博碩士論文 108324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.191.171.10
姓名 林睦融(Mu-Jung Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
(YFeO3/CeO2 Photoanode for Organic Wastewater Treatment)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池
★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究★ Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 異質半導體光觸媒主要是藉由兩種不同半導體界面,來提升單一半導體光觸媒的光催化性能,因異質結能有效增加電子電洞對的分離能力,降低複合率。在本研究中藉由sol-gel法成功合成了YFeO3/CeO2複合材料,且提升了YFeO3的光催化特性。在瞬時光電流檢測中,YFeO3/30%CeO2複合材料能將YFeO3的光電流密度從12.8 µA/cm2 增加為156.3 µA/cm2,提升大約12倍,也有著比純CeO2好的光電催化特性。此外,在其他比例下的複合材料的光電流密度也會隨著CeO2含量增加,可得知YFeO3/CeO2異質結確實能提升光電化學表現。
而在本研究也進行了光催化降解RB5和光電催化降解RB5的比較。在光催化系統中。YFeO3、CeO2、YFeO3 /30 %CeO2光降解效率分別18.5 %、37.4 %和48.0 %;而在光電催化降解系統中,YFeO3、CeO2和YFeO3 / 30%CeO2光電催化降解RB5效率為32.6%、47.9 %和75.6 %,從結果可知藉由外加電壓的幫助,能有效地將電子傳輸於對電極,降低電子電洞對複合率,使降解效率大大提升。最後將YFeO3、CeO2分別進行了Mott-Schottky測量,得知其平帶位置。再經由計算得知YFeO3和CeO2的導帶位置和價帶位置,推論出了YFeO3/CeO2複合材料光催化降解RB5反應機制。
摘要(英) Heterogeneous semiconductor photocatalysts mainly use two different semiconductor interfaces to improve the photocatalytic performance of a single semiconductor photocatalyst, because the heterojunction can effectively increase the separation ability of electron-hole pairs and reduce the recombination rate. In this study, YFeO3/CeO2 composites were successfully synthesized by the sol-gel method, and the photocatalytic properties of YFeO3 were improved.
In the instantaneous photocurrent detection, the YFeO3/30%CeO2 composite can increase the photocurrent density of YFeO3 from 12.8 µA/cm2 to 156.3 µA/cm2, an increase of about 12 times, and it also has better photocatalytic properties than pure CeO2. In addition, the photocurrent density of the composites at other ratios also increases with the CeO2 content, indicating that the YFeO3/CeO2 heterojunction can indeed improve the photoelectrochemical performance.
In this study, the photocatalytic degradation and the photoelectrocatalytic degradation of RB5 were also compared. In the photocatalytic system, the photodegradation efficiencies of YFeO3, CeO2, and YFeO3/30 %CeO2 were 18.5%, 37.4% and 48.0%, respectively. On the other hand, in the photoelectrocatalytic degradation system, the degradation efficiencies of YFeO3, CeO2, YFeO3/30 %CeO2 for RB5 were 32.6%, 47.9% and 75.6%, respectively. It can be seen from the results that with the help of the applied voltage, electrons are effectively transferred to the counter electrode, the recombination rate of electron-hole pairs can be reduced, and the degradation efficiency can be greatly improved. Finally, the Mott-Schottky measurements were performed on YFeO3 and CeO2, respectively, and the position of the flat band was obtained. Then the conduction band position and valence band position of YFeO3 and CeO2 were obtained by calculation. Furthermore, the mechanism of photocatalytic degradation of RB5 by YFeO3/CeO2 composites was deduced.
