響。本研究中製備的複合型固態電解質,除了能有效抑制系統結晶程度,進而提供鋰離子有更多之運動空間,也能結合PVDF-HFP與PPC高分子的優點來提升其電化學表現。由實驗結果得知高分子主體PVDF-HFP摻入適量的PPC交聯後,並搭配應用在NMC-811正極系統時,於室溫25 °C下有優異的電化學表現:低速比放電容量(191.40 mAh/g @ 25 mA/g)、高速比放電容量(100.56 mAh/g @ 300 mA/g)、高離子導通率(5.74×10-4 S/cm);接續下來之研究實驗得到高分子固態電解質中添加不同含量之多壁奈米碳管(MWCNTs),對於整體固態電解質電性表現上確實也有明顯提升,由結果可得知當1 wt.% MWCNTs添加有最佳電性表現:低速比電容量(198.18 mAh/g @ 25 mA/g)高速比電容量(110.90 mAh/g @ 300 mA/g)、高離子導通率(7.39×10-4 S/cm)。另一部分之研究實驗得到高分子固態電解質中添加不同參雜條件之LLZO粉末,對於整體固態電解質電性表現上確實有明顯提升,藉由此複合性固態電解質討論於一次燒結條件下(900 ℃,10小時)之不同過量添加碳酸鋰添加量之LLZO參雜Ga(LLZGO)的差異,可發現當10 wt.% 過量鋰添加有最佳電性表現:低速比電容量(209.62 mAh/g @ 25 mA/g)、高速比電容量(119.81 mAh/g @ 300 mA/g)、高離子導通率(7.02×10-4 S/cm);最後一部分之研究實驗一樣藉由此複合性固態電解質中加入LLZO共參雜0.25Ga與不同參雜量的Ce,可發現LLZO共參雜0.25Ga與不同參雜量的Ce當有最佳電性表現:低速比電容量 (208.10 mAh/g @ 25 mA/g)、高速比電容量(144.15 mAh/g @ 300 mA/g)、高離子導通率(1.38×10-3 S/cm)。本研究中不同填充物添加之固態電解質於電性上有明顯提升,進階證實了PVDF-HFP混摻PPC之改質並添加適量LLZO以及MWCNTs有助於固態電解質於未來之應用。
摘要(英) In this research, PVDF-HFP was used as the main polymer, and PPC was mixed to tune the properties of the solid electrolyte. MWCNT, Li6.25La3Zr2Ga0.25O12 (LLZGO) or Li6.25La3Zr1.7Ga0.25Ce0.2O12 (LLZGCO) were added as the inorganic filler to form a composite solid-state electrolyte. We want to study effects of nanofillers on electrochemical properties.The composite solid electrolyte prepared in this study can not only effectively suppress the crystallinity of the system, thereby providing more movement space for lithium ions, but also take advantage of the two polymers to improve the chemical potential window and the lithium ion conductivity.
In the first part of experiment, it was found that adding different contents of multi-walled carbon nanotubes (MWCNTs) into the polymer solid electrolyte significantly improve the electrical performance of the overall solid electrolyte. It can be seen from the results that the best electrochemical performance is obtained when 1wt.% MWCNT is added:specific capacity of 198.18 mAh/g @ 25mA/g, and ionic conductivity of 7.39×10-4 S/cm. The experimental results are better than pure PVDF-HFP/PPC solid polymer electrolyte.
In the second part of experiment, LLZGO powder were added as the inorganic filler. It was found that LLZGO powder with the different doping condition has improved the electrical performance of the overall solid electrolyte. It can be found that when 10wt.% excess lithium was added, ,the cell shows the best electrochemical performance : specific capacity of 209.62 mAh/g @ 25mA/g & 119.81 mAh/g @ 300 mA/g ,and ionic conductivity of 7.02×10-4 S/cm. The experimental results are better than pure PVDF-HFP/PPC solid polymer electrolyte.
In the final part of the research, LLZGCO powder were added as the inorganic filler. It was found that LLZO powder with the different doping condition has improved the electrical performance of the overall solid electrolyte. It can be found that when 10wt.% excess lithium is added ,it has the best electrochemical performance : specific capacity of 208.10 mAh/g @ 25mA/g & 144.15 mAh/g @ 300 mA/g ,and ionic conductivity of 1.38×10-3 S/cm. The experimental results are better than pure PVDF-HFP/PPC solid polymer electrolyte.
In this study, the electrical properties of the solid electrolytes are significantly improved due to inorganic fillers. It is further confirmed that the modification of PVDF-HFP mixed with PPC and the addition of appropriate amounts of MWCNT, LLZGCO and LLZO were helpful for the future application of solid electrolytes.
