博碩士論文 109223004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.77.76
姓名 陳宣邑(Hsuan-Yi Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以機械力化學法快速合成蛋白質-金屬有機骨架材料
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 酵素具有促進生化反應、專一性反應及可調節性等性質,常見於食品、工業以及飼料的應用。然而酵素大多需要在溫和的環境下作用,所以對於較為嚴苛的產業應用條件,酵素需透過固定化以提高其穩定性,並提供回收再利用的可能性來降低成本。因此本實驗室在2015年首次開發類沸石咪唑骨架材料-90 (ZIF-90)包封過氧化氫酶(Catalase)的原位創新合成法(de novo approach),使酵素能在水相室溫的溫和環境下固定在生成的類沸石咪唑骨架材料中,在避免酵素展開而失活的同時,透過材料的孔洞使受質進入反應並防止蛋白質水解酶的作用,提供染整工業廢水的處理方法。後續,本實驗室在2019年以液體輔助機械力球磨法(Liquid‐Assisted Grinding Mechanochemistry)成功將酵素包封在ZIF-8、UiO-66-NH2和 Zn-MOF-74等有機金屬骨架材料中,在使用少量有機溶劑的前提下,保持酵素良好的生物活性,並提高合成的效率以及產量,提供有機金屬骨架包封酵素材料合成的另一種思維。因此,透過使用微量的溶劑在短時間合成大量生物性複合材料的液體輔助機械力球磨法,能有效的提升工業應用上的效益,賦予有機金屬骨架包封酵素材料更強的競爭力。
本篇論文成功的在液體輔助機械力球磨法的條件下,以更短的時間合成具有更高產率和良好酵素活性的ZIF-90包封過氧化氫酶材料。為了更進一步了解,酵素包覆以及晶體形成的關係,利用包封不同的酵素和改變合成環境的測試,提出可透過改變溶液pH值來調控酵素/奈米氧化鋅表面電位進而促使有機金屬骨架材料快速形成的理論,並提供一個可判斷Protein–Metal–organic Frameworks是否能生成的簡易方法。
摘要(英) With the properties of highly specific for their reactant and products as well as promoting biochemical reactions, enzymes are commonly used in food, industry, and feed applications. However, most enzymes need to work in a mild and water-based environment with displaying optimum catalytic rate. In order to improve their stability in harsh conditions and provide the possibility of recycling to reduce costs, enzyme immobilization is a good way to achieve. In 2015, our laboratory first developed a de novo approach to embed enzymes in zeolitic imidazolate framework-90 (ZIF-90), a sub group of Metal-organic Frameworks (MOFs). In this work, we successful demonstrated that the enzyme is able to be encapsulated inside of MOFs under the mild aqueous phase and at room temperature and meanwhile the obtained biocomposites can avoid damages from protenase, the proteolytic enzyme, due to shielding by ZIF apertures. Subsequently, we also successfully demonstrated enzymes encapsulating in MOFs such as ZIF-8, UiO-66-NH2, and Zn-MOF-74 by liquid-assisted grinding mechanochemistry. The MOF enzyme biocomposites can maintain the biological activity of enzymes and the protein encapsulation efficiency and product yield of synthesis are improved. This work represents a step toward the creation of a suite of biomolecule in-MOF composites for application in a variety of industrial processes.
In this work, we use liquid-assisted grinding mechanochemistry to synthesize CAT@ZIF-90 with high yield and showing good bioactivity. To further understand the relationship between enzyme encapsulation and crystal formation, a various of enzymes are used and the synthetic conditions are adjusted. Finally, the judgment of the Protein–Metal-organic Frameworks formation is clarified. Only if the zeta potential of the enzyme/metal ion is negative, the MOFs will be formed. Besides, adjusting the surface potential of the enzyme/metal ion by changing the pH value of the solution is proposed. Different from the known method, it can avoid enzymes from losing their activity by structural change. Through zetasizer to easily distinguish the possibility of enzyme assistance in MOFs construction, and adjust the condition by the buffer to reach the requirement. This brand new thought will not only provide a great chance to build MOFs which are hard to generate in aqueous solution but also encapsulate enzymes to have extra application.
