博碩士論文 109223003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.140.198.43
姓名 周凱文(Kai-Wen Zhou)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以咪唑并[1,5-a]吡啶結構所合成的同碳雙碳烯之雙金屬錯合物的合成、鑑定以及反應性探討
(Synthesis, Characterization and Reactivity of Bimetallic Complex of Imidazo[1,5-a]pyridine based Carbodicarbene)
相關論文
★ 具氧化還原性的同碳雙碳烯金錯合物和雙芽手性卡本衍生物及其金屬錯合物之合成與結構鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗室主要發展的為卡本衍生物中的同碳雙碳烯及同碳膦烷碳烯以及它們的金屬錯合物,卡本為中心碳擁有兩對未鍵結電子對,它們是利用強推電子取代基以配位共價鍵與零價碳鍵結,以達到穩定零價碳的作用,是很強的電子贈與配位基,也因為具兩對電子的特性使得其可以與金屬配位形成單、雙金屬錯合物。
本論文以咪唑并[1,5-a]吡啶作為起始物,利用本實驗室所開發合成同碳雙碳烯的合成方法,合成出含氮雜環配位基,並可與醋酸鈀反應形成二聚體鈀金屬錯合物,而二聚體鈀金屬錯合物可與不同膦配位基反應形成單體鈀金屬錯合物,後續將單體鈀金屬錯合物進行去質子化形成同碳雙碳烯之鈀金屬錯合物,並利用同碳雙碳烯具有兩對未鍵結電子對之特性成功合成出鈀、金雙金屬錯合物。
在有機金屬化學中配位基扮演非常重要的角色,不同電子效應與立體效應的配位基透過鍵結形成金屬錯合物影響中心金屬的活性,進而影響金屬錯合物作為催化劑的反應特性,我們透過X-ray單晶結構數據探討鈀金屬搭配不同的膦配位基的影響,並且將合成的金屬錯合物應用於磺醯化反應中,並探討單、雙金屬錯合物在此反應的催化特性。
摘要(英) Our research group is dedicated to the design and synthesis of carbone ligands and their metal complexes. Carbone ligands (L2C) are divalent carbon(0) species with a central carbon atom preserving all its four valence electrons as two lone pairs while flanked by two electron-donor groups (L). Due to their unique bonding situation, carbones are inherently strong electron-donating ligands.
In this thesis, Imidazo[1,5-a]pyridine based carbodicarbene palladium complex was synthesized using a synthetic protocol that our research group previously developed. First, the precursor salt of the carbone ligand was synthesized and reacted with palladium (II) acetate, which furnished the salt’s dimeric palladium (II) complex. Then, the dimeric complex reacted with different phosphine ligands to form the monomer palladium (II) complexes. Subsequently, deprotonating the salt′s monomer palladium (II) complexes using a strong base gave the corresponding carbodicarbene palladium (II) complexes with a free lone pair of electrons on the carbone center. Finally, the Pd-Au bimetallic complex was synthesized from the reaction of the carbone palladium (II) complex with PPh3AuNTf2 by accessing the second lone pair electrons of the carbone palladium complex.
In organometallic chemistry, ligands play an important role in manipulating the property of a central metal they coordinate with through steric and electronic effects. Consequently, these effects further control the reactivity of metal complexes in catalytic reactions. In this work, we also studied the impact of different phosphine ligands on the metal complex’s catalytic properties toward sulfonylation reaction.
關鍵字(中) ★ 有機金屬催化 關鍵字(英)
論文目次 摘 要 2
ABSTRACT 3
致謝 4
目錄 5
圖目錄 8
式目錄 10
表目錄 13
附圖目錄 14
附表目錄 19
簡稱說明 20
第一章 緒論 21
1-1 前言 21
1-2 膦化物 22
1-3 碳烯 carbene 26
1-4 含氮雜環碳烯 N-heterocyclic carbene 28
1-5 卡本 carbone 34
1-6 咪唑并[1,5-a]吡啶 imidazo[1,5-a]pyridine 39
1-7 亞磺酸鹽 sulfinate salt 41
1-8 研究動機 44
第二章 結果與討論 45
2-1 含氮雜環配位基之合成 45
2-2 含氮雜環配位基的鈀金屬錯合物之合成與探討 51
2-2-1 含氮雜環配位基的鈀金屬錯合物之合成 55
2-2-2 含氮雜環配位基的單體鈀金屬錯合物之晶體結構 58
2-2-3 含氮雜環配位基的鈀金屬錯合物之探討 65
2-3 同碳雙碳烯之雙金屬錯合物之合成與探討 68
2-3-1 同碳雙碳烯之雙金屬錯合物之合成 70
2-3-2 同碳雙碳烯之雙金屬錯合物之晶體結構 72
2-3-3 同碳雙碳烯之雙金屬錯合物之探討 74
2-3-4 同碳雙碳烯之雙金屬錯合物催化能力 77
2-4 金屬錯合物應用於催化合成亞磺酸鹽化合物 79
2-4-1 含氮雜環配位基的鈀金屬錯合物催化能力比較 82
第三章 結論 84
第四章 實驗方法 85
4-1實驗儀器 85
4-1-1 核磁共振儀 (Nuclear magnetic resonance spectrometer) 85
4-1-2 X-ray單晶繞射解析 (X-ray diffractometer) 86
4-1-3 解析度磁場質譜儀 (High resolution magnetic sector mass spectrometer) 86
4-2藥品與溶劑 87
4-3合成步驟 88
4-4催化反應步驟 119
參考文獻 122
附錄1 X-ray晶體與數據 126
附錄2 化合物光譜 144
參考文獻 Yamanaka, M.; Mikami, K. Theoretical Study on the Tropos Nature of the BIPHEP−Pd(II)/DABN and DPEN Complexes:  PIO Analysis of Phosphine−Pd(II) Interaction and Trans Influence. Organometallics 2005, 24, 4579-4587.
2. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 1977, 77, 313-348.
3. Tolman, C. A. Phosphorus ligand exchange equilibriums on zerovalent nickel. Dominant role for steric effects. J. Am. Chem. Soc. 1970, 92, 2956–2965.
4. Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39-92.
5. Pauling, L. The structure of singlet carbene molecules. J. Chem. Soc., Chem. Commun. 1980, 688-689.
6. Gilbert, B. C.; Griller, D.; Nazran, A. S. Structures of diarylcarbenes and their effect on the energy separation between singlet and triplet states. J. Org. Chem. 1985, 50, 4738-4742.
7. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485-496.
8. Wanzlick, H.-W.; Schönherr, H.-J. Direct Synthesis of a Mercury Salt-Carbene Complex. Angew. Chem. Int. Ed. 1968, 7, 141-142.
9. Arduengo, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene. J. Chem. Soc., Chem. 1991, 113, 361-363.
10. Gründemann, S.; Kovacevic, A.; Albrecht, M.; Faller Robert, J. W.; Crabtree, H. Abnormal binding in a carbene complex formed from an imidazolium salt and a metal hydride complex. Chem. Commun. 2001, 2274-2275.
11. Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernández, R.; Brown, J. M.; Lassaletta, J. M. Imidazo[1,5-a]pyridine:  A Versatile Architecture for Stable N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2005, 127, 3290-3291.
12. Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Isolation of a C5-Deprotonated Imidazolium, a Crystalline "Abnormal"N-Heterocyclic Carbene. Science 2009, 326, 556-559.
13. Tonner, R.; Heydenrych, G.; Frenking, G. Bonding Analysis of N-Heterocyclic Carbene Tautomers and Phosphine Ligands in Transition-Metal Complexes: A Theoretical Study. Chem.Asian. J 2007, 2, 1555-1567.
14. Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem. Rev. 2018, 118, 9843-9929.
15. Bera, S. S.; Szostak, M. Cobalt–N-Heterocyclic Carbene Complexes in Catalysis. ACS Catal. 2022, 12, 3111-3137.
16. Wang, T.-H.; Chen, W.-C.; Ong, T.-G. Carbodicarbenes or Bent Allenes. J .Chin. Chem. Soc. 2017, 64, 124-132.
17. Saalfrank, R. W.; Maid, H. Roots: From carbenes to allenes and coordination polymers Ever present never twice the same. Chem. Commun. 2005, 5953-5967,
18. Tonner, R.; Frenking, G. C(NHC)2: Divalent Carbon(0) Compounds with N-Heterocyclic Carbene Ligands—Theoretical Evidence for a Class of Molecules with Promising Chemical Properties. Angew. Chem., Int. Ed. 2007, 46 , 8695-8698.
19. Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities. Organometallics 2013, 32, 2435-2442.
20. Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Coordination Chemistry of Ene-1,1-diamines and a Prototype “Carbodicarbene”. Angew. Chem., Int. Ed. 2008, 47, 3210-3214.
21. Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angew. Chem., Int. Ed. 2015, 54, 15207-15212.
22. Hsu, Y.-C.; Wang, V. C.-C.; Au-Yeung, K.-C.; Tsai, C.-Y.; Chang, C.-C.; Lin, B.-C.; Chan, Y.-T.; Hsu, C.-P.; Yap, G. P. A.; Jurca, T.; et al. One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angew. Chem., Int. Ed. 2018, 57, 4622-4626.
23. Liu, S.-k.; Chen, W.-C.; Yap, G. P. A.; Ong, T.-G. Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020, 39, 4395-4401.