關鍵字(中) ★ 複合型固態電解質
★ 多壁奈米碳管
★ 聚偏氟乙烯-六氟丙烯共聚物
★ 聚碳酸亞丙酯
關鍵字(英) ★ Li7La3Zr2O12
論文目次 摘要 i
Astract iii
目錄 6
圖目錄 9
表目錄 13
第一章 緒論 14
1-1 前言: 14
1-2 研究動機: 16
第二章 文獻回顧 19
2-1 無機陶瓷固態電解質Li7La3Zr2O12(LLZO)介紹: 19
2-2 Garnet結構-Li7La3Zr2O12: 22
2-3 Li7La3Zr2O12電解質的製備: 27
2-4 Li7La3Zr2O12中的鋰離子傳遞機制: 29
2-5 Li7La3Zr2O12之優化-元素摻雜: 31
2-6 高分子固態電解質: 41
2-7 複合型固態電解質: 52
2-8 碳材應用於複合式電解質應用: 56
第三章 實驗方法 62
3-1 實驗藥品 62
3-2 實驗設備 63
3-3 實驗步驟 64
3-3-1 Li7La3Zr2O12與不同金屬摻雜之Li7La3Zr2O12製備 64
3-3-2 高分子固態電解質層製備 64
3-3-3 複合型固態電解質層製備 65
3-3-4 複合電極製備 66
3-3-5 離子液體配置 66
3-3-6 鈕扣電池組裝 67
3-4 材料分析與鑑定 68
3-4-1 粉末X光繞射儀 (Powder X-ray diffraction, PXRD): 68
3-4-2 冷場發射掃描式電子顯微鏡(The field-emission scanning electron microscope, FE-SEM): 68
3-4-3 能量散射X射線譜(Energy-dispersive X-ray spectroscopy,EDS): 68
3-4-4 熱重分析 (Thermogravimetric analysis, TGA): 68
3-4-5 感應耦合電漿放射光譜儀(ICP-OES): 68
3-4-6 拉伸測試(Tensile testing): 69
3-4-7動態光散射粒徑分析儀(Dynamic Light Scattering, DLS): 69
3-5 電化學性質分析與鑑定: 70
3-5-1 計時電位法 (Chronopotentimetry) 70
3-5-2 交流阻抗 (Electrochemical impedance spectroscopy): 70
3-5-3 循環壽命測試 (The Cycling performance): 70
第四章 結果與討論 71
4-1添加不同含量的多壁奈米碳管(MWCNTs)對於電池性能之影響應用於LiNi0.8Co0.1Mn0.1O2對於電池性能之影響: 72
4-1-1 LiNi0.8Co0.1Mn0.1O2分析與鑑定: 72
4-1-2 SEM表面形貌分析: 74
4-1-3 EDS元素分佈分析: 77
4-1-4 TGA熱穩定性分析: 79
4-1-5拉伸測試: 82
4-1-6定電流充放電分析: 86
4-1-7交流阻抗分析: 93
4-1-8交流阻抗分析: 96
4-2複合式固態電解質PVDF-HFP/PPC內含不同額外鋰添加LLZGO應用對於電池性能之影響: 98
4-2-1 氧化物陶瓷LLZGO粉末之合成分析與鑑定: 98
4-2-2 ICP-OES定量分析: 102
4-2-3 SEM表面形貌分析: 104
4-2-4 EDS元素分佈分析: 106
4-2-5定電流充放電分析: 110
4-2-6交流阻抗分析: 117
4-2-7 循環壽命分析: 120
4-3 0.25Ga與不同Ce參雜量之共參雜LLZO對於電池性能之影響: 122
4-3-1氧化物陶瓷LLZGCO粉末之合成分析與鑑定: 123
4-3-2 ICP-OES定量分析: 126
4-3-3 SEM表面形貌分析: 128
4-3-4 EDS元素分佈分析: 131
4-3-5定電流充放電分析: 142
4-3-6交流阻抗分析: 151
4-3-7循環壽命分析: 154
第五章 結論與未來展望 157
第六章 附錄 159
參考文獻 1. Gao, X.-P.; Yang, H.-X., Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science 2010, 3 (2), 174-189.
2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9).
3. Golubkov, A. W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V., Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge. Rsc Advances 2015, 5 (70), 57171-57186.
4. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
5. Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y., Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials 2018, 8 (11), 1702657.
6. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science 2020, 7 (5), 1903088.
7. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
8. He, X.; Zhu, Y.; Mo, Y., Origin of fast ion diffusion in super-ionic conductors. Nature communications 2017, 8 (1), 1-7.
9. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
10. Karabelli, D.; Birke, K. P.; Weeber, M., A performance and cost overview of selected solid-state electrolytes: Race between polymer electrolytes and inorganic sulfide electrolytes. Batteries 2021, 7 (1), 18.
11. Zhu, Y.; He, X.; Mo, Y., First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (9), 3253-3266.
12. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
13. Li, Y.; Han, J.-T.; Wang, C.-A.; Xie, H.; Goodenough, J. B., Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry 2012, 22 (30), 15357-15361.
14. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry 2011, 50 (3), 1089-1097.
15. Raju, M. M.; Altayran, F.; Johnson, M.; Wang, D.; Zhang, Q., Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview. Electrochem 2021, 2 (3), 390-414.
16. Bernstein, N.; Johannes, M.; Hoang, K., Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Physical review letters 2012, 109 (20), 205702.
17. Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials 2016, 28 (1), 197-206.
18. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry 2009, 182 (8), 2046-2052.
19. Han, J.; Zhu, J.; Li, Y.; Yu, X.; Wang, S.; Wu, G.; Xie, H.; Vogel, S. C.; Izumi, F.; Momma, K., Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12. Chemical Communications 2012, 48 (79), 9840-9842.
20. Wagner, R.; Redhammer, G. n. J.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, M.; Amthauer, G., Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials 2016, 28 (6), 1861-1871.
21. Matsuki, Y.; Noi, K.; Suzuki, K.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Microstructure and conductivity of Al-substituted Li7La3Zr2O12 ceramics with different grain sizes. Solid State Ionics 2019, 342, 115047.
22. Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society 2017, 100 (7), 2832-2839.
23. Li, Y.; Yang, T.; Wu, W.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G., Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 2018, 24 (11), 3305-3315.
24. Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power sources 2014, 248, 642-646.
25. El-Shinawi, H.; Paterson, G. W.; MacLaren, D. A.; Cussen, E. J.; Corr, S. A., Low-temperature densification of Al-doped Li 7 La 3 Zr 2 O 12: a reliable and controllable synthesis of fast-ion conducting garnets. Journal of Materials Chemistry A 2017, 5 (1), 319-329.
26. Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V., A bird′s-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science 2019, 12 (10), 2957-2975.
27. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
28. Bernuy-Lopez, C.; Manalastas Jr, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A., Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of materials 2014, 26 (12), 3610-3617.
29. Wu, J.-F.; Chen, E.-Y.; Yu, Y.; Liu, L.; Wu, Y.; Pang, W. K.; Peterson, V. K.; Guo, X., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces 2017, 9 (2), 1542-1552.
30. Shen, L.; Wang, L.; Wang, Z.; Jin, C.; Peng, L.; Pan, X.; Sun, J.; Yang, R., Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ionics 2019, 339, 114992.
31. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J., The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7− xLa3− xAxZr2O12 garnet-based ceramic electrolyte. Journal of Power Sources 2013, 230, 261-266.
32. Dong, B.; Yeandel, S. R.; Goddard, P.; Slater, P. R., Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chemistry of Materials 2019, 32 (1), 215-223.
33. Mori, D.; Sugimoto, K.; Matsuda, Y.; Ohmori, K.; Katsumata, T.; Taminato, S.; Takeda, Y.; Yamamoto, O.; Imanishi, N., Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6. 25+ xGa0. 25La3-xSrxZr2O12. Journal of the Electrochemical Society 2018, 166 (3), A5168.
34. Wright, P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal 1975, 7 (5), 319-327.
35. Armand, M., The history of polymer electrolytes. Solid State Ionics 1994, 69 (3-4), 309-319.
36. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
37. Savoie, B. M.; Webb, M. A.; Miller III, T. F., Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. The journal of physical chemistry letters 2017, 8 (3), 641-646.
38. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry 2019, 7, 522.
39. White, R. P.; Lipson, J. E., Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49 (11), 3987-4007.
40. Golodnitsky, D.; Strauss, E.; Peled, E.; Greenbaum, S., On order and disorder in polymer electrolytes. Journal of The Electrochemical Society 2015, 162 (14), A2551.
41. Meyer, W. H., Polymer electrolytes for lithium‐ion batteries. Advanced materials 1998, 10 (6), 439-448.
42. Wen, J.; Zhao, Q.; Jiang, X.; Ji, G.; Wang, R.; Lu, G.; Long, J.; Hu, N.; Xu, C., Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS Applied Energy Materials 2021, 4 (4), 3660-3669.