關鍵字(中) ★ 金屬有機骨架材料
★ 液體輔助機械力球磨法
★ 類沸石咪唑骨架材料-90
★ 過氧化氫酶
關鍵字(英) ★ Metal–organic Frameworks
★ Liquid‐Assisted Grinding Mechanochemistry
★ Zeolitic Imidazolate Frameworks-90
★ Catalase
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第1章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 4
1-3 機械力化學法 6
1-4 酵素固定化 7
1-5 研究動機及目的 8
第2章 實驗部分 9
2-1 實驗藥品 9
2-2 實驗儀器 12
2-3 實驗儀器之原理 14
2-3-1 中量快速球磨機 (Mixer Mill) 14
2-3-2 X射線粉末繞射儀(X-ray powder diffractometer) 17
2-3-3 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope) 18
2-3-4 紫外光可見光分光光譜儀 (UV-Visible spectrophotometer) 19
2-3-5 界面電位分析儀 (Zeta Potential Analyzer) 20
2-3-6 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 22
2-4 酵素 24
2-4-1 脂解酶(Lipase, LIP) 24
2-4-2 脲酶( Urease, URE) 24
2-4-3 過氧化氫酶 (Catalase, CAT) 25
2-4-4 肌紅素(Myoglobin, MYO) 25
2-4-5 血紅素(Hemoglobin, HEM) 25
2-4-6 溶菌酶(Lysozyme, LYS) 26
2-4-7 蛋白酶(protease) 26
2-5 實驗步驟 27
2-5-1 機械力化學法合成Enzyme@ZIF-90 27
2-5-2 偵測材料中蛋白質濃度 28
2-5-3 酵素金屬有機骨架複合材料之蛋白質凝膠電泳分析 30
2-5-4 偵測過氧化氫酶活性之方法 32
2-5-5 偵測過氧化氫酶在蛋白酶K環境下之活性檢測 34
2-5-6 偵測酵素和酵素/金屬前驅物的表面電位 35
第3章 結果與討論 37
3-1 CAT@ZIF-90之鑑定與活性實驗 37
3-1-1 X射線粉末繞射圖譜分析 37
3-1-2 掃描式電子顯微鏡影像分析 40
3-1-3 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 41
3-1-4 CAT@ZIF-90合成條件及活性探討 42
3-2 酵素蛋白協助MOF生成之探討 46
第4章 結論與未來展望 53
第5章 參考文獻 54
參考文獻 1. Rowsell, J. L. C.; Yaghi, O. M., Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater 2004, 73, 3–14.
2. Zhao, X. S., Novel porous materials for emerging applications. Journal of Materials Chemistry 2006,16, 623-625.
3. Baumann, A. E.; Burns, D. A.; Liu, B.; Thoi V. S., Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry 2019, 2(86).
4. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703-706.
5. Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H., Metal–organic frameworks: Structures and functional applications. Materials Today 2019, 27, 43-68.
6. Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M. R., Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials (Basel, Switzerland) 2020, 13(12), 2881.
7. Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K., Porous materials for hydrogen storage. Chem 2022, 8(3), 693–716.
8. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chemical Reviews 2012, 112(2), 1196-1231.
9. Lia, S.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6, 1656-1683.
10. Bétard, A.; Fischer, R. A., Metal-organic framework thin films: from fundamentals to applications. Chemical Reviews 2012, 112(2), 1055-83.
11. Yang, J.; Yang, Y., Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846.
12. Khan, A., & Jawaid, A. M., & Asiri, A. M. A., & Ni, W., & Rahman, M. M. (2020). Metal-Organic Framework Nanocomposites. Boca Raton, Florida: CRC Press.
13. Hu, Z.; Kundu, T.; Wang, Y.; Sun, Y.; Zeng, K.; and Zhao, D., Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustainable Chemistry & Engineering 2020, 8(46), 17042-17053.
14. Bej, S.; Mandal, S.; Mondal, A.; Pal, T. K.; Banerjee, P., Solvothermal Synthesis of High-Performance d10-MOFs with Hydrogel Membranes @ “Turn-On” Monitoring of Formaldehyde in Solution and Vapor Phase. ACS Applied Materials & Interfaces 2021, 13(21), 25153-25163.
15. Klinowski, J.; Almeida Paz, F. A.; Silvab, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40(2), 321-330.
16. Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W.; Schröder, M., Metal–organic frameworks in seconds via selective microwave heating. Journal of Materials Chemistry A 2017, 5(16), 7333-7338.
17. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21(13), 2580-2582.
18. Al-Kutubi, H.; Gascon, J.; Sudholter, EJR.; Rassaei, L., Electrosynthesis of metal-organic frameworks: challenges and opportunities. ChemElectroChem 2015, 2(4), 462-474.
19. Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F., Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials 2010, 22(18), 5216-5221.
20. Huang, Y.; Lo, We.; Kuo, Y.; Chen, W.; Lin C. Shieh, F., Green and Rapid Synthesis of Zirconium Metal-organic Frameworks via Mechanochemistry: UiO-66 Analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53(43), 5818-5821.
21. Son, W.; Kim, J.; Kim, J.; Ahn, W., Sonochemical synthesis of MOF-5. Chemical Communications 2008, 47, 6336-6338.
22. Li, Z.; Qiu, L.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.; Jiang, X., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters 2009, 63(1), 78-80.
23. Shieh, F.; Wang, S.; Leo, S.; Wu, K. C.-W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry - A European Journal 2013, 34, 11139 – 11142.
24. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103(27), 10186.
25. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43(1), 58-67.
26. Wu, Hui.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129(17), 5314-5315.
27. Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angewandte Chemie 2012, 124 (42), 10703-10707.
28. Kuo, C.; Tang,Y.; Chou, L.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C., Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. Journal of the American Chemical Society 2012, 134(35), 14345-14348.
