參考文獻 |
1. Gao, X.-P.; Yang, H.-X., Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science 2010, 3 (2), 174-189.
2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9).
3. Golubkov, A. W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V., Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge. Rsc Advances 2015, 5 (70), 57171-57186.
4. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
5. Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y., Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials 2018, 8 (11), 1702657.
6. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science 2020, 7 (5), 1903088.
7. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
8. He, X.; Zhu, Y.; Mo, Y., Origin of fast ion diffusion in super-ionic conductors. Nature communications 2017, 8 (1), 1-7.
9. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
10. Karabelli, D.; Birke, K. P.; Weeber, M., A performance and cost overview of selected solid-state electrolytes: Race between polymer electrolytes and inorganic sulfide electrolytes. Batteries 2021, 7 (1), 18.
11. Zhu, Y.; He, X.; Mo, Y., First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (9), 3253-3266.
12. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
13. Li, Y.; Han, J.-T.; Wang, C.-A.; Xie, H.; Goodenough, J. B., Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry 2012, 22 (30), 15357-15361.
14. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry 2011, 50 (3), 1089-1097.
15. Raju, M. M.; Altayran, F.; Johnson, M.; Wang, D.; Zhang, Q., Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview. Electrochem 2021, 2 (3), 390-414.
16. Bernstein, N.; Johannes, M.; Hoang, K., Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Physical review letters 2012, 109 (20), 205702.
17. Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials 2016, 28 (1), 197-206.
18. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry 2009, 182 (8), 2046-2052.
19. Han, J.; Zhu, J.; Li, Y.; Yu, X.; Wang, S.; Wu, G.; Xie, H.; Vogel, S. C.; Izumi, F.; Momma, K., Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12. Chemical Communications 2012, 48 (79), 9840-9842.
20. Wagner, R.; Redhammer, G. n. J.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, M.; Amthauer, G., Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials 2016, 28 (6), 1861-1871.
21. Matsuki, Y.; Noi, K.; Suzuki, K.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Microstructure and conductivity of Al-substituted Li7La3Zr2O12 ceramics with different grain sizes. Solid State Ionics 2019, 342, 115047.
22. Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society 2017, 100 (7), 2832-2839.
23. Li, Y.; Yang, T.; Wu, W.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G., Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 2018, 24 (11), 3305-3315.
24. Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power sources 2014, 248, 642-646.
25. El-Shinawi, H.; Paterson, G. W.; MacLaren, D. A.; Cussen, E. J.; Corr, S. A., Low-temperature densification of Al-doped Li 7 La 3 Zr 2 O 12: a reliable and controllable synthesis of fast-ion conducting garnets. Journal of Materials Chemistry A 2017, 5 (1), 319-329.
26. Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V., A bird′s-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science 2019, 12 (10), 2957-2975.
27. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
28. Bernuy-Lopez, C.; Manalastas Jr, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A., Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of materials 2014, 26 (12), 3610-3617.
29. Wu, J.-F.; Chen, E.-Y.; Yu, Y.; Liu, L.; Wu, Y.; Pang, W. K.; Peterson, V. K.; Guo, X., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces 2017, 9 (2), 1542-1552.
30. Shen, L.; Wang, L.; Wang, Z.; Jin, C.; Peng, L.; Pan, X.; Sun, J.; Yang, R., Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ionics 2019, 339, 114992.
31. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J., The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7− xLa3− xAxZr2O12 garnet-based ceramic electrolyte. Journal of Power Sources 2013, 230, 261-266.
32. Dong, B.; Yeandel, S. R.; Goddard, P.; Slater, P. R., Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chemistry of Materials 2019, 32 (1), 215-223.
33. Mori, D.; Sugimoto, K.; Matsuda, Y.; Ohmori, K.; Katsumata, T.; Taminato, S.; Takeda, Y.; Yamamoto, O.; Imanishi, N., Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6. 25+ xGa0. 25La3-xSrxZr2O12. Journal of the Electrochemical Society 2018, 166 (3), A5168.
34. Wright, P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal 1975, 7 (5), 319-327.
35. Armand, M., The history of polymer electrolytes. Solid State Ionics 1994, 69 (3-4), 309-319.
36. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
37. Savoie, B. M.; Webb, M. A.; Miller III, T. F., Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. The journal of physical chemistry letters 2017, 8 (3), 641-646.
38. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry 2019, 7, 522.
39. White, R. P.; Lipson, J. E., Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49 (11), 3987-4007.
40. Golodnitsky, D.; Strauss, E.; Peled, E.; Greenbaum, S., On order and disorder in polymer electrolytes. Journal of The Electrochemical Society 2015, 162 (14), A2551.
