博碩士論文 109223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.118.145.114
姓名 陳哲緯(Jhe-Wei Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 添加硝酸鋅之PEDOT:PSS膜作為高效率反式錫鈣鈦礦太陽能電池電洞傳遞層
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-31以後開放)
摘要(中) 錫鈣鈦礦(Tin Perovskite,簡稱TPsk)具有較鉛鈣鈦礦毒性低、載子遷移率高的特性,且錫鈣鈦礦能隙接近 Shockley-Queisser limit 所需具備的吸光層能隙(~ 1.34 eV ) ,因此錫鈣鈦礦太陽能電池之研究受科學家重視。反式錫鈣鈦礦太陽能電池(Tin Perovskite solar cells,簡稱TPSCs)最常使用的電洞傳遞層(HTL)為PEDOT:PSS,然而PEDOT:PSS膜的work function (-5.15 eV) 與FA0.98EDA0.01SnI3的valence band (-5.84 eV)能階差大,且PEDOT:PSS膜的電洞遷移率僅大約10-4 cm2V-1s-1,仍有改善的空間。本研究嘗試在PEDOT:PSS 中加入硝酸鋅(Zn(NO3)2)作為電洞傳遞層,Zn2+會與PSS-有交互作用,使導電的 PEDOT 鏈與不導電的 PSS 鏈分離並舒張 PEDOT 鏈,增加 PEDOT:PSS 膜的電洞遷移率,有摻雜Zn(NO3)2之PEDOT:PSS膜電洞遷移率由1.710-4 cm2V-1s-1增加至2.8*10-4 cm2V-1s-1 ,使組裝之元件的 Jsc 值可由 22.99 mA/cm2 提升至 25.92 mA/cm2。且摻雜Zn(NO3)2降低PEDOT:PSS膜之work function,使HTL與錫鈣鈦礦層能階差變小,組裝之元件的Voc值由0.55 V增加至0.58 V。以摻雜硝酸鋅之PEDOT:PSS膜作為電洞傳遞層所組裝之元件的光電轉換效率可達 10.60%;而以 PEDOT:PSS 膜作為電洞傳遞層之元件的光電轉換效率僅有8.66%。另外,放置在手套箱中不照光的條件下2200小時後,摻雜硝酸鋅之PEDOT:PSS膜作為電洞傳遞層所組裝之元件的光電轉換效率仍可維持原來的94%,而以 PEDOT:PSS 膜作為電洞傳遞層之元件在相同測試條件下,光電轉換效率僅維持原來的88%。
摘要(英) Tin Perovskite (TPsk) has the characteristics of lower toxicity, higher carrier mobility and ideal band gap which is close to of the light-absorbing layer required by the Shockley-Queisser limit (~ 1.34 eV). These are some reasons that tin perovskite solar cells have attracted the scientists′ attention. The most commonly used hole transport layer (HTL) for Tin Perovskite solar cells (TPSCs) is PEDOT:PSS. However, there is a mismatch energy level between the work function of PEDOT:PSS film (-5.15 eV) and the valence band of TPsk (FA0.98EDA0.01SnI3 (-5.84 eV) used in this study), and the hole mobility of PEDOT:PSS film is only about 10-4 cm2V-1s-1, having a space to improve. In this study, we tried to add zinc nitrate (Zn(NO3)2) into PEDOT:PSS to be a HTL for TPSCs. Zn2+ can interact with the SO3- on PSS, thus separate the more conducting PEDOT chains from the less conducting PSS chains and relax the PEDOT chain simultaneously to increase the hole mobility of the PEDOT:PSS film. The hole mobility of the PEDOT:PSS film doped with Zn(NO3)2 is 2.8×10-4 cm2V-1s-1 (higher than that (1.7×10-4 cm2V-1s-1) of non-doped PEDOT:PSS), and the Jsc value of the corresponding TPSCs is 25.92 mA/cm2 which is also larger than that (22.99 mA/cm2) of the cell based on non-doped PEDOT:PSS HTL. In addition, doping PEDOT:PSS with Zn(NO3)2 reduces the work function of the PEDOT:PSS to match better the valence band of TPsk absorber. As a result, the Voc (0.58 V) of the TPSCs used doped HTL also increases (0.55 V for TPSC based undoped PEDOT:PSS HTL). The power conversion efficiency (PCE) of the devices based on Zn(NO3)2@PS as HTL achieved the highest value of 10.60%, while the PCE of the device based on PEDOT:PSS HTL is only 8.66%. Cell based on Zn(NO3)2@PS HTL can maintain 94% of the initial PCE when the devices were placed in the glove box in dark without packing for 2200 hours, while the PCE of the device based on PEDOT:PSS HTL losts 12% of its initial PCE under the same test condition.
