博碩士論文 109229005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:18.224.44.108
姓名 翁郁翔(Yu-Hsiang Weng)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 M 型矮星的閃焰活動以及極端太空天氣對於 TRAPPIST-1 行星系統的影響
(M-Dwarf Flare Activity and Extreme Space Weather Effects on TRAPPIST-1 System)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 經由TESS任務提供的99顆M型矮星光變曲線,我們可以得知恆星的活躍程度。其中的33顆恆星表現出強烈的恆星磁活動。這些總計322個閃焰的能量大致上介於10^31~10^35 爾格。然後我們利用這些資料建造出閃焰能量頻率分佈圖(flare frequency distribution) 並且分析了他們自轉周期跟閃焰頻率的關係。這些閃焰能量頻率分佈圖可以用來評估系外行星的適居性。經過測試,TRAPPIST-1 這顆光譜型為M8紅矮星的日冕物質拋射(coronal mass ejection) 會以4.96%的機率打到他的附屬行星。另外,經由數值模擬我們知道在有磁場為75高斯的恆星上,能量小於6*10^32 爾格的閃焰會生成日冕雨並回到恆星表面,導致無法成功製造日冕物質拋射(Alvarado-Gómezet al., 2018)。

TRAPPIST-1 經由日冕物質拋射的質量損失在100億年間總計來到10^29 公克,把金星的條件應用在它的這些系外行星上(無磁場且大氣由二氧化碳構成),這些日冕物質拋射會造成系外行星大氣質量在100億年間總損失介於10^19 ~ 10^23 公克。系外行星大氣經由穩定吹拂的恆星風影響,則會在100億年間損失總質量介於10^21 ~ 10^25 公克。利用行星大氣質量損失可以推斷系外行星的適居性。
摘要(英) The TESS mission has obtained a light curve of 99 M dwarfs that we can
have a survey to figure out their activity. It was found that 33 stars in our sam-
ple exhibited magnetic activity. In total, 322 flares are identified, and the flare
energies are generally in the range of 10^31 ∼ 10^35 ergs. We construct these M-
type star datasets’ flare frequency distribution (FFD) and analyze the relation be-
tween rotation period and flare frequency. FFDs can tell us the star activity to as-
sess the habitability of the exoplanets. We tested an M8 dwarf star TRAPPIST-1
and found that the probability of a flare-associated coronal mass ejection (CME)
hit on the exoplanet is about 4.96%. Due to numerical simulation, flare energy
lower than 6 ∗ 10^32 erg will form a coronal rain back to the star and can not be
a CME successfully in a 75G magnetic field star (Alvarado-Gómez et al., 2018).
TRAPPIST-1 total mass loss by CME can up to 10^29 g in 10 Gyr, so cause its ex-
oplanets loss their atmosphere in the range 10^19 ∼ 10^23 in 10 Gyr totally which
was applied Venus-like case (no magnetic field and only CO2 atmosphere) on it.