29. Huang, X.; Lin, Y.; Zhang, J.; Chen, X., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45(10), 1557-1559.
30. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M., Journal of the American Chemical Society 2008, 130(38), 12626-12627.
31. Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Yi., Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nature Communications 2021, 12, 4483.
32. Ying, P.; Yu, J.; Su, W., Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis & Catalysis 2022,363(5), 1246–1271.
33. T.sriwong, K.; Matsuda, T., Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis. Organic Process Research & Development 2022, ASAP.
34. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J,; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46, 3386-3401.
35. Shieh, F.; Wang, S.; Yen, C.; Wu, C.; Dutta, S.; Chou, L.; Morabito, J. V.; Hu, P.; Hsu, M.; Wu K. C.-W.; Tsung, C., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137(13), 4276-4279.
36. Liao, F.; Lo, W.; Hsu, Y.; Wu, C.; Wang, S.; Shieh, F.; Morabito, J. V.; Chou, L.; Wu, K. C.-W.; Tsung, C., Shielding Against Unfolding by Embedding Enzymes in Metal-Organic Frameworks via a de novo Approach. Journal of the American Chemical Society 2017, 139(19), 6530-6533.
37. Wei, T.; Wu, S.; Huang, Y.; Lo, W.; Williams, B. P.; Chen, S.; Yang, H.; Hsu, Y.; Lin, Z.; Chen, X.; Kuo, P.; Chou, L.; Tsung, C.; Shieh, F., Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications 2019, 10, 5002.
38. Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E. H.; Munnocha, A. L.; Marigo, M., Using Discrete Element method (DEM) simulations to reveal the differences in the γ-Al2O3 to α-Al2O3 mechanically induced phase transformation between a planetary ball mill and an attritor mill. Minerals Engineering 2020, 155, 106374.
39. Baláž, P., Mechanochemistry in Nanoscience and Minerals Engineering,1st ed.; Springer Berlin, Heidelberg, 2008.
40. Aryal, S. Electron Microscope- Definition, Principle, Types, Uses, Labeled Diagram. 2022. Retrieved from https://microbenotes.com/electron-microscope-principle-types-components-applications-advantages-limitations/
41. Lu, Y.; Guan, S.; Hao, L.; Yoshida, H., Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings 2015, 5(3), 425-464.
42. 張有義,郭蘭生編著 D. J. shaw 原著,”膠體及界面化學入門(Introduction to colloid and surface chemistry 4/e)”, 高立圖書有限公司, 2004.
43. Visual Protein | Product. (2022). Dual-Range™ Bradford Protein Assay. Retrieved from https://visualprotein.com/zh_cn/product/8/37/49
44. Malvern Instruments. (2016). Concentration Limits for Zeta Potential Measurements in the Zetasizer Nano . Retrieved from https://www.researchgate.net/profile/Alexander-Malm-2/post/I_would_like_to_prepare_rGO_suspension_for_zeta_potential_analysis_What_are_the_suitable_concentration_of_the_suspension_that_I_should_prepare/attachment/59d64e8879197b80779a7dd6/AS%3A493168504340480%401494591942055/download/DLS-Concentration+Limits+for+Zeta+Potential+Measurements+in+the+Nano.pdf
45. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.; Do, T.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E. Halasz, I.; Friščić, T., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Communications 2015, 6, 6662.
46. Užarević, K.; Halasz, I.; Friščić, T., Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. The Journal of Physical Chemistry Letters 2015, 6(20), 4129–4140.
47. Chang, P.; Lee, Y.; Peng, C., Synthesis and Characterization of Hybrid Metal Zeolitic Imidazolate Framework Membrane for Efficient H2/CO2 Gas Separation. Materials (Basel) 2020, 13(21), 5009.
48. Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J., Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie International Edition 2011, 50(3), 672-675.
49. Kulla, H.; Wilke, M.; Fischer, F.; Röllig, M.; Maierhofera, C.; Emmerling, F., Warming up for mechanosynthesis – temperature development in ball mills during synthesis. Chemical Communications 2017, 53, 1664-1667.
50. Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G., Embedding Functional Biomacromolecules within Peptide-Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie International Edition 2020, 59(33), 13947-13954.
51. Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu, F.; Ouyang, G., Modulating the Biofunctionality of Metal–Organic-Framework-Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie International Edition 2020, 59(7), 2867-2874.
52. Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.; Ouyang, G., Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nature Communications 2022, 13(951).
53. Maddigan, N. K.; Tarzia, A.; Huang, D. M.; Sumby, C. J.; Bell, S. G.; Falcaro, P.; Doonan, C. J., Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8. Chemical Science 2018, 9, 4217-4223.
54. Hu, L.; Chen, L.; Fang, Y.; Wang, A.; Chen, C.; Yan, Z., Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous and Mesoporous Materials 2018, 268, 207-215.
55. Kenyotha, K.; Chanapattharapol, K. C.; McCloskey, S.; Jantaharn, P., Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals 2020, 10(7), 599.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明