博碩士論文 109229010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.137.218.75
姓名 張慈恆(Tzu-Heng Chang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 The Size and Temperature Distributions of Spots and Faculae on Kepler-17 and Kepler-71
(Kepler-17 和 Kepler-71 的黑子與光斑溫度與大小分布)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從凌日法的發明後,該方法不只為系外行星的探索開啟了新的時代,也提出了磁場活動活躍的恆星更進一步的細節。一些系外行星繞行著太陽類型的恆星
,具有强烈的磁場活動,其特徵是在其表面形成大的黑子或亮斑(光斑),如黑子/光斑的溫度和大小。這些非常重要的物理性質可以透過相應的光變曲線來得知,當行星遮擋住黑子時,我們儀器所測得的亮度會增加,因此在光變曲線中會有凸起的結構;反之,當光斑被行星遮掩時,我們儀器所測得的光度會增加,因此在光變曲線中會有凹下的結構。利用這些結構的高度以及寬度可以進而推得黑子以及光斑的溫度與大小。為了方便比較,我們使用兩顆相似類型且磁場活躍的恆星進行比較,Kepler-17以及Kepler-71皆屬於G型恆星,這兩顆的恆星的磁場活動也很活躍,且這兩顆恆星的行星軌道傾角也趨近於母恆星的赤道,因此當凌日發生時,我們所看到的黑子/光斑結構會更加的明顯。在我們的结果中,當黑子或光斑溫度越低时,黑子或光斑的大小就越大。另外,黑子溫度可能會受到半影溫度的影響,導致黑子平均溫度上升。Kepler-17和Kepler-71的光斑與黑子的面積比都大於1。這個结果表示,Kepler-17和Kepler-71都是光斑為主的不活躍恆星。另一方面,由於此方法從行星大小到黑子/光斑大小,以及步調信號皆會受限於觀測因素條件影響。因此,我們也發展出一套數值模擬來探索此方法對黑子與光斑的限制以及影響,而未來我們也將朝此方向進行研究。
摘要(英) Since the development of the transit method, the approach opened a new era for exoplanet hunting and proposed advanced details of the stellar-magnetic structure. Some exoplanets hosting solar-type stars with intense magnetic activity can be characterized by forming large dark spots or bright spots (faculae) on their surfaces, such as spot temperature and size. These important physical properties are examined by the corresponding light curves during exoplanet transits. In this thesis, we will apply Kepler-17 and Kepler-71 as our targets. Both stars are G-type stars and the edge-on-planet orbit. And the light curve modulations are apparent, which means the active magnetic activity and easy to observe. We utilize Kepler short cadence data and derive the dark (or bright) spot radius and temperature equations from the transit light curve. In the results, as the dark (or bright) spot temperature is lower, the dark (or bright) spot size is larger. And the spot temperature may be affected by the penumbra temperature and make the higher average spot temperature. Both the area ratios of the facula-to-spot of Kepler-17 and Kepler-71 are more significant than 1. The result suggests that Kepler-17 and Kepler-71 are faculae dominant and inactive stars. Among many factors, the precision depends on the observational statistics, the ratio of the exoplanet′s size to that of the dark (or bright) spot, and the cadence used in the light curve measurements. Hence, we also have developed a numerical code to explore the effects and limitations of such a method for spots and faculae. And, this numerical method will be our direction for further research.
關鍵字(中) ★ 恆星黑子
★ 光斑
★ 凌日
★ 系外行星
★ 恆星活動
關鍵字(英) ★ Starspots
★ Faculae
★ Transit
★ Exoplanet
★ Stars activity
論文目次 1 Introduction 1
1.1 Transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Starspots and faculae . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Kepler-17 system . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Kepler-71 system . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Simulation 8
2.1 Limb-darkening effect . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Limb-darkening coefficients . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Simulation light curve with different planet/spot size . . . . . . . 12
2.5 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Rspot vs Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Spots and faculae simulation . . . . . . . . . . . . . . . . . . . . . 18
2.8 G, K, M type star . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 TAP analysis 23
3.1 Observation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Transit Analysis Package . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Temperature and radius calculation . . . . . . . . . . . . . . . . . 25
4 Results 32
4.1 Spots/Faculae temperature . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Spots/Faculae size . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
iii
4.3 Relationship between spots/faculae size and temperature . . . . 35
5 Discussions 40
5.1 starspots/faculae size and temperature . . . . . . . . . . . . . . . 40
5.1.1 Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Facula and spot ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6 Conclusions and Future works 45
7 Addendum 47
Bibliography 50
A Spots and faculae samples from Kepler-17 and Kepler-71 55
iv
參考文獻 Bibliography
[1] Batalha, Natalie M. et al. “Kepler’s First Rocky Planet: Kepler-10b”. In:
729.1, 27 (Mar. 2011), p. 27. DOI: 10.1088/0004- 637X/729/1/27.
arXiv: 1102.0605 [astro-ph.EP].