Also, we found the total atmospheric mass loss by the steady stellar wind was
in the range 10^21 ∼ 10^25 in 10 Gyr. These atmospheric m
關鍵字(中) ★ 紅矮星
★ 系外行星
★ 閃焰
★ 適居性
關鍵字(英) ★ Red dwarf
★ Exoplanets
★ Flares
★ Habitability
論文目次 Introduction 1
1.1 Finding M dwarf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Exoplanet exploration method . . . . . . . . . . . . . . . . . . . . 2
1.3 Transmission spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Exoplanet exploration history . . . . . . . . . . . . . . . . . . . . . 3
1.5 Space weather: stellar flare and CMEs . . . . . . . . . . . . . . . . 4
2 Stellar flare activity 5
2.1 FFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Super flares of M dwarfs from Kepler and TESS . . . . . . . . . . . 5
2.3 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Bolometric Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Spectral Response Function Correction . . . . . . . . . . . . . . . . 9
2.6 Another correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 TESS flare M dwarfs FFD . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Rotation period of active stars . . . . . . . . . . . . . . . . . . . . . 17
3 Space weather impact 24
3.1 Flares and CMEs relation . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 CME geometry and probability . . . . . . . . . . . . . . . . . . . . 24
3.3 Venus-like atmospheric loss . . . . . . . . . . . . . . . . . . . . . . 29
4 TRAPPIST-1 planetary system 33
4.1 The discovery of TRAPPIST-1 . . . . . . . . . . . . . . . . . . . . . 33
4.2 Habitability of TRAPPIST-1 . . . . . . . . . . . . . . . . . . . . . . 34
vii
4.3 TRAPPIST-1 mass loss by CMEs . . . . . . . . . . . . . . . . . . . 36
4.4 TRAPPIST-1 exoplanet atmospheric mass loss by steady stellar
wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 TRAPPIST-1 CME caused planet atmospheric mass loss . . . . . . 39
5 Discussion and summary 43
5.1 FFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Flare activity and stellar rotation period . . . . . . . . . . . . . . . 44
5.3 TRAPPIST-1 exoplanets atmospheric mass loss . . . . . . . . . . . 45
5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Bibliography 47
A 54
參考文獻 [1] Akeson, R. L. et al. “The NASA Exoplanet Archive: Data and Tools for Exoplanet Research”. In: 125.930 (Aug. 2013), p. 989. DOI: 10.1086/672273.
arXiv: 1307.2944 [astro-ph.IM].
[2] Alvarado-Gómez, J. D. et al. “Simulating the environment around planethosting stars. I. Coronal structure”. In: 588, A28 (Apr. 2016), A28. DOI: 10.
1051/0004-6361/201527832. arXiv: 1601.04443 [astro-ph.SR].
[3] Alvarado-Gómez, J. D. et al. “Simulating the environment around planethosting stars. II. Stellar winds and inner astrospheres”. In: 594, A95 (Oct.
2016), A95. DOI: 10 . 1051 / 0004 - 6361 / 201628988. arXiv: 1607 .
08405 [astro-ph.SR].
[4] Alvarado-Gómez, Julián D. et al. “Suppression of Coronal Mass Ejections
in Active Stars by an Overlying Large-scale Magnetic Field: A Numerical
Study”. In: 862.2, 93 (Aug. 2018), p. 93. DOI: 10 . 3847 / 1538 - 4357 /
aacb7f. arXiv: 1806.02828 [astro-ph.SR].
[5] Barnes, Rory. “Tidal locking of habitable exoplanets”. In: Celestial Mechanics and Dynamical Astronomy 129.4 (Dec. 2017), pp. 509–536. DOI: 10.
1007/s10569-017-9783-7. arXiv: 1708.02981 [astro-ph.EP].
[6] Chang, S. W., Byun, Y. I., and Hartman, J. D. “Photometric Study on Stellar Magnetic Activity. I. Flare Variability of Red Dwarf Stars in the Open
Cluster M37”. In: 814.1, 35 (Nov. 2015), p. 35. DOI: 10.1088/0004-637X/
814/1/35. arXiv: 1510.01005 [astro-ph.SR].
[7] Charbonneau, Paul. “Dynamo Models of the Solar Cycle”. In: Living Reviews in Solar Physics 7.1, 3 (Sept. 2010), p. 3. DOI: 10 . 12942 / lrsp -
2010-3.
[8] Cohen, O. et al. “Giant Coronal Loops Dominate the Quiescent X-Ray
Emission in Rapidly Rotating M Stars”. In: 834.1, 14 (Jan. 2017), p. 14.
DOI: 10 . 3847 / 1538 - 4357 / 834 / 1 / 14. arXiv: 1611 . 02141
[astro-ph.SR].
[9] Davenport, James. R. A., Mendoza, Guadalupe Tovar, and Hawley,
Suzanne L. “10 Years of Stellar Activity for GJ 1243”. In: 160.1, 36 (July
2020), p. 36. DOI: 10.3847/1538-3881/ab9536. arXiv: 2005.10281
[astro-ph.SR].
[10] Davenport, James R. A. et al. “Kepler Flares. II. The Temporal Morphology of White-light Flares on GJ 1243”. In: 797.2, 122 (Dec. 2014),
p. 122. DOI: 10.1088/0004- 637X/797/2/122. arXiv: 1411.3723
[astro-ph.SR].