關鍵字(中) ★ 錫鈣鈦礦
★ 太陽能電池
關鍵字(英) ★ tin perovskite
★ solar cell
論文目次 摘要 VI
ABSTRACT VIII
GRAPHICAL ABSTRACT X
誌謝 XI
目錄 XII
圖目錄 XIX
表目錄 XXV
附錄 XXIX
第一章 緒論 1
1-1、 前言 1
1-2、 錫鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 錫鈣鈦礦太陽能電池的架構 4
1-2-2. 反式錫鈣鈦礦太陽能電池的工作原理 6
1-3、 錫鈣鈦礦太陽能電池的研究歷程 7
1-3-1. 第一個錫鈣鈦礦太陽能電池的研究 7
1-3-2. 第一個以全無機錫鈣鈦礦材料作為吸光層的錫鈣鈦礦太陽能電池研究 8
1-3-3. 最高光電轉換效率的錫鈣鈦礦太陽能電池元件 9
1-4、 製備錫鈣鈦礦膜的方法 11
1-4-1. 一步驟合成法製備錫鈣鈦礦膜 12
1-4-2. 一步驟反溶劑法製備錫鈣鈦礦膜 12
1-4-3. 兩步驟合成法製備錫鈣鈦礦膜 13
1-5、 以PEDOT:PSS膜作為TPSC之電洞傳遞層的優缺點及改質方式 14
1-5-1. 錫鈣鈦礦前驅溶液在酸性環境下能抑制Sn2+ 氧化成Sn4+ 14
1-5-2. 以PEDOT:PSS膜作為TPSC之電洞傳遞層的優缺點 15
1-5-3. PSS分布於PEDOT:PSS膜表面 16
1-5-4. 在PEDOT:PSS添加H2PtCl6增加PEDOT:PSS膜的導電度 17
1-5-5. 在PEDOT:PSS添加NaCl增加PEDOT:PSS膜的導電度並使其與鉛鈣鈦礦的前置軌域能階更匹配 19
1-5-6. 添加PEG至PEDOT:PSS膜中可調整PEDOT:PSS 膜的 Valence band 21
1-5-7. 添加Ammonia至PEDOT:PSS中形成NH4+PSS-可降低PEDOT:PSS膜的Valence band 22
1-5-8. 在PEDOT:PSS添加醋酸鋅增加PEDOT:PSS膜的導電度 24
1-5-9. 檸檬酸基團之-COO-與-OH與鈣鈦礦形成鍵結並鈍化鈣鈦礦層 26
1-5-10. 摻雜硝酸之PEDOT:PSS膜有高導電度 27
1-5-11. 統整PEDOT:PSS膜的改質 29
1-6、 研究動機 31
第二章 實驗方法 32
2-1、 實驗藥品與儀器 32
2-1-1. 藥品 32
2-1-2. 儀器設備 34
2-2、 反式錫鈣鈦礦太陽能電池組裝步驟 34
2-2-1. 藥品配製 34
2-2-2. 反式錫鈣鈦礦太陽能電池元件的組裝 35
2-3、 儀器原理及樣品製備 39
2-3-1. 太陽光模擬器(Solar Simulator, Enlitech SS-F5) 39
2-3-2. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 42
2-3-3. 接觸角量測儀(Contact angle, Grandhand Ctag01) 43
2-3-4. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy, HITACHI U-4100 ) 44
2-3-5. X-ray光電子能譜儀(X-ray photoelectron spectroscopy(XPS), Thermo VG-Scientific / Sigma Probe) 45
2-3-6. 紫外光電子能譜儀 (Ultraviolet photoelectron spectroscopy(UPS), Thermo VG-Scientific / Sigma Probe) 46
2-3-7. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope(FE-SEM), Nova nano SEM 230) 47
2-3-8. X-ray繞射光譜儀(X-Ray Diffractometer(XRD), BRUKER D8 Discover ) 48
2-3-9. 光致螢光光譜儀(Photoluminescence Spectrometer, Uni think UniRAM) 49
2-3-10. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer(FTIR), Jasco 4100) 51
第三章 結果與討論 53
3-1、 篩選錫鈣鈦礦前驅溶液最佳製備條件 53
3-1-1. 以不同轉速製備錫鈣鈦礦膜並組裝成元件的光伏表現 53
3-1-2. 篩選不同濃度FA0.98EDA0.01SnI3前驅溶液及SnI2與(FAI+EDAI2)的莫耳比製膜 54
3-1-3. 不同溫度及加熱時間製備錫鈣鈦礦膜 57
3-2、 不同鹽類添加劑對PEDOT:PSS 膜性質的改變 58
3-2-1. 添加不同鋅鹽類至PEDOT:PSS(aq)製備成膜作為電洞傳遞層並組裝成元件的光伏表現 58
3-2-2. 添加不同硝酸鹽類至PEDOT:PSS(aq) 製備成膜作為電洞傳遞層並組裝成元件的光伏表現 60
3-2-3. 添加不同濃度Zn(CH3COO)2、AgNO3及Zn(NO3)2至PEDOT:PSS(aq)製備成電洞傳遞膜並組裝成元件的光伏表現 62
3-3、 以PEDOT:PSS、Zn(NO3)2@PS膜作為HTL所組裝之最高效率元件的遲滯現象及IPCE 66
3-4、 以PEDOT:PSS、Zn(NO3)2@PS膜作為HTL所組裝之元件的暗電流 69
3-5、 PEDOT:PSS與Zn(NO3)2@PS膜的性質 70
3-5-1. PEDOT:PSS及Zn(NO3)2@PS膜的XPS能譜圖 70
3-5-2. Zn(NO3)2@PEDOT:PSS膜與錫鈣鈦礦前驅溶液之相容性的影響 73
3-5-3. PEDOT:PSS、Zn(NO3)2@PS膜與在其上沉積錫鈣鈦礦膜的電洞遷移率 74
3-5-4. PEDOT:PSS與Zn(NO3)2@PS膜的導電度 79