[2] Berdyugina, Svetlana V. “Starspots: A Key to the Stellar Dynamo”. In: Living
Reviews in Solar Physics 2.1, 8 (Dec. 2005), p. 8. DOI: 10.12942/lrsp-
2005-8.
[3] Bonanno, A., Schlattl, H., and Paternò, L. “The age of the Sun and the
relativistic corrections in the EOS”. In: 390 (Aug. 2002), pp. 1115–1118.
DOI: 10.1051/0004-6361:20020749. arXiv: astro-ph/0204331
[astro-ph].
[4] Bonomo, A. S., Hébrard, G., et al. “SOPHIE velocimetry of Kepler transit
candidates. V. The three hot Jupiters KOI-135b, KOI-204b, and KOI-203b
(alias Kepler-17b)”. In: 538, A96 (Feb. 2012), A96. DOI: 10.1051/0004-6361/201118323. arXiv: 1110.5462 [astro-ph.EP].
[5] Bonomo, A. S. and Lanza, A. F. “Starspot activity and rotation of the planet-hosting star Kepler-17”. In: 547, A37 (Nov. 2012), A37. DOI: 10.1051/0004-6361/201219999. arXiv: 1210.1676 [astro-ph.EP].
[6] Bonomo, A. S. and Lanza, A. F. “Starspot activity and rotation of the planet-hosting star Kepler-17”. In: 547, A37 (Nov. 2012), A37. DOI: 10.1051/0004-6361/201219999. arXiv: 1210.1676 [astro-ph.EP].
[7] Brown, Timothy M. et al. “Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD 209458”. In: 552.2 (May 2001), pp. 699–709. DOI: 10.1086/320580. arXiv: astro-ph/0101336 [astro-ph].
[8] Carter, Joshua A. and Winn, Joshua N. “Parameter Estimation from Timeseries
Data with Correlated Errors: A Wavelet-based Method and its Application to Transit Light Curves”. In: 704.1 (Oct. 2009), pp. 51–67. DOI: 10.
1088/0004-637X/704/1/51. arXiv: 0909.0747 [astro-ph.EP].
[9] Charbonneau, David et al. “Detection of Planetary Transits Across a Sunlike
Star”. In: 529.1 (Jan. 2000), pp. L45–L48. DOI: 10 . 1086 / 312457.
arXiv: astro-ph/9911436 [astro-ph].
[10] Claret, A. and Gimenez, A. “Limb-darkening coefficients of late-type stars.” In: 230 (Apr. 1990), pp. 412–418.
[11] Deeg, H. J., Garrido, R., and Claret, A. “Probing the stellar surface of HD
209458 from multicolor transit observations”. In: 6.2 (Apr. 2001), pp. 51–
60. DOI: 10.1016/S1384- 1076(01)00044- 6. arXiv: astro- ph/
0012435 [astro-ph].
[12] Deeg, Hans J. and Alonso, Roi. “Transit Photometry as an Exoplanet Discovery
Method”. In: Handbook of Exoplanets. Ed. by Hans J. Deeg and Juan
Antonio Belmonte. 2018, 117, p. 117. DOI: 10 . 1007 / 978 - 3 - 319 -
55333-7\_117.
[13] Deleuil, M. et al. “Planets, candidates, and binaries from the
CoRoT/Exoplanet programme. The CoRoT transit catalogue”. In:
619, A97 (Nov. 2018), A97. DOI: 10.1051/0004- 6361/201731068.
arXiv: 1805.07164 [astro-ph.EP].
[14] Deleuil, Magali and Fridlund, Malcolm. “CoRoT: The First Space-Based
Transit Survey to Explore the Close-in Planet Population”. In: Handbook
of Exoplanets. Ed. by Hans J. Deeg and Juan Antonio Belmonte. 2018, 79,
p. 79. DOI: 10.1007/978-3-319-55333-7\_79.
[15] Désert, Jean-Michel et al. “The Hot-Jupiter Kepler-17b: Discovery, Obliquity
from Stroboscopic Starspots, and Atmospheric Characterization”. In:
197.1, 14 (Nov. 2011), p. 14. DOI: 10.1088/0067- 0049/197/1/14.
arXiv: 1107.5750 [astro-ph.EP].
