參考文獻 |
1. Aljghami, M.E., et al., Emerging Innovative Wound Dressings. Biomedical Engineering Society, 2019. 47(3): p. 659-675.
2. Rani, S. and Ritter, T., The Exosome - A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced Materials, 2016. 28(27): p. 5542-5552.
3. Nour, S., et al., A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. Journal of Materials Science, 2019. 30(10):120.
4. Trøstrup, H., et al., Uncontrolled gelatin degradation in non-healing chronic wounds. Journal of Wound Care, 2018. 27(11): p. 724-734.
5. Chang, M., Restructuring of the extracellular matrix in diabetic wounds and healing: A perspective. Pharmacological Research, 2016. 107: p. 243-248.
6. Homaeigohar, S. and Boccaccini, A.R., Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 2020. 107: p. 25-49.
7. Samartzis, E.P., et al., Doxycycline reduces MMP-2 activity and inhibits invasion of 12Z epithelial endometriotic cells as well as MMP-2 and -9 activity in primary endometriotic stromal cells in vitro. Reproductive Biology and Endocrinology, 2019. 17(1): 38.
8. Harrison-Balestra, C., et al., Recombinant human platelet-derived growth factor for refractory nondiabetic ulcers: A retrospective series. Dermatologic surgery, 2002. 28(8): p. 755-760.
9. Blakytny, R. and Jude, E., The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Medicine, 2006. 23(6): p. 594-608.
10. Morton, L.M. and Phillips, T.J., Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. Journal of the American Academy of Dermatology, 2016. 74(4): p. 589-605.
11. Okonkwo, U.A. and DiPietro, L.A., Diabetes and Wound Angiogenesis. International Journal of Molacular Sciences, 2017. 18(7):1419.
12. Jr, R.H.B., et al., Relationship of quantitative wound bacterial counts to healing of decubiti: Effect of topical gentamicin. Antimicrobial Agents and Chemotherapy, 1964. 10: p. 147-155.
13. Robson, M.C. and Heggers, J.P., Bacterial Quantification of Open Wounds. Military Medicine, 1969. 134(1): p. 19-24.
14. Percival, S.L., et al., Biofilms and bacterial imbalances in chronic wounds: anti-Koch. International Wound Journal, 2010. 7: p. 169–175.
15. Burgess, J.L., et al., Diabetic Wound-Healing Science. Medicina, 2021. 57(10):1072.
16. Branski, L.K., et al., Gene therapy in wound healing: present status and future directions. Gene Therapy, 2007. 14(1): p. 1-10.
17. Das, S., et al., Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomaterialia, 2016. 42: p. 56-65.
18. Doxey, D.L., et al., Platelet-Derived Growth Favtor Levels in Wounds of Diabetic Rats. Life Sciences, 1995. 57(11): p. 1111-1123.
19. Kaltalioglu, K. and Coskun-Cevher, S., A bioactive molecule in a complex wound healing process: platelet-derived growth factor. International Journal of Dermatology, 2015. 54(8): p. 972-977.
20. Almquist, B.D., et al., Combination Growth Factor Therapy via Electrostatically Assembled Wound Dressings Improves Diabetic Ulcer Healing In Vivo. Advanced Healthcare Materials, 2015. 4(14): p. 2090-2099.
21. Kogawa, A.C., et al., Increasing doxycycline hyclate photostability by complexation with beta-cyclodextrin. AAPS PharmSciTech, 2014. 15(5): p. 1209-1217.
22. Jantratid, E., et al., Biowaiver monographs for immediate release solid oral dosage forms: Doxycycline hyclate. Journal of Pharmaceutical Sciences, 2010. 99(4): p. 1639-1653.
23. Soni, K., et al., Carbopol-olive oil-based bigel drug delivery system of doxycycline hyclate for the treatment of acne. Drug Development and Industrial Pharmacy, 2021. 47(6): p. 954-962.
24. Ilem-Ozdemir, D., et al., (99m) Tc-Doxycycline hyclate: a new radiolabeled antibiotic for bacterial infection imaging. Journal of Labelled Compounds and Radiopharmaceuticals, 2014. 57(1): p. 36-41.
25. Al-Maweri, S.A., et al., Single application of topical doxycycline in management of recurrent aphthous stomatitis: a systematic review and meta-analysis of the available evidence. BMC Oral Health, 2020. 20(1):231.
26. Skulason, S., et al., Clinical assessment of the effect of a matrix metalloproteinase inhibitor on aphthous ulcers. Acta Odontologica Scandinavica, 2009. 67(1): p. 25-29.
27. Gabriele, S., et al., Stability, Activity, and Application of Topical Doxycycline Formulations in a Diabetic Wound Case Study. Original Research, 2018. 31(2): p. 49–54.