關鍵字(中) ★ 異質半導體光觸媒
★ 釔鐵氧化物
★ 氧化鈰
★ 光催化系統
★ 光電催化系統
關鍵字(英) ★ Heterogeneous semiconductor photocatalyst
★ YFeO3
★ CeO2
★ photocatalytic
★ photoelectrocatalytic
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章、緒論 1
1-1 前言 1
1-2 光觸媒發展 2
1-2 研究目的 3
第二章、文獻回顧 4
2-1 半導體光觸媒 4
2-1-1 半導體 4
2-1-2 半導體與電解液界面 6
2-1-3 光觸媒 7
2-1-4光觸媒催化原理 7
2-1-5光催化反應過程 9
2-1-6光催化和光電化學差異 10
2-2鈣鈦礦YFeO3光觸媒 11
2-2-1鈣鈦礦材料 11
2-2-2 YFeO3光觸媒 12
2-2-3 YFeO3光觸媒文獻回顧 13
2-3 CeO2光觸媒 15
2-4改善光觸媒催化性能方法 16
2-4-1 表面型態優化 16
2-4-2 元素參雜 19
2-4-3異質接合結構 23
2-4-3-1Ⅰ型異質結 25
2-4-3-2 Ⅱ型異質結 30
第三章、實驗方法 38
3-1 實驗架構 38
3-2 實驗藥品與儀器設備 40
3-3 實驗分析儀器 41
3-3-1 X射線繞射分析儀(X-ray diffraction,XRD) 41
3-3-2 場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 42
3-3-3傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR) 42
3-3-4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) 42
3-3-5紫外光-可見光分光光譜儀(Ultraviolet-Visible Spectroscopy, UV-VIS) 43
3-4實驗步驟 43
3-4-1 YFeO3光觸媒製備 43
3-4-2 YFeO3/CeO2光觸媒製備 43
3-4-3 YFeO3/CeO2電極材料製備 43
3-4-4 光電化學量測 44
3-4-5 RB5濃度檢量線繪製 45
3-4-6光催化降解測量 46
3-4-7光電催化降解活性測量 46
第四章、結果與討論 47
4-1 YFeO3鈣鈦礦光觸媒 47
4-1-1 不同溫度製程下對於YFeO3鈣鈦礦光觸媒的影響 47
4-1-2 YFeO3鈣鈦礦光觸媒光學分析 49
4-1-3 YFeO3鈣鈦礦光觸媒熱重量分析 51
4-2 YFeO3/CeO2光觸媒 52
4-2-1 X射線繞射圖譜(XRD)分析 52
4-2-2 形態表徵 54
4-2-3 X射線光電子能譜分析 55
4-2-4 傅立葉變換紅外光譜分析 57
4-2-5 紫外-可見漫反射光譜和帶隙能量 58
4-3 光電化學分析 61
4-3-1 電壓對於YFeO3/CeO2光電極的影響 61
4-3-2 YFeO3/CeO2光電極的瞬時光電流量測 64
4-3-3電化學阻抗分析 67
4-4 Mott-Schottky測量 70
4-5光催化降解測量 72
4-6光電催化降解測量 74
4-7 YFeO3/CeO2光觸媒光電化學反應動力學探討 77
4-8 YFeO3/CeO2光觸媒催化反應機制探討 79
第五章、結論 82
參考文獻 83
附錄一 87
參考文獻 1. Halkos, G.E. and E.-C. Gkampoura, Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 2020. 13(11): p. 2906.
2. Gómez-Pastora, J., et al., Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 2017. 310: p. 407-427.
3. Zazouli, M.A. and L.R. Kalankesh, Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review. Journal of Environmental Health Science and Engineering, 2017. 15(1): p. 1-10.
4. Zularisam, A., A. Ismail, and R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination, 2006. 194(1-3): p. 211-231.
5. Azimi, A., et al., Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 2017. 4(1): p. 37-59.
6. Yagub, M.T., et al., Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 2014. 209: p. 172-184.
7. Mousset, E. and K. Doudrick, A review of electrochemical reduction processes to treat oxidized contaminants in water. Current Opinion in Electrochemistry, 2020. 22: p. 221-227.
8. Arar, Ö., et al., Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination, 2014. 342: p. 16-22.
9. White, J.L., et al., Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical reviews, 2015. 115(23): p. 12888-12935.
10. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473.
11. Ali, M., et al., Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature communications, 2016. 7(1): p. 1-5.
12. Liu, D., et al., Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature communications, 2019. 10(1): p. 1-8.
13. Tu, W., Y. Zhou, and Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects. Advanced Materials, 2014. 26(27): p. 4607-4626.
14. Li, J., et al., Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Accounts of chemical research, 2017. 50(1): p. 112-121.
15. Wang, S., et al., Light‐switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar‐driven nitrogen fixation in pure water. Advanced Materials, 2017. 29(31): p. 1701774.
16. Waller, M.R., et al., Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chemistry of Materials, 2012. 24(4): p. 698-704.
17. Li, Z., X. Meng, and Z. Zhang, Fabrication of surface hydroxyl modified gC 3 N 4 with enhanced photocatalytic oxidation activity. Catalysis Science & Technology, 2019. 9(15): p. 3979-3993.
18. Li, Z., X. Meng, and Z. Zhang, Fewer-layer BN nanosheets-deposited on Bi2MoO6 microspheres with enhanced visible light-driven photocatalytic activity. Applied Surface Science, 2019. 483: p. 572-580.