[11] Davenport, James R. A. et al. “The Evolution of Flare Activity with Stellar
Age”. In: 871.2, 241 (Feb. 2019), p. 241. DOI: 10 . 3847 / 1538 - 4357 /
aafb76. arXiv: 1901.00890 [astro-ph.SR].
[12] de Wit, Julien et al. “A combined transmission spectrum of the Earth-sized
exoplanets TRAPPIST-1 b and c”. In: 537.7618 (Sept. 2016), pp. 69–72. DOI:
10.1038/nature18641. arXiv: 1606.01103 [astro-ph.EP].
[13] Dong, Chuanfei et al. “Atmospheric escape from the TRAPPIST-1 planets
and implications for habitability”. In: Proceedings of the National Academy of
Science 115.2 (Jan. 2018), pp. 260–265. DOI: 10.1073/pnas.1708010115.
arXiv: 1705.05535 [astro-ph.EP].
[14] Drake, Jeremy J. et al. “Implications of Mass and Energy Loss due to Coronal Mass Ejections on Magnetically Active Stars”. In: 764.2, 170 (Feb. 2013),
p. 170. DOI: 10.1088/0004- 637X/764/2/170. arXiv: 1302.1136
[astro-ph.SR].
[15] Engle, Scott G. and Guinan, Edward F. “The Rotation-Age Relationship of
M Dwarfs: A Progress Report of the Living with a Red Dwarf Program”.
In: Research Notes of the American Astronomical Society 2.1, 34 (Feb. 2018),
p. 34. DOI: 10.3847/2515-5172/aab1f8.
[16] Fleming, Thomas A., Giampapa, Mark S., and Garza, David. “The Quiescent Corona of VB 10”. In: 594.2 (Sept. 2003), pp. 982–986. DOI: 10.1086/
376968.
[17] Fleming, Thomas A., Giampapa, Mark S., and Schmitt, Jürgen H. M. M.
“An X-Ray Flare Detected on the M8 Dwarf VB 10”. In: 533.1 (Apr. 2000),
pp. 372–377. DOI: 10 . 1086 / 308657. arXiv: astro - ph / 0002065
[astro-ph].
[18] France, Kevin et al. “The MUSCLES Treasury Survey. I. Motivation and
Overview”. In: 820.2, 89 (Apr. 2016), p. 89. DOI: 10.3847/0004-637X/
820/2/89. arXiv: 1602.09142 [astro-ph.SR].
[19] Garraffo, Cecilia, Drake, Jeremy J., and Cohen, Ofer. “Magnetic Complexity as an Explanation for Bimodal Rotation Populations among Young
Stars”. In: 807.1, L6 (July 2015), p. L6. DOI: 10.1088/2041-8205/807/
1/L6. arXiv: 1506.01713 [astro-ph.SR].
[20] Giampapa, M. S. et al. “The Coronae of Low-Mass Dwarf Stars”. In: 463
(June 1996), p. 707. DOI: 10.1086/177284.
[21] Gibson, S. E. and Low, B. C. “A Time-Dependent Three-Dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection”. In: 493.1 (Jan.
1998), pp. 460–473. DOI: 10.1086/305107.
[22] Gillon, Michaël et al. “Seven temperate terrestrial planets around the
nearby ultracool dwarf star TRAPPIST-1”. In: 542.7642 (Feb. 2017),
pp. 456–460. DOI: 10 . 1038 / nature21360. arXiv: 1703 . 01424
[astro-ph.EP].
[23] Gonzalez, W. D. et al. “What is a geomagnetic storm?” In: 99.A4 (Apr.
1994), pp. 5771–5792. DOI: 10.1029/93JA02867.
[24] Gopalswamy, N. et al. “Coronal Mass Ejections and Solar Polarity Reversal”. In: 598.1 (Nov. 2003), pp. L63–L66. DOI: 10.1086/380430.