[16] Diaz-Cordoves, J. and Gimenez, A. “A new nonlinear approximation to
the limb-darkening of hot stars”. In: 259.1 (June 1992), pp. 227–231.
[17] Dorren, J. David and Guinan, Edward F. “HD 129333: The Sun in Its Infancy”.
In: 428 (June 1994), p. 805. DOI: 10.1086/174289.
[18] Gaia Collaboration. “VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration,
2020)”. In: VizieR Online Data Catalog, I/350 (Nov. 2020),
pp. I/350.
[19] Gaia Collaboration et al. “Gaia Data Release 2. Summary of the contents
and survey properties”. In: 616, A1 (Aug. 2018), A1. DOI: 10 . 1051 /
0004-6361/201833051. arXiv: 1804.09365 [astro-ph.GA].
[20] Gazak, J. Zachary et al. “Transit Analysis Package: An IDL Graphical User
Interface for Exoplanet Transit Photometry”. In: Advances in Astronomy
2012, 697967 (Jan. 2012), p. 697967. DOI: 10.1155/2012/697967. arXiv:
1102.1036 [astro-ph.EP].
[21] Gondoin, P. “Contribution of Sun-like faculae to the light-curve modulation
of young active dwarfs”. In: 478.3 (Feb. 2008), pp. 883–887. DOI:
10.1051/0004-6361:20078245.
[22] Henry, GregoryW. et al. “A Transiting “51 Peg-like” Planet”. In: 529.1 (Jan.
2000), pp. L41–L44. DOI: 10.1086/312458.
[23] Howell, Steve B. et al. “Kepler Observations of Three Pre-launch Exoplanet
Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet”.
In: 725.2 (Dec. 2010), pp. 1633–1643. DOI: 10 . 1088 / 0004 -
637X/725/2/1633. arXiv: 1010.4106 [astro-ph.EP].
[24] Jha, Saurabh et al. “Multicolor Observations of a Planetary Transit of HD
209458”. In: 540.1 (Sept. 2000), pp. L45–L48. DOI: 10 . 1086 / 312869.
arXiv: astro-ph/0007245 [astro-ph].
[25] Klinglesmith, D. A. and Sobieski, S. “Nonlinear Limb Darkening for Early-
Type Stars”. In: 75 (Mar. 1970), pp. 175–182. DOI: 10.1086/110960.
[26] Koch, David G. et al. “Overview and status of the Kepler Mission”. In:
Optical, Infrared, and Millimeter Space Telescopes. Ed. by John C. Mather.
Vol. 5487. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series. Oct. 2004, pp. 1491–1500. DOI: 10.1117/12.552346.
[27] Lanza, A. F. “Hot Jupiters and the evolution of stellar angular momentum”.
In: 512, A77 (Mar. 2010), A77. DOI: 10 . 1051 / 0004 - 6361 /
200912789. arXiv: 0912.4585 [astro-ph.SR].
[28] Léger, A. et al. “Transiting exoplanets from the CoRoT space mission. VIII.
CoRoT-7b: the first super-Earth with measured radius”. In: 506.1 (Oct.
2009), pp. 287–302. DOI: 10 . 1051 / 0004 - 6361 / 200911933. arXiv:
0908.0241 [astro-ph.EP].
[29] Lockwood, G.W. et al. “Patterns of Photometric and Chromospheric Variation
among Sun-like Stars: A 20 Year Perspective”. In: 171.1 (July 2007),
pp. 260–303. DOI: 10 . 1086 / 516752. arXiv: astro - ph / 0703408
[astro-ph].
[30] Mandel, Kaisey and Agol, Eric. “Analytic Light Curves for Planetary
Transit Searches”. In: 580.2 (Dec. 2002), pp. L171–L175. DOI: 10.1086/
345520. arXiv: astro-ph/0210099 [astro-ph].
[31] Mathur, Savita et al. “Revised Stellar Properties of Kepler Targets for the
Q1-17 (DR25) Transit Detection Run”. In: 229.2, 30 (Apr. 2017), p. 30.
DOI: 10 . 3847 / 1538 - 4365 / 229 / 2 / 30. arXiv: 1609 . 04128
[astro-ph.SR].
[32] Mayor, Michel and Queloz, Didier. “A Jupiter-mass companion to a
solar-type star”. In: 378.6555 (Nov. 1995), pp. 355–359. DOI: 10.1038/
378355a0.
