參考文獻 |
1. Sabetghadam, A., et al., Metal organic framework crystals in mixed‐matrix membranes: impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016. 26(18): p. 3154-3163.
2. Esposito, E., et al., Glassy PEEK-WC vs. rubbery Pebax® 1657 polymers: Effect on the gas transport in CuNi-MOF based mixed matrix membranes. Applied Sciences, 2020. 10(4): p. 1310.
3. Burggraaf, A.J., Important characteristics of inorganic membranes, in Membrane Science and Technology. 1996, Elsevier. p. 21-34.
4. Aroon, M., et al., Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010. 75(3): p. 229-242.
5. Hunger, K., et al., Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes, 2012. 2(4): p. 727-763.
6. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999. 402(6759): p. 276-279.
7. Kinoshita, Y., et al., The crystal structure of bis (adiponitrilo) copper (I) nitrate. Bulletin of the Chemical Society of Japan, 1959. 32(11): p. 1221-1226.
8. Deng, Y.H., et al., A drying‐free, water‐based process for fabricating mixed‐matrix membranes with outstanding pervaporation performance. Angewandte Chemie, 2016. 128(41): p. 12985-12988.
9. Lin, G.-S., et al., A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration. Journal of Membrane Science, 2021. 621: p. 118935.
10. Graham, T., On the law of the diffusion of gases. Journal of Membrane Science, 1995. 100(1): p. 17-21.
11. Henley, E., N. Li, and R. Long, Membrane separation processes. Industrial & Engineering Chemistry, 1965. 57(3): p. 18-29.
12. Coleman, M. and W. Koros, Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications. Journal of Membrane Science, 1990. 50(3): p. 285-297.
13. Sawyer, L. and R. Jones, Observations on the structure of first generation polybenzimidazole reverse osmosis membranes. Journal of Membrane Science, 1984. 20(2): p. 147-166.
14. Bondar, V., B. Freeman, and I. Pinnau, Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(17): p. 2463-2475.
15. Bernardo, P., et al., Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Separation and Purification Technology, 2012. 97: p. 73-82.
16. Casadei, R., et al., Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture. Membranes, 2020. 10(8): p. 188.
17. Lee, S., et al., Direct molecular interaction of CO2 with KTFSI dissolved in Pebax 2533 and their use in facilitated CO2 transport membranes. Journal of Membrane Science, 2018. 548: p. 358-362.
18. Nafisi, V. and M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014. 459: p. 244-255.
19. Rezac, M.E., T. John, and P.H. Pfromm, Effect of copolymer composition on the solubility and diffusivity of water and methanol in a series of polyether amides. Journal of Applied Polymer Science, 1997. 65(10): p. 1983-1993.
20. Chui, S.S.-Y., et al., A chemically functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. Science, 1999. 283(5405): p. 1148-1150.
21. O′Neill, L.D., H. Zhang, and D. Bradshaw, Macro-/microporous MOF composite beads. Journal of Materials Chemistry, 2010. 20(27): p. 5720-5726.
22. Ma, X., et al., Efficient removal of low concentration methyl mercaptan by HKUST-1 membrane constructed on porous alumina granules. CrystEngComm, 2018. 20(4): p. 407-411.
23. Ge, L., et al., Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013. 1(21): p. 6350-6358.
24. Zornoza, B., et al., Combination of MOFs and zeolites for mixed‐matrix membranes. ChemPhysChem, 2011. 12(15): p. 2781-2785.
25. Fakoori, M., et al., Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane. Korean Journal of Chemical Engineering, 2021. 38(1): p. 121-128.
26. Zhang, Z., A. Fuoco, and G. He, Membranes for Gas Separation. 2021, MDPI. p. 755.
27. Chuah, C.Y., et al., Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes, 2020. 10(4): p. 74.
28. Lin, Y., et al., Development of an HKUST-1 nanofiller-templated poly (ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process. ACS Applied Materials & Interfaces, 2019. 11(20): p. 18782-18796.
29. BX Chen, B.C., Influences of Defect Degree in Zirconium Metal-Organic Framework on Mixed Matrix Membrane Performance, in Chemical and Material Engineer 2021, 國立中央大學: Master′s Thesis.
30. Yan, X., et al., Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014. 183: p. 69-73.
31. Yakovenko, A.A., et al., Generation and applications of structure envelopes for porous metal–organic frameworks. Journal of Applied Crystallography, 2013. 46(2): p. 346-353.
32. Sun, X., et al., Novel hierarchical Fe (III)-doped Cu-MOFs with enhanced adsorption of benzene vapor. Frontiers in Chemistry, 2019. 7: p. 652.
33. Mohanadas, D., T.B. Ravoof, and Y. Sulaiman, A fast switching electrochromic performance based on poly (3, 4-ethylenedioxythiophene)-reduced graphene oxide/metal-organic framework HKUST-1. Solar Energy Materials and Solar Cells, 2020. 214: p. 110596.
34. Kim, S.Y., Y. Cho, and S.W. Kang, Correlation between functional group and formation of nanoparticles in PEBAX/Ag salt/Al salt complexes for olefin separation. Polymers, 2020. 12(3): p. 667.
35. Yoon, S.-S., H.-K. Lee, and S.-R. Hong, CO2/N2 Gas Separation Using Pebax/ZIF-7—PSf Composite Membranes. Membranes, 2021. 11(9): p. 708.
36. Smith, A.L., The coblentz society desk book of infrared spectra. The Coblentz Society Desk Book of Infrared Spectra, 1982. 2.
37. 김지인, Structural effect of different Pebax/ZIF-8 MMMs on CO2 permeability. 2019, 서울대학교 대학원.
38. Bordiga, S., et al., Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2676-2685.
39. Al-Maythalony, B.A., et al., Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. Journal of the American Chemical Society, 2015. 137(5): p. 1754-1757.
40. Rui, Z., et al., Metal‐organic framework membrane process for high purity CO2 production. AIChE Journal, 2016. 62(11): p. 3836-3841.
41. Takahashi, S. and D. Paul, Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006. 47(21): p. 7519-7534. |