3-5-5. PEDOT:PSS與Zn(NO3)2@PS膜的UV-Vis穿透光譜及對AM1.5G太陽能譜的光通量 82
3-5-6. PEDOT:PSS及Zn(NO3)2@PS膜的前置軌域能階 84
3-5-7. PEDOT:PSS及Zn(NO3)2@PS膜的表面形貌 85
3-5-8. PEDOT:PSS、Zn(NO3)2@PS及Zn(NO3)2膜的XRD圖 86
3-6、 在PEDOT:PSS、Zn(NO3)2@PS膜上沉積之錫鈣鈦礦膜的表面形貌、光學性質 88
3-6-1. 在PEDOT:PSS或Zn(NO3)2@PS膜上沉積之錫鈣鈦礦膜的表面形貌 88
3-6-2. 沉積在PEDOT:PSS或Zn(NO3)2@PS膜上之錫鈣鈦礦膜的結晶度 89
3-6-3. 沉積在PEDOT:PSS或Zn(NO3)2@PS膜上之錫鈣鈦礦膜的UV-vis吸收光譜 91
3-6-4. 沉積在PEDOT:PSS或Zn(NO3)2@PS膜上之錫鈣鈦礦膜的前置軌域能階 92
3-6-5. 沉積在PEDOT:PSS或Zn(NO3)2@PS膜上之錫鈣鈦礦膜的PL及TRPL圖 94
3-6-6. 沉積在PEDOT:PSS或Zn(NO3)2@PS膜上之錫鈣鈦礦膜的XPS能譜圖 95
3-7、 Zn(NO3)2、Zn(NO3)2@SnI2及Zn(NO3)2@SnF2的FTIR穿透光譜圖 97
3-8、 PEDOT:PSS、Zn(NO3)2@PS膜作為HTL所組裝之錫鈣鈦礦太陽能電池元件的長時間穩定性 98
第四章 結論 100
參考文獻 102
附錄 108
附錄1. 以PEDOT:PSS、Zn(NO3)2@PS膜作為HTL所組裝之最高效率元件的穩態電流密度及光電轉換效率輸出 108
附錄2. 添加不同鋅鹽類至PEDOT:PSS(aq) 製備成膜作為電洞傳遞層並組裝成元件的光伏表現 109
附錄3. 以硝酸對Zn(NO3)2@PS膜做後處理所組裝之元件的光伏表現 110
附錄4. 以PEDOT:PSS、Zn(NO3)2@PS膜作為HTL所組裝之元件的玻璃面沉積NaF膜作為抗反射層的光伏表現 112
參考文獻 [1]Minjin Kim, Jaeki Jeong, Haizhou Lu, Tae Kyung Lee, Felix T. Eickemeyer, Yuhang Liu, In Woo Choi, Seung Ju Choi, Yimhyun Jo, Hak-Beom Kim, Sung-In Mo, Young-Ki Kim, Heunjeong Lee, Na Gyeong An, Shinuk Cho, Wolfgang R. Tress, Shaik M. Zakeeruddin, Anders Hagfeldt, Jin Young Kim, Michael Grätzel, Dong Suk Kim. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306
[2]Bin-Bin Yu, Zhenhua Chen, Yudong Zhu, Yiyu Wang, Bing Han, Guocong Chen, Xusheng Zhang, Zheng Du, Zhubing He. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Adv. Mater., 2021, 33, 2102055-2102064
[3]Hongki Kim, Yoon Ho Lee, Taecheon Lyu, Jong Heun Yoo, Taiho Park , Joon Hak Oh. Boosting the performance and stability of quasi-twodimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. J. Mater. Chem. A, 2018, 6, 18173-18182
[4]Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, Mercouri G. Kanatzidis. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photon., 2014, 8, 489-494
[5]Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G. Mhaisalkar, Nripan Mathews. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Adv. Mater., 2014, 26, 7122-7127
[6]Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo, Sang Il Seok. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc., 2016, 138, 12, 3974-3977
[7]Zonglong Zhu, Chu-Chen Chueh, Nan Li, Chengyi Mao, Alex K.-Y. Jen. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv. Mater., 2017, 1703800
[8]Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, Liyuan Han. Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. J. Phys. Chem. Lett, 2020, 11, 2965-2971