41. Meyer, W. H., Polymer electrolytes for lithium‐ion batteries. Advanced materials 1998, 10 (6), 439-448.
42. Wen, J.; Zhao, Q.; Jiang, X.; Ji, G.; Wang, R.; Lu, G.; Long, J.; Hu, N.; Xu, C., Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS Applied Energy Materials 2021, 4 (4), 3660-3669.
43. Liu, W.; Zhang, X.; Wu, F.; Xiang, Y. In A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries, IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2017; p 012036.
44. Zhang, Y.; Yang, B.; Li, K.; Hou, D.; Zhao, C.; Wang, J., Electrospun porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances 2017, 7 (89), 56183-56193.
45. Barbosa, J. C.; Dias, J. P.; Lanceros-Méndez, S.; Costa, C. M., Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 2018, 8 (3), 45.
46. Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjö, Å., Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer 2001, 42 (4), 1407-1416.
47. Wang, X.; Xiao, C.; Liu, H.; Huang, Q.; Fu, H., Fabrication and properties of PVDF and PVDF‐HFP microfiltration membranes. Journal of Applied Polymer Science 2018, 135 (40), 46711.
48. Ahmad, A.; Farooqui, U.; Hamid, N., Effect of graphene oxide (GO) on Poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) polymer electrolyte membrane. Polymer 2018, 142, 330-336.
49. Wang, C.; Zhang, H.; Li, J.; Chai, J.; Dong, S.; Cui, G., The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources 2018, 397, 157-161.
50. Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D., At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. Journal of Materials Chemistry A 2015, 3 (26), 13994-14000.
51. Cherian, B. M.; Leão, A. L.; de Souza, S. F.; Costa, L. M. M.; de Olyveira, G. M.; Kottaisamy, M.; Nagarajan, E.; Thomas, S., Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 2011, 86 (4), 1790-1798.
52. Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z., Fabrication and characterization of PEO/PPC polymer electrolyte for lithium‐ion battery. Journal of applied polymer science 2010, 115 (5), 2718-2722.
53. Liang, Y.; Xia, Y.; Zhang, S.; Wang, X.; Xia, X.; Gu, C.; Wu, J.; Tu, J., A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta 2019, 296, 1064-1069.
54. Luo, K.; Yi, L.; Chen, X.; Yang, L.; Zou, C.; Tao, X.; Li, H.; Wu, T.; Wang, X., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Journal of Electroanalytical Chemistry 2021, 895, 115462.
55. Zheng, J.; Hu, Y.-Y., New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces 2018, 10 (4), 4113-4120.
56. Li, Z.; Huang, H.-M.; Zhu, J.-K.; Wu, J.-F.; Yang, H.; Wei, L.; Guo, X., Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS applied materials & interfaces 2018, 11 (1), 784-791.
57. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8 (1), 1-12.
58. Capuano, F.; Croce, F.; Scrosati, B., Composite polymer electrolytes. Journal of the Electrochemical Society 1991, 138 (7), 1918.
59. Wang, Y.-J.; Pan, Y.; Wang, L.; Pang, M.-J.; Chen, L., Conductivity studies of plasticized PEO-Lithium chlorate–FIC filler composite polymer electrolytes. Materials Letters 2005, 59 (24-25), 3021-3026.
60. Yuan, M.; Erdman, J.; Tang, C.; Ardebili, H., High performance solid polymer electrolyte with graphene oxide nanosheets. Rsc Advances 2014, 4 (103), 59637-59642.
61. Ibrahim, S.; Yasin, S. M. M.; Ng, M. N.; Ahmad, R.; Johan, M. R., Impedance spectroscopy of carbon nanotube/solid polymer electrolyte composites. Solid state communications 2011, 151 (23), 1828-1832.
62. Ahn, J.-H.; Kim, Y.-J.; Wang, G., Electrochemical properties of carbon nanotube-dispersed PEO-LiX electrolytes. Metals and materials international 2006, 12 (1), 69-73.
63. Liu, Y.-L., Development of Li1.5Al0.5Ti1.5(PO4)3 and Poly (vinylidene fluoride)-hexafluoropropene/Poly (methyl methacrylate) Composite Electrolyte for Quasi-Solid-State Lithium Batteries. 2020.
64. Thompson, T.; Wolfenstine, J.; Allen, J. L.; Johannes, M.; Huq, A.; David, I. N.; Sakamoto, J., Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A 2014, 2 (33), 13431-13436.
65. Singh, V. K.; Singh, R. K., Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. Journal of Materials Chemistry C 2015, 3 (28), 7305-7318.
66. Ma, X.; Yu, J.; Wang, N., Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics 2006, 44 (1), 94-101.
67. Keller, M.; Varzi, A.; Passerini, S., Hybrid electrolytes for lithium metal batteries. Journal of Power Sources 2018, 392, 206-225.
68. Chen, S.; Zhao, Y.; Yang, J.; Yao, L.; Xu, X., Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 2017, 23 (10), 2603-2611. |