28. Adhirajan, N., et al., Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: Development and characterization. Journal of Microencapsulation, 2008. 24(7): p. 659-671.
29. Bohannon, M., et al., Topical doxycycline monohydrate hydrogel 1% targeting proteases/PAR2 pathway is a novel therapeutic for atopic dermatitis. Experimental Dermatology, 2020. 29(12): p. 1171-1175.
30. Cui, S., et al., Polylactide nanofibers delivering doxycycline for chronic wound treatment. Materials Science and Engineering C- Materials for Biological Application, 2019. 104:109745.
31. Gauglitz, G.G. and Jeschke, M.G., Combined gene and stem cell therapy for cutaneous wound healing. Molecular Pharmaceutics, 2011. 8(5): p. 1471-1479.
32. 劉宜旻, Indolicidin之二聚體形式對輸送去氧寡核苷酸的影響,化學工程與材料工程學系.2018, 國立中央大學
33. Kim, H.S. and Yoo, H.S., In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomaterialia, 2013. 9(7): p. 7371-7380.
34. Esfahani, H., et al., Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications. Materials, 2017. 10(11):1238.
35. Song, J., et al., Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-Design and Manufacturing, 2018. 1(4): p. 254-264.
36. Nagiah, N., et al., Poly (vinyl alcohol) Microspheres Sandwiched Poly (3-hydroxybutyric acid) Electrospun Fibrous Scaffold for Tissue Engineering and Drug Delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014. 63(11): p. 583-585.
37. Montoya, Y., et al., Effect of sequential electrospinning and co-electrospinning on morphological and fluid mechanical wall properties of polycaprolactone and bovine gelatin scaffolds, for potential use in small diameter vascular grafts. Biomaterials Research, 2021. 25(1):38.
38. Zhang, X., et al., Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 2009. 61(12): p. 988-1006.
39. Khampieng, T., et al., Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. Journal of Biomaterials Science, Polymer Edition, 2014. 25(12): p. 1292-1305.
40. Haik, J., et al., The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings. Advances in Wound Care, 2017. 6(5): p. 166-174.
41. Zamani, M., et al., Advances in drug delivery via electrospun and electrosprayed nanomaterials. International Journal of Nanomedicine, 2013. 8: p. 2997-3017.
42. Ambekar, R.S. and Kandasubramanian, B., Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 2019. 117: p. 304-336.
43. Tang, S., et al., Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning. Journal of Sol-Gel Science and Technology, 2015. 77(3): p. 594-603.
44. Hashemikia, S., et al., Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations. International Journal of Pharmaceutics, 2021. 597:120313.
45. Salami, M.S., et al., Co-electrospun nanofibrous mats loaded with bitter gourd (Momordica charantia) extract as the wound dressing materials: in vitro and in vivo study. BMC Complement Medicine and Therapies, 2021. 21(1): 111.
46. Lee, Y.J., et al., Preparation of atactic poly(vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. Journal of Applied Polymer Science, 2007. 106(2): p. 1337-1342.
47. Poojari, R. and Srivastava, R., Composite alginate microspheres as the next-generation egg-box carriers for biomacromolecules delivery. Expert Opinion on Drug Delivery, 2013. 10(8): p. 1061-1076.
48. Sikorski, P., et al., Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 2007. 8(7): p. 2098-2103.
49. Liu, J., et al., Gelation Modification of Alginate Nonwoven Fabrics. Fibers and Polymers, 2018. 19(8): p. 1605-1610.
50. Kyzioł, A., et al., Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. European Polymer Journal, 2017. 96: p. 350-360.
51. Bhattarai, N., et al., Alginate-Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties. Advanced Materials, 2006. 18(11): p. 1463-1467.
52. Fuh, Y.K., et al., The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Aterials Science and Engineering C, 2016. 62: p. 879-887.
53. Pakolpakçıl, A., et al., Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. Journal of Polymer Research, 2021. 28(2):50.
54. Divakara Shetty, S. and Shetty, N., Investigation of mechanical properties and applications of polylactic acids—a review. Materials Research Express, 2019. 6(11):112002.
55. Casalini, T., et al., A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 2019. 7:259.
56. Tyler, B., et al., Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 2016. 107: p. 163-175.
57. Zou, F., et al., Elastic, hydrophilic and biodegradable poly (1, 8-octanediol-co-citric acid)/polylactic acid nanofibrous membranes for potential wound dressing applications. Polymer Degradation and Stability, 2019. 166: p. 163-173.
58. Bi, H., et al., In Vitro and In Vivo Comparison Study of Electrospun PLA and PLA/PVA/SA Fiber Membranes for Wound Healing. Polymers, 2020. 12(4):839.