24. Koto, Y.; Shibahara, F.; Murai, T. Imidazo[1,5-a]pyridin-3-ylidenes as π-accepting carbene ligands: substituent effects on properties of N-heterocyclic carbenes. Org. Biomol. Chem. 2017, 15, 1810-1820.
25. Smiles, S.; Le Rossignol, R. LXX.—The sulphination of phenolic ethers and the influence of substituents. Journal of the Chemical Society, Transactions 1908, 93, 745-762.
26. Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Sulfinate derivatives: dual and versatile partners in organic synthesis. Org. Biomol. Chem. 2014, 12, 9743-9759.
27. Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed cross-coupling reactions with aryl halides. Chem. Sci. 2017, 8, 4437-4442.
28. Liang, S.; Hofman, K.; Friedrich, M.; Manolikakes, G. Recent Advances in the Synthesis and Direct Application of Sulfinate Salts. Eur. J. Org. Chem. 2020, 2020, 4664-4676.
29. Kice, J. L.; Bowers, K. W. The Mechanism of the Disproportionation of Sulfinic Acids. J. Am. Chem. Soc. 1962, 84, 605-610.
30. Martin, C.; Sandrinelli, F.; Perrio, C.; Perrio, S.; Lasne, M.-C. Oxidation of Aromatic Lithium Thiolates into Sulfinate Salts:  An Attractive Entry to Aryl Sulfones Labeled with Carbon-11. J. Org. Chem. 2006, 71, 210-214.
31. Zhang, J.; Zhou, K.; Wu, J. Generation of sulfonated isobenzofuran-1(3H)-ones under photocatalysis through the insertion of sulfur dioxide. Org. Chem. Front. 2018, 5, 813-816
32. Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C. DABCO-Bis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Org. Lett. 2011, 13 , 4876-4878.
33. Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Acenaphthoimidazolylidene Gold Complex-Catalyzed Alkylsulfonylation of Boronic Acids by Potassium Metabisulfite and Alkyl Halides: A Direct and Robust Protocol To Access Sulfones. ACS Catal. 2017, 7, 4655-4659.
34. Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Pd(NHC)-catalyzed alkylsulfonylation of boronic acids: a general and efficient approach for sulfone synthesis. Chem. Commun. 2017, 53, 12473-12476
35. Ghosh, K.; Dhara, S.; Jana, S.; Das, S.; Roy, S. NHC stabilized Pd nanoclusters in the Mizoroki–Heck reaction within microemulsion: exploring the role of imidazolium salt in rate enhancement. New J. Chem. 2019, 43, 1993-2001.
36. Viciu, M. S.; Kissling, R. M.; Stevens, E. D.; Nolan, S. P. An Air-Stable Palladium/N-Heterocyclic Carbene Complex and Its Reactivity in Aryl Amination. Org. Lett. 2002, 4, 2229-2231.
37. Schmid, T. E.; Jones, D. C.; Songis, O.; Diebolt, O.; Furst, M. R. L.; Slawin, A. M. Z.; Cazin, C. S. J. Mixed phosphine/N-heterocyclic carbene palladium complexes: synthesis, characterization and catalytic use in aqueous Suzuki–Miyaura reactions. Dalton Trans. 2013, 42, 7345-7353.
38. Shih, W.-C.; Chiang, Y.-T.; Wang, Q.; Wu, M.-C.; Yap, G. P. A.; Zhao, L.; Ong, T.-G. Invisible Chelating Effect Exhibited between Carbodicarbene and Phosphine through π–π Interaction and Implication in the Cross-Coupling Reaction. Organometallics 2017, 36, 4287-4297.
39. Au-Yeung, K.-C.; Xiao, D.; Shih, W.-C.; Yang, H.-W.; Wen, Y.-S.; Yap, G. P. A.; Chen, W.-C.; Zhao, L.; Ong, T.-G. Carbodicarbene: geminal-Bimetallic Coordination in Selective Manner. Chem. Eur. J. 2020, 26, 17350-17355.
40. Jiménez-Núñez, E.; Echavarren, A. M. Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chem. Rev. 2008, 108, 3326-3350.
41. Seppänen, O.; Aikonen, S.; Muuronen, M.; Alamillo-Ferrer, C.; Burés, J.; Helaja, J. Dual H-bond activation of NHC–Au(i)–Cl complexes with amide functionalized side-arms assisted by H-bond donor substrates or acid additives. Chem. Commun. 2020, 56, 14697-14700.
42. Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. Angew. Chem., Int. Ed. 2014, 53, 4404-4407.
指導教授 王朝諺 陳銘洲(Tiow-Gan Ong Ming-Chou Chen) 審核日期 2022-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明