19. Wang, H., et al., Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions–A mini review. Applied Materials Today, 2019. 16: p. 56-71.
20. Mathur, S., et al., Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior. Chemistry of materials, 2004. 16(10): p. 1906-1913.
21. Zhang, Y., et al., Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities. Materials Letters, 2012. 81: p. 1-4.
22. Wu, L., et al., Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. Journal of Solid State Chemistry, 2004. 177(10): p. 3666-3674.
23. Song, X.Z., et al., Recent Advances of CeO2‐Based Electrocatalysts for Oxygen and Hydrogen Evolution as well as Nitrogen Reduction. ChemElectroChem, 2021. 8(6): p. 996-1020.
24. Channei, D., et al., Synthesis and Characterization of WO3/CeO2 Heterostructured Nanoparticles for Photodegradation of Indigo Carmine Dye. ACS omega, 2021. 6(30): p. 19771-19777.
25. Hu, S., et al., Preparation of Cu2O/CeO2 heterojunction photocatalyst for the degradation of Acid Orange 7 under visible light irradiation. Catalysis Communications, 2011. 12(9): p. 794-797.
26. Li, L. and B. Yan, CeO2–Bi2O3 nanocomposite: two step synthesis, microstructure and photocatalytic activity. Journal of Non-Crystalline Solids, 2009. 355(13): p. 776-779.
27. Li, C., et al., Electrospinning of CeO2–ZnO composite nanofibers and their photocatalytic property. Materials Letters, 2011. 65(9): p. 1327-1330.
28. Afroz, K., et al., A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A, 2018. 6(44): p. 21696-21718.
29. Li, Z., et al., Applying facilely synthesized CuO/CeO2 photocatalyst to accelerate methylene blue degradation in hypersaline wastewater. Surface and Interface Analysis, 2019. 51(3): p. 336-344.
30. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry, 2007. 6: p. 1-53.
31. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
32. Mueen, R., et al., ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. Journal of Materials Science, 2020. 55(16): p. 6834-6847.
33. Sujatha, G., S. Shanthakumar, and F. Chiampo, UV light-irradiated photocatalytic degradation of coffee processing wastewater using TiO2 as a catalyst. Environments, 2020. 7(6): p. 47.
34. Yang, Z.-M., et al., Novel Ag 3 PO 4/CeO 2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A, 2014. 2(6): p. 1750-1756.
35. Wu, H., et al., Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020. 32(18): p. 1904717.
36. Karthikeyan, C., et al., Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 2020. 828: p. 154281.
37. Fu, D. and M. Itoh, Ferroelectrics—Material Aspects. InTech: Shizuo‐ka University, Tokyo Institute of Technology, Japan, 2011: p. 413-442.
38. Ali, S., Synthesis of Nano-Particles Using Microwave Technique, the Study of Their Physical Properties and Some Applications. 2009, Cairo University Cairo, Egypt.
39. Zhang, M., et al., Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021. 49: p. 351-377.
40. Ismael, M., et al., Synthesis of phase pure hexagonal YFeO3 perovskite as efficient visible light active photocatalyst. Catalysts, 2017. 7(11): p. 326.
41. Hernández, S., et al., Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Applied Catalysis B: Environmental, 2016. 190: p. 66-74.
42. Rosales-González, O., et al., Enhanced multiferroic properties of YFeO3 by doping with Bi3+. Materials, 2019. 12(13): p. 2054.
43. Mirzaei, A., et al., Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Processing and Application of Ceramics, 2016. 10(4): p. 209-217.
44. Luciani, G., C. Imparato, and G. Vitiello, Photosensitive hybrid nanostructured materials: The big challenges for sunlight capture. Catalysts, 2020. 10(1): p. 103.
45. Moniz, S.J., et al., Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 2015. 8(3): p. 731-759.
46. Nasir, S.N.F.M., et al., New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. The Journal of Physical Chemistry C, 2017. 121(11): p. 6218-6228.
47. Mei, Q., et al., TiO 2/Fe 2 O 3 heterostructures with enhanced photocatalytic reduction of Cr (VI) under visible light irradiation. RSC advances, 2019. 9(39): p. 22764-22771.
48. Ismael, M., et al., Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants. Catalysis Today, 2018. 313: p. 47-54.
49. Wetchakun, N., et al., BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS applied materials & interfaces, 2012. 4(7): p. 3718-3723.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明