[25] Gopalswamy, N. et al. “Prominence eruptions and coronal mass ejection:
a statistical study using microwave observations”. In: Annual Report of the
National Astronomical Observatory of Japan. Vol. 5. 2004, p. 18.
[26] Günther, Maximilian N. et al. “Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs”. In: 159.2, 60 (Feb. 2020),
p. 60. DOI: 10 . 3847 / 1538 - 3881 / ab5d3a. arXiv: 1901 . 00443
[astro-ph.EP].
[27] Hawley, Suzanne L. “Magnetic Activity in Low-Mass Stars”. In: 105 (Sept.
1993), p. 955. DOI: 10.1086/133262.
[28] Hawley, Suzanne L. et al. “Multiwavelength Observations of Flares on AD
Leonis”. In: 597.1 (Nov. 2003), pp. 535–554. DOI: 10.1086/378351.
[29] Hawley, Suzanne L. et al. “Kepler Flares. I. Active and Inactive M Dwarfs”.
In: 797.2, 121 (Dec. 2014), p. 121. DOI: 10.1088/0004- 637X/797/2/
121. arXiv: 1410.7779 [astro-ph.SR].
[30] Hilton, Eric J. “The Galactic M Dwarf Flare Rate”. PhD thesis. University
of Washington, Seattle, Jan. 2011.
[31] Huang, L. C. et al. “M-dwarf Eclipsing Binaries with Flare Activity”. In:
892.1, 58 (Mar. 2020), p. 58. DOI: 10.3847/1538-4357/ab774a.
[32] Jin, M. et al. “Data-constrained Coronal Mass Ejections in a Global Magnetohydrodynamics Model”. In: 834.2, 173 (Jan. 2017), p. 173. DOI: 10 .
3847/1538-4357/834/2/173. arXiv: 1605.05360 [astro-ph.SR].
[33] Kasting, James F., Whitmire, Daniel P., and Reynolds, Ray T. “Habitable
Zones around Main Sequence Stars”. In: 101.1 (Jan. 1993), pp. 108–128.
DOI: 10.1006/icar.1993.1010.
[34] Khodachenko, Maxim L. et al. “Coronal Mass Ejection (CME) Activity of
Low Mass M Stars as An Important Factor for The Habitability of Terrestrial Exoplanets. I. CME Impact on Expected Magnetospheres of EarthLike Exoplanets in Close-In Habitable Zones”. In: Astrobiology 7.1 (Feb.
2007), pp. 167–184. DOI: 10.1089/ast.2006.0127.
[35] Kretzschmar, M. “The Sun as a star: observations of white-light flares”.
In: 530, A84 (June 2011), A84. DOI: 10.1051/0004-6361/201015930.
arXiv: 1103.3125 [astro-ph.SR].
[36] Kulikov, Yu. N. et al. “Atmospheric and water loss from early Venus”. In:
54.13-14 (Nov. 2006), pp. 1425–1444. DOI: 10.1016/j.pss.2006.04.
021.
[37] Lichtenegger, H. I. M. et al. “Non-thermal escape of the martian CO2 atmosphere over time: Constrained by Ar isotopes”. In: 382, 115009 (Aug.
2022), p. 115009. DOI: 10 . 1016 / j . icarus . 2022 . 115009. arXiv:
2105.09789 [astro-ph.EP].
[38] Lin, C. L. et al. “A Comparative Study of the Magnetic Activities of Lowmass Stars from M-type to G-type”. In: 873.1, 97 (Mar. 2019), p. 97. DOI:
10.3847/1538-4357/ab041c.
[39] Manchester, Ward B. et al. “Three-dimensional MHD simulation of a
flux rope driven CME”. In: Journal of Geophysical Research (Space Physics)
109.A1, A01102 (Jan. 2004), A01102. DOI: 10.1029/2002JA009672.
[40] Marois, Christian et al. “Direct Imaging of Multiple Planets Orbiting the
Star HR 8799”. In: Science 322.5906 (Nov. 2008), p. 1348. DOI: 10.1126/
science.1166585. arXiv: 0811.2606 [astro-ph].