59. Locilento, D.A., et al., Biocompatible and Biodegradable Electrospun Nanofibrous Membranes Loaded with Grape Seed Extract for Wound Dressing Application. Journal of Nanomaterials, 2019. 2019: 2472964.
60. Gomaa, S.F., et al., New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. International Journal of Biological Macromolecules, 2017. 105(1): p. 1148-1160.
61. Zhu, P., et al., Electrospun polylactic acid nanofiber membranes containing Capparis spinosa L. extracts for potential wound dressing applications. Journal of Applied Polymer Science, 2021. 138(32):50800.
62. Liu, Y., et al., Fabrication of Electrospun Polylactic Acid/Cinnamaldehyde/beta-Cyclodextrin Fibers as an Antimicrobial Wound Dressing. Polymers, 2017. 9(10):464.
63. Wang, S.F., et al., The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers, 2021. 13(11):1740.
64. He, Y., et al., Preparation of Defect-Related Luminescent Mesoporous Silica Nanoparticle as Potential Detectable Drug Carrier. Journal of Nanoscience Nanotechnology, 2020. 20(12): p. 7362-7368.
65. Butler, K.S., et al., Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery. Small, 2016. 12(16): p. 2173-2185.
66. Pergal, M.V., et al., Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Progress in Organic Coatings, 2021. 151:106049.
67. 洪佩芝,改質聚乳酸奈米纖維以促進親水性藥物之持續釋放, 化學工程與材料工程學系.2021, 國立中央大學
68. Derkach, S.R., et al., Interactions between gelatin and sodium alginate: UV and FTIR studies. Journal of Dispersion Science and Technology, 2019. 41(5): p. 690-698.
69. Chieng, B., et al., Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 2013. 6(1): p. 93-104.
70. Mofokeng, J.P., et al., Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 2011. 25(8): p. 927-948.
71. Gallagher, A.J., et al. Dynamic Tensile Properties of Human Skin. 2012 IRCOBI Conference Proceedings. International Research Council on the Biomechanics of Injury, 2012.
72. Njobuenwu, D.O., et al., Determination of Contact Angle from Contact Area of Liquid Droplet Spreading on Solid Substrate. Leonardo Electronic Journal of Practices and Technologies, 2007. 6 (10): p. 29-38.
73. Chen, X., et al., Photocrosslinking maleilated hyaluronate/methacrylated poly (vinyl alcohol) nanofibrous mats for hydrogel wound dressings. International Journal of Biological Macromolecules, 2020. 15(155): p. 903-910.
74. Japanese Industrial Standard JIS L 1902:2002,Testing for Antibacterial Activity and Efficacy on Textile Products. Japanese Standards Association,Tokyo, 2002.
75. Arseculeratne, S.N. and Atapattu, D.N., The assessment of the viability of the endospores of Rhinosporidium seeberi with MTT (3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide). The British Mycological Society, 2004. 108(12): p. 1423-1430.
76. Hu, W. and Huang, Y., Targeting the platelet-derived growth factor signalling in cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 2015. 42(12): p. 1221-1224.
77. Yu, J., et al., Platelet-derived Growth Factor Signaling and Human Cancer. Journal of Biochemistry and Molecular Biology, 2003. 36(1): p. 49-59.
78. Aono, Y., et al., Role of Platelet-Derived Growth Factor/Platelet-Derived Growth Factor Receptor Axis in the Trafficking of Circulating Fibrocytes in Pulmonary Fibrosis. American Journal of Resoiratory cell and Molecular Biology, 2014. 51(6): p. 793-801.
79. Zheng, J., et al., Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coronary Artery Disease, 2004. 15(1): p. 59-64.
80. Cabezas, R., et al., Growth Factors and Astrocytes Metabolism: Possible Roles for Platelet Derived Growth Factor. Medicinal Chemistry, 2016. 12(3): p. 204-210.
81. Laiva, A.L., et al., Innovations in gene and growth factor delivery systems for diabetic wound healing. Journal of Tissue Engineering Regenerative Medicine, 2018. 12(1): p. 296-312.
82. Yamakawa, S. and Hayashida, K., Advances in surgical applications of growth factors for wound healing. Burns & Trauma, 2019. 7:10.
83. Hu, W.W., et al., The development of an alginate/polycaprolactone composite scaffold for in situ transfection application. Carbohydrate Polymers, 2018. 183: p. 29-36.
84. Wang, T., et al., Combined Antioxidant–Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS Nano, 2021. 15(5): p. 9027-9038.
85. 林于廷,開發促進傷口癒合之複合敷料,化學工程與材料工程學系. 2019, 國立中央大學
86. 李坪駿,可調控式褐藻酸/聚己內酯複合傷口敷料,化學工程與材料工程學系.2021, 國立中央大學 |