43. Liu, W.; Zhang, X.; Wu, F.; Xiang, Y. In A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries, IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2017; p 012036.
44. Zhang, Y.; Yang, B.; Li, K.; Hou, D.; Zhao, C.; Wang, J., Electrospun porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances 2017, 7 (89), 56183-56193.
45. Barbosa, J. C.; Dias, J. P.; Lanceros-Méndez, S.; Costa, C. M., Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 2018, 8 (3), 45.
46. Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjö, Å., Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer 2001, 42 (4), 1407-1416.
47. Wang, X.; Xiao, C.; Liu, H.; Huang, Q.; Fu, H., Fabrication and properties of PVDF and PVDF‐HFP microfiltration membranes. Journal of Applied Polymer Science 2018, 135 (40), 46711.
48. Ahmad, A.; Farooqui, U.; Hamid, N., Effect of graphene oxide (GO) on Poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) polymer electrolyte membrane. Polymer 2018, 142, 330-336.
49. Wang, C.; Zhang, H.; Li, J.; Chai, J.; Dong, S.; Cui, G., The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources 2018, 397, 157-161.
50. Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D., At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. Journal of Materials Chemistry A 2015, 3 (26), 13994-14000.
51. Cherian, B. M.; Leão, A. L.; de Souza, S. F.; Costa, L. M. M.; de Olyveira, G. M.; Kottaisamy, M.; Nagarajan, E.; Thomas, S., Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 2011, 86 (4), 1790-1798.
52. Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z., Fabrication and characterization of PEO/PPC polymer electrolyte for lithium‐ion battery. Journal of applied polymer science 2010, 115 (5), 2718-2722.
53. Liang, Y.; Xia, Y.; Zhang, S.; Wang, X.; Xia, X.; Gu, C.; Wu, J.; Tu, J., A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta 2019, 296, 1064-1069.
54. Luo, K.; Yi, L.; Chen, X.; Yang, L.; Zou, C.; Tao, X.; Li, H.; Wu, T.; Wang, X., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Journal of Electroanalytical Chemistry 2021, 895, 115462.
55. Zheng, J.; Hu, Y.-Y., New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces 2018, 10 (4), 4113-4120.
56. Li, Z.; Huang, H.-M.; Zhu, J.-K.; Wu, J.-F.; Yang, H.; Wei, L.; Guo, X., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS applied materials & interfaces 2018, 11 (1), 784-791.
57. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8 (1), 1-12.
58. Capuano, F.; Croce, F.; Scrosati, B., Composite polymer electrolytes. Journal of the Electrochemical Society 1991, 138 (7), 1918.
59. Wang, Y.-J.; Pan, Y.; Wang, L.; Pang, M.-J.; Chen, L., Conductivity studies of plasticized PEO-Lithium chlorate–FIC filler composite polymer electrolytes. Materials Letters 2005, 59 (24-25), 3021-3026.
60. Yuan, M.; Erdman, J.; Tang, C.; Ardebili, H., High performance solid polymer electrolyte with graphene oxide nanosheets. Rsc Advances 2014, 4 (103), 59637-59642.
61. Ibrahim, S.; Yasin, S. M. M.; Ng, M. N.; Ahmad, R.; Johan, M. R., Impedance spectroscopy of carbon nanotube/solid polymer electrolyte composites. Solid state communications 2011, 151 (23), 1828-1832.
62. Ahn, J.-H.; Kim, Y.-J.; Wang, G., Electrochemical properties of carbon nanotube-dispersed PEO-LiX electrolytes. Metals and materials international 2006, 12 (1), 69-73.
63. Liu, Y.-L., Development of Li1.5Al0.5Ti1.5(PO4)3 and Poly (vinylidene fluoride)-hexafluoropropene/Poly (methyl methacrylate) Composite Electrolyte for Quasi-Solid-State Lithium Batteries. 2020.
64. Thompson, T.; Wolfenstine, J.; Allen, J. L.; Johannes, M.; Huq, A.; David, I. N.; Sakamoto, J., Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A 2014, 2 (33), 13431-13436.
65. Singh, V. K.; Singh, R. K., Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. Journal of Materials Chemistry C 2015, 3 (28), 7305-7318.
66. Ma, X.; Yu, J.; Wang, N., Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics 2006, 44 (1), 94-101.
67. Keller, M.; Varzi, A.; Passerini, S., Hybrid electrolytes for lithium metal batteries. Journal of Power Sources 2018, 392, 206-225.
68. Chen, S.; Zhao, Y.; Yang, J.; Yao, L.; Xu, X., Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 2017, 23 (10), 2603-2611.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2022-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明