[41] Mullan, D. J. et al. “Magnetic Fields on the Flare Star Trappist-1: Consequences for Radius Inflation and Planetary Habitability”. In: 869.2, 149
(Dec. 2018), p. 149. DOI: 10.3847/1538-4357/aaee7c. arXiv: 1811.
04149 [astro-ph.SR].
[42] Ness, J. U. et al. “On the sizes of stellar X-ray coronae”. In: 427 (Nov. 2004),
pp. 667–683. DOI: 10 . 1051 / 0004 - 6361 : 20040504. arXiv: astro -
ph/0407231 [astro-ph].
[43] Ochsenbein, F., Bauer, P., and Marcout, J. “The VizieR database of astronomical catalogues”. In: 143 (Apr. 2000), pp. 23–32. DOI: 10.1051/aas:
2000169. arXiv: astro-ph/0002122 [astro-ph].
[44] Okamoto, J. and Sakurai, T. “The Strongest Magnetic Field in Sunspots”.
In: AGU Fall Meeting Abstracts. Vol. 2017. Dec. 2017, SH51C-2496, SH51C–
2496.
[45] Pallavicini, R. et al. “Relations among stellar X-ray emission observed
from Einstein, stellar rotation and bolometric luminosity.” In: 248 (Aug.
1981), pp. 279–290. DOI: 10.1086/159152.
[46] Pecaut, Mark J. and Mamajek, Eric E. “Intrinsic Colors, Temperatures,
and Bolometric Corrections of Pre-main-sequence Stars”. In: 208.1, 9 (Sept.
2013), p. 9. DOI: 10.1088/0067-0049/208/1/9. arXiv: 1307.2657
[astro-ph.SR].
[47] Ramsay, Gavin et al. “Short-duration high-amplitude flares detected on
the M dwarf star KIC 5474065”. In: 434.3 (Sept. 2013), pp. 2451–2457. DOI:
10.1093/mnras/stt1182. arXiv: 1306.5938 [astro-ph.SR].
[48] Rubenstein, Eric P. and Schaefer, Bradley E. “Are Superflares on Solar Analogues Caused by Extrasolar Planets?” In: 529.2 (Feb. 2000), pp. 1031–1033.
DOI: 10.1086/308326. arXiv: astro-ph/9909187 [astro-ph].
[49] Siegfried B and; Helmut, L. Planetary Aeronomy: Atmosphere Enviroment in
Planetary Systems. Springer Verlag, 2004.
[50] Sokolov, Igor V. et al. “Magnetohydrodynamic Waves and Coronal Heating: Unifying Empirical and MHD Turbulence Models”. In: 764.1, 23 (Feb.
2013), p. 23. DOI: 10.1088/0004-637X/764/1/23. arXiv: 1208.3141
[astro-ph.SR].
[51] Sokolov, Igor V. et al. “Threaded-field-line Model for the Low Solar Corona
Powered by the Alfvén Wave Turbulence”. In: 908.2, 172 (Feb. 2021), p. 172.
DOI: 10.3847/1538-4357/abc000.
[52] Stassun, Keivan G. et al. “The Revised TESS Input Catalog and Candidate
Target List”. In: 158.4, 138 (Oct. 2019), p. 138. DOI: 10.3847/1538-3881/
ab3467. arXiv: 1905.10694 [astro-ph.SR].
[53] Stelzer, B. et al. “The UV and X-ray activity of the M dwarfs within 10 pc
of the Sun”. In: 431.3 (May 2013), pp. 2063–2079. DOI: 10.1093/mnras/
stt225. arXiv: 1302.1061 [astro-ph.SR].
[54] The Sun and the Heliosphere as an Integrated System. Vol. 317. Astrophysics
and Space Science Library. Nov. 2004. DOI: 10 . 1007 / 978 - 1 - 4020 -
2831-9.
[55] van der Holst, B. et al. “Alfvén Wave Solar Model (AWSoM): Coronal
Heating”. In: 782.2, 81 (Feb. 2014), p. 81. DOI: 10.1088/0004- 637X/
782/2/81. arXiv: 1311.4093 [astro-ph.SR].