[9]Lijun Hu, Kuan Sun, Ming Wang, Wei Chen, Bo Yang, Jiehao Fu, Zhuang Xiong, Xinyi Li,Xiaosheng Tang, Zhigang Zang, Shupeng Zhang, Lidong Sun, Meng Li. Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Appl. Mater. Interfaces, 2017, 9, 43902−43909
[10]Xiao Liu, Yanbo Wang, Fengxian Xie, Xudong Yang, Liyuan Han. Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch. ACS Energy Lett.,2018, 3, 1116−1121
[11]Yu Wang, Yao Hu, Dongwei Han, Quan Yuan, Tiantian Cao, Ning Chen, Dongying Zhou, Hailin Cong, Lai Feng. Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron., 2019, 70, 63−70
[12]Falin Wu, Pengcheng Li, Kuan Sun, Yongli Zhou, Wei Chen, Jiehao Fu, Meng Li, Shirong Lu, Dongshan Wei, Xiaosheng Tang, Zhigang Zang, Lidong Sun, Xixia Liu, Jianyong Ouyang. Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. Adv. Electron. Mater., 2017, 3, 1700047
[13]Hamed Moeini Alishah, Fatma Pinar Gokdemir Choi, Furkan Kuruoglu, Ayse Erol, Serap Gunes. Improvement of fill factor by the utilization of Zn-doped PEDOT:PSS hole-transport layers for p-i-n planar type of perovskite solar cells. Electrochimica Acta , 2021, 388 , 138658−138669
[14]Changbong Yeon, Sun Jin Yun, Jumi Kim, Jung Wook Lim. PEDOT:PSS Films with Greatly Enhanced Conductivity via Nitric Acid Treatment at Room Temperature and Their Application as Pt/TCO-Free Counter Electrodes in Dye-Sensitized Solar Cells. Adv. Electron. Mater., 2015, 1, 1500121−1500128
[15]Grzegorz Greczynski, Th J. Kugler, Matthias Keil, Wojciech Osikowicz, Mats Fahlman, William R. Salaneck. Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results. J. Electron Spectrosc. Relat. Phenom., 2001, 121, 1−17
[16]Fei Wu, Kangrong Yan, Haotian Wu, Benfang Niu, Zhixin Liu, Yaokai Li, Lijian Zuo, Hongzheng Chen. Tuning interfacial chemical interaction for highperformance perovskite solar cell with PEDOT:PSS as hole transporting layer. J. Mater. Chem. A, 2021, 9, 14920−14927
[17]Severin N. Habisreutinger, Nakita K. Noel, Henry J. Snaith. Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Lett., 2018, 3, 2472−2476
[18]Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis, Khasan S. Karimov. SpaceCharge−Limited Current Model for Polymers. Conduct. Polym., 2016, 5, 91−117
[19]Zhebo Chen, Todd G. Deutsch, Huyen N. Dinh, Kazunari Domen. Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, 2013, 7
[20]Xavier Crispin, S. Marciniak, Wojciech Osikowicz, Georg Zotti, A. W. Denier van der Gon, Frank Louwet, Mats Fahlman, Lambertus Bert Groenendaal, Fabien De Schryver, William R. Salaneck. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci., Part B , 2003, 41, 2561−2583