[33] Meibom, Søren et al. “A spin-down clock for cool stars from observations
of a 2.5-billion-year-old cluster”. In: 517.7536 (Jan. 2015), pp. 589–591. DOI:
10.1038/nature14118. arXiv: 1501.05651 [astro-ph.SR].
[34] Milne, E. A. “Radiative equilibrium in the outer layers of a star”. In: 81
(Mar. 1921), pp. 361–375. DOI: 10.1093/mnras/81.5.361.
[35] Müller, H. M. et al. “High-precision stellar limb-darkening measurements.
A transit study of 38 Kepler planetary candidates”. In: 560, A112 (Dec.
2013), A112. DOI: 10.1051/0004-6361/201322079.
[36] Pecaut, Mark J. and Mamajek, Eric E. “Intrinsic Colors, Temperatures,
and Bolometric Corrections of Pre-main-sequence Stars”. In: 208.1, 9 (Sept.
2013), p. 9. DOI: 10.1088/0067-0049/208/1/9. arXiv: 1307.2657
[astro-ph.SR].
[37] Pecaut, Mark J., Mamajek, Eric E., and Bubar, Eric J. “A Revised Age for
Upper Scorpius and the Star Formation History among the F-type Members
of the Scorpius-Centaurus OB Association”. In: 746.2, 154 (Feb. 2012),
p. 154. DOI: 10.1088/0004- 637X/746/2/154. arXiv: 1112.1695
[astro-ph.SR].
[38] Queloz, D. et al. “Detection of a spectroscopic transit by the planet orbiting
the star HD209458”. In: 359 (July 2000), pp. L13–L17. arXiv: astro-ph/
0006213 [astro-ph].
[39] Radick, Richard R. et al. “Patterns of Variation among Sun-like Stars”. In:
118.1 (Sept. 1998), pp. 239–258. DOI: 10.1086/313135.
[40] Seager, S. and Mallén-Ornelas, G. “A Unique Solution of Planet and Star
Parameters from an Extrasolar Planet Transit Light Curve”. In: 585.2 (Mar.
2003), pp. 1038–1055. DOI: 10 . 1086 / 346105. arXiv: astro - ph /
0206228 [astro-ph].
[41] Silva, Adriana V. R. “Method for Spot Detection on Solar-like Stars”. In:
585.2 (Mar. 2003), pp. L147–L150. DOI: 10.1086/374324.
[42] Sing, D. K. “Stellar limb-darkening coefficients for CoRot and Kepler”. In:
510, A21 (Feb. 2010), A21. DOI: 10 . 1051 / 0004 - 6361 / 200913675.
arXiv: 0912.2274 [astro-ph.EP].
[43] Skumanich, A. “Time Scales for Ca II Emission Decay, Rotational Braking,
and Lithium Depletion”. In: 171 (Feb. 1972), p. 565. DOI: 10.1086/
151310.
[44] Solanki, Sami K., Inhester, Bernd, and Schüssler, Manfred. “The solar magnetic
field”. In: Reports on Progress in Physics 69.3 (Mar. 2006), pp. 563–
668. DOI: 10 . 1088 / 0034 - 4885 / 69 / 3 / R02. arXiv: 1008 . 0771
[astro-ph.SR].
[45] Valio, Adriana. “Stellar activity by spot transit modeling”. In: Boletim da
Sociedade Astronômica Brasileira 31 (Mar. 2019), pp. 51–54.
[46] Valio, Adriana et al. “Activity and Rotation of Kepler-17”. In: 835.2, 294
(Feb. 2017), p. 294. DOI: 10.3847/1538- 4357/835/2/294. arXiv:
1702.02213 [astro-ph.SR].
[47] Wade, R. A. and Rucinski, S. M. “Linear and quadratic limb-darkening
coefficients for a large grid of LTE model atmospheres.” In: 60 (June 1985),
pp. 471–484.
[48] Zaleski, S. M., Valio, A., Carter, B. D., et al. “Activity and differential rotation
of the earlyMdwarf Kepler-45 from transit mapping”. In: 492.4 (Mar.
2020), pp. 5141–5151. DOI: 10.1093/mnras/staa103.
[49] Zaleski, S. M., Valio, A., Marsden, S. C., et al. “Differential rotation of
Kepler-71 via transit photometry mapping of faculae and starspots”. In:
484.1 (Mar. 2019), pp. 618–630. DOI: 10.1093/mnras/sty3474.
[50] Zeilik, Michael and Gregory, Stephen. Introductory Astronomy and Astrophysics.
1998.
[51] Zeilik, Michael and Gregory, Stephen. Introductory Astronomy and Astro-
physics. 1998.
54
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2022-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明