[56] Van Grootel, Valérie et al. “Stellar Parameters for Trappist-1”. In: 853.1, 30
(Jan. 2018), p. 30. DOI: 10.3847/1538- 4357/aaa023. arXiv: 1712.
01911 [astro-ph.SR].
[57] Vida, K. et al. “Frequent Flaring in the TRAPPIST-1 System—Unsuited for
Life?” In: 841.2, 124 (June 2017), p. 124. DOI: 10 . 3847 / 1538 - 4357 /
aa6f05. arXiv: 1703.10130 [astro-ph.SR].
[58] Walkowicz, Lucianne M. et al. “White-light Flares on Cool Stars in the
Kepler Quarter 1 Data”. In: 141.2, 50 (Feb. 2011), p. 50. DOI: 10.1088/
0004-6256/141/2/50. arXiv: 1008.0853 [astro-ph.SR].
[59] Welsh, William F. et al. “Recent Kepler Results On Circumbinary Planets”.
In: Formation, Detection, and Characterization of Extrasolar Habitable Planets.
Ed. by Nader Haghighipour. Vol. 293. Apr. 2014, pp. 125–132. DOI: 10.
1017/S1743921313012684. arXiv: 1308.6328 [astro-ph.EP].
[60] Wenger, M. et al. “The SIMBAD astronomical database. The CDS reference
database for astronomical objects”. In: 143 (Apr. 2000), pp. 9–22. DOI: 10.
1051/aas:2000332. arXiv: astro-ph/0002110 [astro-ph].
[61] Williams, P. K. G., Cook, B. A., and Berger, E. “Trends in Ultracool Dwarf
Magnetism. I. X-Ray Suppression and Radio Enhancement”. In: 785.1, 9
(Apr. 2014), p. 9. DOI: 10.1088/0004-637X/785/1/9. arXiv: 1310.
6757 [astro-ph.SR].
[62] Wolszczan, A. and Frail, D. A. “A planetary system around the millisecond pulsar PSR1257 + 12”. In: 355.6356 (Jan. 1992), pp. 145–147. DOI: 10.
1038/355145a0.
[63] Wood, Brian E. et al. “Measured Mass-Loss Rates of Solar-like Stars as
a Function of Age and Activity”. In: 574.1 (July 2002), pp. 412–425. DOI:
10.1086/340797. arXiv: astro-ph/0203437 [astro-ph].
[64] Wright, Nicholas J. et al. “The Stellar-activity-Rotation Relationship and
the Evolution of Stellar Dynamos”. In: 743.1, 48 (Dec. 2011), p. 48. DOI: 10.
1088/0004-637X/743/1/48. arXiv: 1109.4634 [astro-ph.SR].
[65] Yang, Huiqin et al. “The Flaring Activity of M Dwarfs in the Kepler Field”.
In: 849.1, 36 (Nov. 2017), p. 36. DOI: 10.3847/1538-4357/aa8ea2.
[66] Yashiro, S. et al. “A catalog of white light coronal mass ejections observed
by the SOHO spacecraft”. In: Journal of Geophysical Research (Space Physics)
109.A7, A07105 (July 2004), A07105. DOI: 10.1029/2003JA010282.
[67] Yashiro, Seiji and Gopalswamy, Nat. “Statistical relationship between solar
flares and coronal mass ejections”. In: Universal Heliophysical Processes. Ed.
by N. Gopalswamy and D. F. Webb. Vol. 257. Mar. 2009, pp. 233–243. DOI:
10.1017/S1743921309029342.
[68] Youssef, M. “On the relation between the CMEs and the solar flares”. In:
NRIAG Journal of Astronomy and Geophysics 1.2 (Dec. 2012), pp. 172–178.
DOI: 10.1016/j.nrjag.2012.12.014.
[69] Zendejas, J., Segura, A., and Raga, A. C. “Atmospheric mass loss by stellar
wind from planets around main sequence M stars”. In: 210.2 (Dec. 2010),
pp. 539–544. DOI: 10.1016/j.icarus.2010.07.013. arXiv: 1006.
0021 [astro-ph.EP].
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2022-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明