[21]S.K.M. Jönsson, Jonas Birgerson, Xavier Crispin, Grzegorz Greczynski, Wojciech Osikowicz, A.W. Denier van der Gon, William R. Salaneck, Mats Fahlman. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals, 2003, 139, 1–10
[22]Yingchu Chen, Jie Shi, Xitao Li, Siqi Li, Xinding Lv, Xiangnan Sun, Yan-Zhen Zheng, Xia Tao. A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. J. Mater. Chem. A , 2020, 8, 6349–6359
[23]Steven A. Rutledge and Amr S. Helmy. Carrier mobility enhancement inpoly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergonerapid thermal annealing. J. Appl. Phys., 2013, 114, 133708–133712
[24]Richard H. Bube. Trap Density Determination by Space‐Charge‐Limited Currents. J. Appl. Phys., 1962, 33, 1733–1737
[25]Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, Yiwang Chen. Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Adv. Funct. Mater., 2019, 29, 1808059–1808067
[26]Jan Obrzut and Kirt A. Page. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys. Rev. B, 2009, 80, 195211–195217
[27]Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, Kazuhiko Seki. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater., 1999, 11, 605–625
[28]Veenstra, Siegfried Christiaan. Energy level alignment at metal/organic and organic/organic interfaces. Electronic structure of molecular systems: from gas phase to thin films to devices, 2002, 5
[29]Udo Lang, Elisabeth Müller, Nicola Naujoks, Jurg Dual. Microscopical Investigations of PEDOT:PSS Thin Films. Adv. Funct. Mater., 2009, 19, 1215–1220
[30]Jung Kyu Kim, Sang Jin Kim, Myung Jin Park, Sukang Bae, Sung-Pyo Cho, Qing Guo Du, Dong Hwan Wang, Jong Hyeok Park, Byung Hee Hong. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Sci. Rep., 2015, 5, 14276–14285
[31]Ehsan Hosseini, Vinayaraj Ozhukil Kollath, Kunal Karan. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C, 2020, 8, 3982–3990
[32]Nara Kim, Byoung Hoon Lee, Doowhan Choi, Geunjin Kim, Heejoo Kim, Jae-Ryoung Kim, Jongjin Lee, Yung Ho Kahng, Kwanghee Lee. Role of Interchain Coupling in the Metallic State of Conducting Polymers. Phys. Rev. Lett., 2012, 109, 106405–106409
[33]Ziji Liu, Hualin Zheng, Detao Liu, Zhiqing Liang, Wenyao Yang, Hao Chen, Long Ji, Shihao Yuan, Yiding Gu, Shibin Li. Controllable Two-dimensional Perovskite Crystallization via Water Additive for Highperformance Solar Cells. Nanoscale Res. Lett., 2020, 15, 108–115
[34]Ziran Zhao, Feidan Gu, Yunlong Li, Weihai Sun, Senyun Ye, Haixia Rao, Zhiwei Liu, Zuqiang Bian, Chunhui Huang. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci., 2017, 4, 1700204–170020
指導教授 吳春桂 江建宏(Chun-Guey Wu Chien-Hung Chiang) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明